Outline

(1) Systems of odes

- General solution
- Example presenting the method

Figure: Tanks A and B containing salt

Intro

Consider system of equations:

$$
\begin{aligned}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\ldots+p_{1 n} x_{n}+g_{1}(t) \\
& \vdots \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\ldots+p_{n n} x_{n}+g_{n}(t)
\end{aligned}
$$

where $p_{i j}(t), g_{i}(t)$ are continuous functions.

Intro

Consider system of equations:

$$
\begin{aligned}
x_{1}^{\prime} & =p_{11}(t) x_{1}+\ldots+p_{1 n} x_{n}+g_{1}(t) \\
& \vdots \\
x_{n}^{\prime} & =p_{n 1}(t) x_{1}+\ldots+p_{n n} x_{n}+g_{n}(t)
\end{aligned}
$$

where $p_{i j}(t), g_{i}(t)$ are continuous functions. We can rewrite this system as

$$
\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)+\mathbf{g}(t)
$$

Linear independence

For the homogeneous problem

$$
\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)
$$

analogously to second order odes, if we can find $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ s.t.

Linear independence

For the homogeneous problem

$$
\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)
$$

analogously to second order odes, if we can find $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ s.t.

$$
\operatorname{det}[\mathbf{X}(t)]:=\operatorname{det}\left[\begin{array}{cccc}
x_{11}\left(t_{*}\right) & x_{12}\left(t_{*}\right) & \cdots & x_{1 n}\left(t_{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1}\left(t_{*}\right) & x_{n 2}\left(t_{*}\right) & \cdots & x_{n n}\left(t_{*}\right)
\end{array}\right] \neq 0
$$

where $\mathbf{x}_{i}=i^{\text {th }}$ row $=\left(x_{1 i}, \ldots, x_{n i}\right)$, then

Linear independence

For the homogeneous problem

$$
\mathbf{x}^{\prime}(t)=\mathbf{P}(t) \mathbf{x}(t)
$$

analogously to second order odes, if we can find $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ s.t.

$$
\operatorname{det}[\mathbf{X}(t)]:=\operatorname{det}\left[\begin{array}{cccc}
x_{11}\left(t_{*}\right) & x_{12}\left(t_{*}\right) & \cdots & x_{1 n}\left(t_{*}\right) \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1}\left(t_{*}\right) & x_{n 2}\left(t_{*}\right) & \cdots & x_{n n}\left(t_{*}\right)
\end{array}\right] \neq 0
$$

where $\mathbf{x}_{i}=i^{\text {th }}$ row $=\left(x_{1 i}, \ldots, x_{n i}\right)$, then the general solution is of the form

General solution

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\ldots+\mathbf{x}_{n}(t)
$$

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later).

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

$$
\mathbf{A x}(t)=\mathbf{A}\left(\boldsymbol{\xi} e^{\lambda t}\right)=\lambda \boldsymbol{\xi} e^{\lambda t}=\boldsymbol{\xi} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t}\right)=\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}(t)
$$

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

$$
\mathbf{A x}(t)=\mathbf{A}\left(\boldsymbol{\xi} e^{\lambda t}\right)=\lambda \boldsymbol{\xi} e^{\lambda t}=\boldsymbol{\xi} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t}\right)=\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}(t)
$$

First we will assume that all eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ of \mathbf{A} are real and distinct from each other and thus the corresponding eigenvectors $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ are independent.

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

$$
\mathbf{A x}(t)=\mathbf{A}\left(\boldsymbol{\xi} e^{\lambda t}\right)=\lambda \boldsymbol{\xi} e^{\lambda t}=\boldsymbol{\xi} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t}\right)=\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}(t)
$$

First we will assume that all eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ of \mathbf{A} are real and distinct from each other and thus the corresponding eigenvectors $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ are independent. Then the solutions $\left\{\boldsymbol{\xi}_{i} e^{\lambda_{i} t}\right\}_{i=1}^{n}$ are linearly independent:

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

$$
\mathbf{A x}(t)=\mathbf{A}\left(\boldsymbol{\xi} e^{\lambda t}\right)=\lambda \boldsymbol{\xi} e^{\lambda t}=\boldsymbol{\xi} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t}\right)=\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}(t)
$$

First we will assume that all eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ of \mathbf{A} are real and distinct from each other and thus the corresponding eigenvectors $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ are independent. Then the solutions $\left\{\boldsymbol{\xi}_{i} e^{\lambda_{i} t}\right\}_{i=1}^{n}$ are linearly independent:

$$
\operatorname{det}\left[\begin{array}{ccc}
\xi_{11} e^{\lambda_{1} t} & \cdots & \xi_{1 n} e^{\lambda_{n} t} \\
\vdots & \ddots & \vdots \\
\xi_{n 1} e^{\lambda_{1} t} & \cdots & \xi_{n n} e^{\lambda_{n} t}
\end{array}\right]=e^{\left(\lambda_{1}+\ldots+\lambda_{n}\right) t} \operatorname{det}\left[\begin{array}{ccc}
\xi_{11} & \cdots & \xi_{1 n} \\
\vdots & \ddots & \vdots \\
\xi_{n 1} & \cdots & \xi_{n n}
\end{array}\right] \neq 0
$$

