Outline

(1) Method of undetermined coeffic

Figure: Nonhomogeneous periodic forcing

If $f=c t^{m} e^{r_{*} t}$, then the ansatz is

$$
y_{0}=\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) e^{r_{*} t} \cdot\left\{\begin{array}{cl}
1 & \text { if } r_{*} \text { is not a root } \\
t & \text { if } r_{*} \text { is a simple root } \\
t^{2} & \text { if } r_{*} \text { is a double root }
\end{array}\right.
$$

$f=c t^{m} e^{\alpha t} \cos (\beta t)$ or $=c t^{m} e^{\alpha t} \sin (\beta t)$

If $f=c t^{m} e^{\alpha t} \cos (\beta t)$ or $=c t^{m} e^{\alpha t} \sin (\beta t)$, then the ansatz is
$y_{0}=e^{\alpha t}\left[\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) \cos (\beta t)+\left(b_{0}+b_{1} t+\ldots+b_{m} t^{m}\right) \sin (\beta t)\right]$
$\cdot \begin{cases}1 & \text { if } \alpha+i \beta \text { is not a root } \\ t \quad \text { if } \alpha+i \beta \text { is a simple root }\end{cases}$

Presenting method example

Consider the spring system governed by

$$
y^{\prime \prime}+2 y^{\prime}-3 y=3 t e^{t}
$$

Find the solution and its asymptotic behaviour.

In class example

Consider the spring system governed by

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 t e^{t} \sin (t)
$$

Determine what form the solution will take.

In class example

Solve the IVP and determine long term behaviour

$$
y^{\prime \prime}+5 y^{\prime}+6 y=2 t e^{t} \sin (t), y(0)=2, y^{\prime}(0)=1
$$

Variation of parameters

We will now consider non-homogeneous equations with coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

where $f(t)$ is any continuous function and a, b, c are also functions with $a(t) \neq 0$.

Example-presenting the method

Returning to the spring example suppose that it is damping free $\gamma=0$ and the exernal force is $f(t)=\tan (t)$:

$$
y^{\prime \prime}+y=\tan (t)
$$

(1) First we find independent solutions for the homogeneous problem:

$$
y^{\prime \prime}+y=0
$$

(2) One can easily check that $\cos (t), \sin (t)$ are solutions for it and computing their Wronskian gives:

$$
W(\cos (t), \sin (t), t)=\cos ^{2} t+\sin ^{2}(t)=1 \neq 0
$$

(3) Therefore, we make a guess

$$
y_{n h}=v_{1} \cos (t)+v_{2} \sin (t)
$$

Example presenting the method

(4) Using our system of equations we obtain

$$
\begin{aligned}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=\frac{f}{a} \Rightarrow \\
& v_{1}^{\prime} \cos (t)+v_{2}^{\prime} \sin (t)=0 \\
& -\cos (t) v_{1}^{\prime}+\cos (t) v_{2}^{\prime}=\tan (t) \Rightarrow \\
& v_{1}^{\prime}=-\tan (t) \sin t \\
& v_{2}^{\prime}=\tan (t) \cos (t)=\sin (t) .
\end{aligned}
$$

example presenting method

Therefore, by integrating we obtain

$$
\begin{aligned}
& v_{1}=-\int \tan (t) \sin (t) d t=-\int \frac{\sin ^{2}(t)}{\cos (t)} d t \\
& =\int \cos (t)-\frac{1}{\cos (t)} d t=\sin (t)-\ln \left|\frac{1+\sin (t)}{\cos (t)}\right|+c_{1} \text { and } \\
& v_{2}=\int \sin (t) d t=-\cos (t)+c_{2}
\end{aligned}
$$

For simplicity we take $c_{1}=c_{2}=0$ and we get:

$$
\begin{aligned}
& y_{n h}=\left(\sin (t)-\ln \left|\frac{1+\sin (t)}{\cos (t)}\right|\right) \cos (t)-\cos (t) \sin (t) \\
& =\ln \left|\frac{\cos (t)}{1+\sin (t)}\right| \cos (t)
\end{aligned}
$$

Method formal steps

(1) First we obtain two linearly independent solutions y_{1}, y_{2} for the homogeneous problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

Method formal steps

(1) First we obtain two linearly independent solutions y_{1}, y_{2} for the homogeneous problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

(2) Second we make a guess

$$
y_{n h}=v_{1}(t) y_{1}+v_{2}(t) y_{2}
$$

and plug it into our ODE. This will gives one equation for v_{1}, v_{2}.

Method formal steps

(1) First we obtain two linearly independent solutions y_{1}, y_{2} for the homogeneous problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

(2) Second we make a guess

$$
y_{n h}=v_{1}(t) y_{1}+v_{2}(t) y_{2}
$$

and plug it into our ODE. This will gives one equation for v_{1}, v_{2}.
(3) Third step: However, we have two unknowns, so we will need one more equation. So we impose another condition for v_{1}, v_{2} to obtain another equation:

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0
$$

Method formal steps

(1) First we obtain two linearly independent solutions y_{1}, y_{2} for the homogeneous problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

(2) Second we make a guess

$$
y_{n h}=v_{1}(t) y_{1}+v_{2}(t) y_{2}
$$

and plug it into our ODE. This will gives one equation for v_{1}, v_{2}.
(3) Third step: However, we have two unknowns, so we will need one more equation. So we impose another condition for v_{1}, v_{2} to obtain another equation:

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 .
$$

This equation is helpful because it simplifies the first equation (proved in detail below)

$$
y_{n h}^{\prime}=y_{1}^{\prime} v_{1}+y_{2}^{\prime} v_{2}+0 \Rightarrow a y_{g}^{\prime \prime}+b y_{n h}^{\prime}+c y_{n h}=a\left(y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}\right) .
$$

Method formal steps

(4) Therefore, we can obtain v_{1}, v_{2} from the system

$$
\left\{\begin{array}{l}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
y_{1}^{\prime} v_{1}^{\prime}+y_{2}^{\prime} v_{2}^{\prime}=\frac{f}{a}
\end{array}\right.
$$

In class example

Consider the equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}
$$

with given fundamental solutions $y_{1}=1+t, y_{2}=e^{t}$ for the homogeneous problem $t y^{\prime \prime}-(1+t) y^{\prime}+y=0$.

In class example

Consider the equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=x^{2} \ln x
$$

with given fundamental solutions $y_{1}=x^{2}, y_{2}=x^{2} \ln (x)$ for the homogeneous problem $x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0$.

In class example

Consider the equation

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}
$$

with given fundamental solutions $y_{1}=1+t, y_{2}=e^{t}$ for the homogeneous problem $t y^{\prime \prime}-(1+t) y^{\prime}+y=0$.

The End

