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Figure: stabilization around
market price



Repeated roots

In some cases the roots are equal when b2 − 4ac = 0
)
. For example,

suppose that γ2 ≈ 4km
(
called critically damped

)
, then the roots will be

r1 = r2 = − γ

2m
=: r .

If the ode ay ′′ + by ′ + cy = 0 has a characteristic equation with repeated
root r := −b

2a , then its fundamental solution is of the form:

y = c1e
rt + c2te

rt .
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Proof.

For y2 := g
(
t
)
y1 we will first find which ode g

(
t
)

must satisfy in order
that y2 is a solution of our ode

a
(
g
(
t
)
y1

)′′
+ b

(
g
(
t
)
y1

)′
+ c = 0⇒

a
(
g ′′

(
t
)
ert + 2g ′rert

)
+ bg ′ert = 0⇒

where we used that y1 satisfies the ode

0 = a
(
g ′′

(
t
)

+ g ′
(
a2r + b

)
= ag ′′ + g ′

(
2a
−b
2a

+ b
)

= ag ′′ ⇒ ag ′′ = 0⇒

g = c1 + c2t.

This is indeed the general solution because:

W
(
y1, y2, t

)
= ert

(
ert + tert

)
− rerttert = ert 6= 0.
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In class example

Consider the IVP

y ′′ − 2y ′ + y = 0, y
(
0
)

= 1, y ′
(
0
)

= 2
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In class example

Consider the IVP

y ′′ − 6y ′ + 9y = 0, y
(
0
)

= 0, y ′
(
0
)

= 2
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Consider nonhomogeneous equation of the form

y ′′ + ay ′ + by = c ,

where a, b, c are constants.

By obtaining the solution yh for the
homogeneous problem, the solution for this nonhomogeneous problem will
be:

y = yh +
c

b
.

The solution ys := c
b is called globally stable when y → ys , which is

equivalent to saying yh → 0 as t → +∞.
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Stability criterion

Consider non-homogeneous equation

y ′′ + ay ′ + by = f (t).

Then the solution is of the form y = yh + ys , where yh solves the
homogeneous problem and ys is any solution of the nonhomogeneous
problem.

We have that

lim
t→∞

y = ys iff a > 0, b > 0.

In other words, ys is globally stable iff a > 0, b > 0 iff the real parts of the
roots of the characteristic equation are both negative.
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As with constant f(t), we again obtain that the generalized solution is of
the form

y = c1y1 + c2y2 + ys =: yh + ys .

So by studying when yh → 0, we can identify when ys is the globally stable
solution.

(1) If the characteristic equation has two real distinct roots r1, r2 then

yh = c1e
r1 + c2e

r2t

and so ys is stable iff r1, r2 < 0. The roots are

r1 =
−a +

√
a2 − 4b

2
, r2 =

−a−
√
a2 − 4b

2
.

We have r1 < 0⇔ b > 0 and r2 < 0⇔ a > 0.
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(2) If the characteristic equation has two complex roots r1, r2 then

yh = e−
a
2 (c1cos(βt) + c2sin(βt))

and so ys is stable iff a > 0. The condition b > 0 follows from
a2 < 4b.

(3) If the characteristic equation has a double root r = r1 = r2 then

yh = ert(c1 + c2t)

and so ys is stable iff r = −a
2 < 0⇒ a > 0. The condition b > 0

follows from a2 = 4b.
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Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or
decreasing.

D(P) = a− bP + mP ′ + nP ′′ and S(P) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m, n, u,w can be any sign. For now we will study
it from the buyers perspective and set u = w = 0. To obtain an ODE for
it, we assume that the market is cleared and thus D(P) = S(P).

a− bP + mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b + β

n
P =

α− a

n
.

MAT244 Ordinary Differential Equations 10 / 24



Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or
decreasing.

D(P) = a− bP + mP ′ + nP ′′ and S(P) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m, n, u,w can be any sign.

For now we will study
it from the buyers perspective and set u = w = 0. To obtain an ODE for
it, we assume that the market is cleared and thus D(P) = S(P).

a− bP + mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b + β

n
P =

α− a

n
.

MAT244 Ordinary Differential Equations 10 / 24



Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or
decreasing.

D(P) = a− bP + mP ′ + nP ′′ and S(P) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m, n, u,w can be any sign. For now we will study
it from the buyers perspective and set u = w = 0.

To obtain an ODE for
it, we assume that the market is cleared and thus D(P) = S(P).

a− bP + mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b + β

n
P =

α− a

n
.