Solution

As with second order we make the ansatz $\boldsymbol{x}(t)=\boldsymbol{\xi} e^{\lambda t}$ where $\boldsymbol{\xi}$ is a fixed n-vector (to be chosen precisely later). Then, we observe that if $\boldsymbol{\xi}$ is chosen so that $\mathbf{A} \boldsymbol{\xi}=\lambda \boldsymbol{\xi}$ (i.e $\boldsymbol{\xi}$ is an eigenvalue of \boldsymbol{A}) we get

$$
\mathbf{A x}(t)=\mathbf{A}\left(\boldsymbol{\xi} e^{\lambda t}\right)=\lambda \boldsymbol{\xi} e^{\lambda t}=\boldsymbol{\xi} \frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{\lambda t}\right)=\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}(t)
$$

First we will assume that all eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ of \mathbf{A} are real and distinct from each other and thus the corresponding eigenvectors $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ are independent. Then the solutions $\left\{\boldsymbol{\xi}_{i} e^{\lambda_{i} t}\right\}_{i=1}^{n}$ are linearly independent:

$$
\operatorname{det}\left[\begin{array}{ccc}
\xi_{11} e^{\lambda_{1} t} & \cdots & \xi_{1 n} e^{\lambda_{n} t} \\
\vdots & \ddots & \vdots \\
\xi_{n 1} e^{\lambda_{1} t} & \cdots & \xi_{n n} e^{\lambda_{n} t}
\end{array}\right]=e^{\left(\lambda_{1}+\ldots+\lambda_{n}\right) t} \operatorname{det}\left[\begin{array}{ccc}
\xi_{11} & \cdots & \xi_{1 n} \\
\vdots & \ddots & \vdots \\
\xi_{n 1} & \cdots & \xi_{n n}
\end{array}\right] \neq 0
$$

General solution

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\ldots+\mathbf{x}_{n}(t)=c_{1} \boldsymbol{\xi}_{1} e^{\lambda_{1} t}+\ldots+c_{n} \boldsymbol{\xi}_{n} e^{\lambda_{n} t}
$$

Connected tanks

Consider two connected tanks A and B containing 1000 L of well-mixed salt-water with $x(t), y(t)$ kilogram amounts of salt respectively.

Connected tanks

Consider two connected tanks A and B containing 1000L of well-mixed salt-water with $x(t), y(t)$ kilogram amounts of salt respectively. Let IP,OP denote the $L /$ min-rate of salt-free water entering and exiting the two tanks
 two tanks.

Connected tanks

Consider two connected tanks A and B containing 1000L of well-mixed salt-water with $x(t), y(t)$ kilogram amounts of salt respectively. Let IP,OP denote the $L /$ min-rate of salt-free water entering and exiting the two tanks and $P 1, P 2$ the $L /$ min-rate of saltwater getting exchanged between the two tanks.

Connected tanks

To keep the volume of water constant in the two tanks we set $\mathrm{IP}=\mathrm{OP}=1(L / \mathrm{min})$. Let the rates $P 1=1(L / \mathrm{min})$ and $P 2=2(L / \mathrm{min})$ be constant in time.

Connected tanks

To keep the volume of water constant in the two tanks we set $\mathrm{IP}=\mathrm{OP}=1(L / \mathrm{min})$. Let the rates $P 1=1(L / \mathrm{min})$ and $P 2=2(L / \mathrm{min})$ be constant in time. The concentration of salt in each tank is $\frac{x(t)}{1000} \mathrm{~kg} / \mathrm{L}, \frac{y(t)}{1000} \mathrm{~kg} / \mathrm{L}$ respectively. Therefore, for tank A the rate of change of the amount of salt:

Connected tanks

To keep the volume of water constant in the two tanks we set $\mathrm{IP}=\mathrm{OP}=1(L / \mathrm{min})$. Let the rates $P 1=1(L / \mathrm{min})$ and $P 2=2(L / \mathrm{min})$ be constant in time. The concentration of salt in each tank is $\frac{x(t)}{1000} \mathrm{~kg} / \mathrm{L}, \frac{y(t)}{1000} \mathrm{~kg} / \mathrm{L}$ respectively. Therefore, for tank A the rate of change of the amount of salt:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=\text { Input rate }- \text { Output rate }=2 \cdot \frac{y(t)}{1000}-1 \cdot \frac{x(t)}{1000}
$$

