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@ General solution —
@ Example presenting the method
Tank A Tank B oP
() yit)

Figure: Tanks A and B
containing salt
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Intro

Consider system of equations:
X,/, = pr1(t)x1 + ... + Panxn + gn(1)

where pj;(t), gi(t) are continuous functions.
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Intro

Consider system of equations:
X,/, = pr1(t)x1 + ... + Panxn + gn(1)

where pj;(t), gi(t) are continuous functions.We can rewrite this system as

x'(t) = P(t)x(t) + g(t).
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Linear independence

For the homogeneous problem
x'(t) = P(t)x(t)

analogously to second order odes, if we can find {x;}7_; s.t.
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Linear independence

For the homogeneous problem
x'(t) = P(t)x(t)
analogously to second order odes, if we can find {x;}7_; s.t.

Xll(t*) X12(t*) ce Xln(t*)
det [X(t)] :==det | : : #0,
an(t*) Xn2(t*) te Xnn(t*)

where x; = it" row = (xqj, ..., X;), then
b b
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Linear independence

For the homogeneous problem
x'(t) = P(t)x(t)
analogously to second order odes, if we can find {x;}7_; s.t.
Xll(t*) X12(t*) tet Xln(t*)
det [X(t)] := det : : : #0,
xm (te) Xxm2(ts) o Xnn(ti)

th

where x; = i row = (xij, ..., Xni), then the general solution is of the form

General solution

x(t) = axi(t) + ... +xp(2).
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As with second order we make the ansatz x(t) = £&e* where £ is a fixed
n-vector (to be chosen precisely later).

MAT?244 Ordinary Differential Equations 4 /10



As with second order we make the ansatz x(t) = £&e* where £ is a fixed

n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get
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As with second order we make the ansatz x(t) = £&e* where £ is a fixed

n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get

Ax(t) = A(ge) = Aget = g% (e”) - %’:(t).
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As with second order we make the ansatz x(t) = £&e* where £ is a fixed
n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get

d dx
_ Aty At At)
Ax(t) = A(ge™) = et = E—dt (e ) T (t).
First we will assume that all eigenvalues {\;}7_; of A are real and distinct

from each other and thus the corresponding eigenvectors {£;}7_; are
independent.
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As with second order we make the ansatz x(t) = £&e* where £ is a fixed
n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get

Ax(t) = A(ge) = Aget = g% (e”) - %’:(t).

First we will assume that all eigenvalues {\;}7_; of A are real and distinct
from each other and thus the corresponding eigenvectors {£;}7_; are

independent. Then the solutions {£;e>"t}7:1 are linearly independent:
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As with second order we make the ansatz x(t) = £&e* where £ is a fixed
n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get

Ax(t) = A(ge) = Aget = g% (e”) - %’:(t).

First we will assume that all eigenvalues {\;}7_; of A are real and distinct
from each other and thus the corresponding eigenvectors {£;}7_; are

independent. Then the solutions {£;e>"t}7:1 are linearly independent:

é‘lle)\lt e glneAnt &11 e gln
det | D | = ettt et

#0

gnleAlt fnneA"t Ent 0 Enn

MAT?244 Ordinary Differential Equations 4 /10



As with second order we make the ansatz x(t) = £&e* where £ is a fixed
n-vector (to be chosen precisely later).Then, we observe that if £ is chosen
so that A& = A€ (i.e £ is an eigenvalue of A) we get

Ax(t) = A(ge) = Aget = g% (e”) - %’:(t).

First we will assume that all eigenvalues {\;}7_; of A are real and distinct
from each other and thus the corresponding eigenvectors {£;}7_; are
independent. Then the solutions {ﬁieA’t}f’zl are linearly independent:

EnneMt o gppett i1 - &in
det . _ e(>\1+---+)\n)t det 75 0

gnleAlt fnneA"t Ent 0 Enn

General solution

x(t) = ax1(t) + ... + xp(t) = c1€&1Mt + ... + c €qeMt.

MAT?244 Ordinary Differential Equations 4 /10



Connected tanks

Consider two connected tanks A and B containing 1000L of well-mixed
salt-water with x(t), y(t) kilogram amounts of salt respectively.