Connected tanks

To keep the volume of water constant in the two tanks we set $\mathrm{IP}=\mathrm{OP}=1(L / \mathrm{min})$. Let the rates $P 1=1(L / \mathrm{min})$ and $P 2=2(L / \mathrm{min})$ be constant in time. The concentration of salt in each tank is $\frac{x(t)}{1000} \mathrm{~kg} / \mathrm{L}, \frac{y(t)}{1000} \mathrm{~kg} / \mathrm{L}$ respectively. Therefore, for tank A the rate of change of the amount of salt:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=\text { Input rate }- \text { Output rate }=2 \cdot \frac{y(t)}{1000}-1 \cdot \frac{x(t)}{1000}
$$

and for $\operatorname{tank} B$ we must also subtract the draining of salt from pipe OP

$$
\frac{\mathrm{d} y}{\mathrm{dt}}=\text { Input rate }- \text { Output rate }=1 \cdot \frac{x(t)}{1000}-2 \cdot \frac{y(t)}{1000}-1 \cdot \frac{y(t)}{1000}
$$

Connected tanks

To keep the volume of water constant in the two tanks we set $\mathrm{IP}=\mathrm{OP}=1(L / \mathrm{min})$. Let the rates $P 1=1(L / \mathrm{min})$ and $P 2=2(L / \mathrm{min})$ be constant in time. The concentration of salt in each tank is $\frac{x(t)}{1000} \mathrm{~kg} / \mathrm{L}, \frac{y(t)}{1000} \mathrm{~kg} / \mathrm{L}$ respectively. Therefore, for tank A the rate of change of the amount of salt:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=\text { Input rate }- \text { Output rate }=2 \cdot \frac{y(t)}{1000}-1 \cdot \frac{x(t)}{1000}
$$

and for tank B we must also subtract the draining of salt from pipe OP

$$
\frac{\mathrm{d} y}{\mathrm{dt}}=\text { Input rate }- \text { Output rate }=1 \cdot \frac{x(t)}{1000}-2 \cdot \frac{y(t)}{1000}-1 \cdot \frac{y(t)}{1000}
$$

In matrix form our system is

$$
\binom{x^{\prime}}{y^{\prime}}=\frac{1}{1000}\left[\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right]\binom{x}{y}
$$

Connected tanks

(1) First we compute the eigenvalues

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cc}
-1-\lambda & 2 \\
1 & -3-\lambda
\end{array}\right]=0 & \Rightarrow(-1-\lambda)(-3-\lambda)-2 \cdot 1=0 \\
& \Rightarrow \lambda_{1}=-2+\sqrt{3}, \lambda_{2}=-2-\sqrt{3}
\end{aligned}
$$

(2) Second we find the corresponding eigenvectors. To find $\boldsymbol{\xi}_{1}:=\binom{\xi_{1,1}}{\xi_{2,1}}$ we solve the system (up to multiples):

$$
\left[\begin{array}{cc}
-1-\lambda_{1} & 2 \\
1 & -3-\lambda_{1}
\end{array}\right]\binom{\xi_{1,1}}{\xi_{2,1}}=\binom{0}{0} .
$$

Connected tanks

By solving the system directly we obtain the solution (up to multiples). For example, we rewrite the above to get:

$$
\left\{\begin{array}{l}
(1-\sqrt{3}) \xi_{1,1}+2 \xi_{2,1}=0 \\
\xi_{1,1}+(-1-\sqrt{3}) \xi_{2,1}=0
\end{array} \Longrightarrow \boldsymbol{\xi}_{1}=\binom{\xi_{1,1}}{\xi_{2,1}}=\binom{1+\sqrt{3}}{1} .\right.
$$

Similarly to obtain ξ_{2} we have to solve

$$
\left[\begin{array}{cc}
-1-(-2-\sqrt{3}) & 2 \\
1 & -3-(-2-\sqrt{3})
\end{array}\right]\binom{\xi_{1,2}}{\xi_{2,2}}=\binom{0}{0}
$$

and we get

$$
\xi_{2}=\binom{1-\sqrt{3}}{1}
$$

Connected tanks

(1) Therefore, by the discussion above the general solution will be

$$
\mathbf{x}(t)=\binom{x(t)}{y(t)}=\frac{1}{1000} c_{1} \cdot \xi_{1} e^{\lambda_{1} t}+\frac{1}{1000} c_{2} \cdot \boldsymbol{\xi}_{2} e^{\lambda_{2} t}=c_{1} \cdot\binom{1+\sqrt{3}}{1} \frac{e^{(-2+}}{100}
$$

(2) Since $2>\sqrt{3}$, both the eigenvalues are negative and in turn the salt concentrations $x(t), y(t)$ will go to zero as $t \rightarrow+\infty$. This is reasonable because through pipe IP we are injecting salt-free water that over time transports the tanks' salt out through pipe OP.
(3) Next we study the stability. Since $-2+\sqrt{3}>-2-\sqrt{3}$, we get $e^{(-2+\sqrt{3}) t}>e^{(-2-\sqrt{3}) t}$ and so as $t \rightarrow+\infty$ the first eigenvector $\binom{1+\sqrt{3}}{1}$ will dominate.

The End