MAT?244 Ordinary Differential Equations 5/ 10



Connected tanks

Consider two connected tanks A and B containing 1000L of well-mixed
salt-water with x(t), y(t) kilogram amounts of salt respectively. Let IP,OP
denote the L/min-rate of salt-free water entering and exiting the two tanks

and P1, P2 the L/min-rate of saltwater getting exchanged between the
two tanks.
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Connected tanks

Consider two connected tanks A and B containing 1000L of well-mixed
salt-water with x(t), y(t) kilogram amounts of salt respectively. Let IP,OP
denote the L/min-rate of salt-free water entering and exiting the two tanks
and P1, P2 the L/min-rate of saltwater getting exchanged between the

two tanks.
IP

Tank A
x(t)

P1

P2

Tank B
y(t)

OP

MAT?244 Ordinary Differential Equations 5/ 10



Connected tanks

To keep the volume of water constant in the two tanks we set

IP = OP = 1(L/min). Let the rates P1 = 1(L/min) and P2 = 2(L/min)
be constant in time.
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Connected tanks

To keep the volume of water constant in the two tanks we set
IP = OP = 1(L/min). Let the rates P1 = 1(L/min) and P2 = 2(L/min)
be constant in time. The concentration of salt in each tank is

1000 kg/L, :{052) kg/L respectively. Therefore, for tank A the rate of change
of the amount of salt:
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Connected tanks

To keep the volume of water constant in the two tanks we set
IP = OP = 1(L/min). Let the rates P1 = 1(L/min) and P2 = 2(L/min)
be constant in time. The concentration of salt in each tank is

1000 kg/L, :{052) kg/L respectively. Therefore, for tank A the rate of change
of the amount of salt:

d , t
d—: = Input rate — Output rate = 2 - y(t) 1. x(t)

1000 1000
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Connected tanks

To keep the volume of water constant in the two tanks we set
IP = OP = 1(L/min). Let the rates P1 = 1(L/min) and P2 = 2(L/min)
be constant in time. The concentration of salt in each tank is

1000 kg/L, :{052) kg/L respectively. Therefore, for tank A the rate of change
of the amount of salt:

d t t
& Input rate — Output rate = 2 - y(t) -1 x(t)

dt 1000 1000
and for tank B we must also subtract the draining of salt from pipe OP

dy x(t) y(t) y(t)
3t = Input rate — Output rate = " 1000 1000 1000
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Connected tanks

To keep the volume of water constant in the two tanks we set

IP = OP = 1(L/min). Let the rates P1 = 1(L/min) and P2 = 2(L/min)
be constant in time. The concentration of salt in each tank is

1000 kg/L, :{052) kg/L respectively. Therefore, for tank A the rate of change
of the amount of salt:

d t t
& Input rate — Output rate = 2 - y(t) -1 x(t)

dt 1000 1000
and for tank B we must also subtract the draining of salt from pipe OP

dy x(t) y(t) y(t)
3t = Input rate — Output rate = " 1000 1000 1000

In matrix form our system is

) -ma|, |0
/ — T~ .
y) 1000 | o \y
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Connected tanks

© First we compute the eigenvalues

“1-X 2

det =0 = (-1-A)(-3-XA)—-2-1=0
1 —3-2A

=\ =-24+V3 =-2-V3

51,1)

@ Second we find the corresponding eigenvectors. To find &; := (521

we solve the system (up to multiples):

-1-X 2

()= (o)
1 -3 - )\1 52’1 0
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Connected tanks

By solving the system directly we obtain the solution (up to multiples).
For example, we rewrite the above to get:

(&1 [(1+V3
:>£1_<€2,1>_< 1 )

Similarly to obtain &, we have to solve

(1-+3)¢11+261=0

11+ (-1 -V3)&1=0

~1—-(-2-+3) 2
I [ = R 6
and we get
(%)
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Connected tanks

© Therefore, by the discussion above the general solution will be

x(t) 1 Mty L ot 1+ /3 el=2F
t) = = — . 1 _— . 2t — .
x() <y(t)> 1000 41€ Tiggp @S Tl 100

@ Since 2 > /3, both the eigenvalues are negative and in turn the salt
concentrations x(t), y(t) will go to zero as t — +o00. This is
reasonable because through pipe IP we are injecting salt-free water
that over time transports the tanks' salt out through pipe OP.

© Next we study the stability. Since —2 +1/3 > —2 — /3, we get

e(=2+V3)t 5 o(-2-V3)t 3nd 50 as t — +oo the first eigenvector
(1+\/§
1

) will dominate.

A N N
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The End
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