MAT244 Ordinary Differential Equations 10 / 24



Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or
decreasing.

D(P) = a− bP + mP ′ + nP ′′ and S(P) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m, n, u,w can be any sign. For now we will study
it from the buyers perspective and set u = w = 0. To obtain an ODE for
it, we assume that the market is cleared and thus D(P) = S(P).

a− bP + mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b + β

n
P =

α− a

n
.

MAT244 Ordinary Differential Equations 10 / 24



oscillatory system

For example, suppose a = 40, b = 2,m = −2, α = −5, β = 3, n = −1 then
our ode will be:

P ′′ + 2P ′ + 5P = 45

and for m = 2
P ′′ − 2P ′ + 5P = 45.

The corresponding solutions will be

P(t) = e−t [a1cos(2t) + a2sin(2t)] + 9

and
P(t) = et [a1cos(2t) + a2sin(2t)] + 9.

Matlab simulation
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In class example

Solve the IVP and determine long term behaviour

y ′′ + 5y ′ + 6y = 3, y
(
0
)

= 2, y ′
(
0
)

= 1.
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In class example

Solve the IVP and determine long term behaviour

y ′′ + y = 9, y
(
π/3

)
= 2, y ′

(
π/3

)
= −4
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We will now consider non-homogeneous equations with constant
coefficients of the form

ay ′′ + by ′ + cy = f
(
t
)
.

By managing to find a particular solution ynh, then we can generate every
other one. Let v be any another solution, then

a(v − ynh)′′ + b(v − ynh)′ + c(v − ynh) = f (t)− f (t) = 0.

Therefore, by finding the fundamental set of solutions y1, y2 for the
homogeneous problem we have

v − ynh = c1y1 + c2y2 ⇒ v = ynh + c1y1 + c2y2.

So we managed to generate any solution starting from ynh, y1, y2.
Here we will find ynh for f

(
t
)

of the following possible forms:

f1
(
t
)

:= Ctmer∗t , f2
(
t
)

:= Ctmeαcos
(
βt

)
, f3

(
t
)

:= Ctmeαtsin
(
βt

)
.
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forcing term f = ctmer∗t

If f = ctmer∗t then we make the ansatz
(
assume the solution to be of the

form
)

ynh(t
)

= ts
(
a0 + a1t + ...+ amt

m
)
er∗t .

Now the way we pick the exponent s, depends on whether or not r∗ is a
root of the characteristic equation of our ODE. The reason for this can be
seen in the proof below.

1 If r∗ is not a root, then we set s := 0.

2 If r∗ is a simple root, then we set s := 1.

3 If r∗ is a double root, then we set s := 2.
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f = ctmer∗t

First we will work with

ay ′′ + by ′ + c = Ctmer∗t .

We make the guess

ynh
(
t
)

=
(
a0 + a1t + ...+ ant

n
)
ert .

for some yet undetermined n. Then plugging it into our ode we obtain

ay ′′nh + by ′nh + cynh

= an
(
ar2 + br + c

)
tnert +

(
ann

(
2ar + b

)
+ an−1

(
ar2 + br + c

))
tn−1ert

+ [an
(
n − 1

)
a + an−1

(
n − 1

)(
2ar + b

)
+ an−2

(
ar2 + br + c

)
]tn−2ert

+ lower order terms.
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f = ctmer∗t

Case 1: If r is not a root of the characteristic equation ar2 + br + c , then
the leading term tn remains and so to obtain tm we must set n:=m.

ynh
(
t
)

=
(
a0 + a1t + ...+ ant

m
)
ert .

Case 2: If r is a simple root, then ar2 + br + c = 0 and we are left with
tn−1 being the leading term and so n − 1 := m.

ynh
(
t
)

=
(
a0 + a1t + ...+ ant

m+1
)
ert .

Moreover, since r is a root, the y0 := a0e
rt will solve the homogeneous

equation ay ′′ + by ′ + c = 0 and so we can ignore it
(
due to additivity of

solutions
)
. Thus,

ynh
(
t
)

=
(
a1t + ...+ ant

m+1
)
ert = t

(
a1 + ...+ ant

m
)
ert .
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Case 3: If r is a double root, then ar2 + br + c = 0, 2ar + b = 0 and we
are left with tn−2 being the leading term and so n − 2 := m.

ynh =
(
a0 + a1t + ...+ ant

m+2
)
ert .

Moreover, since r is a repeated root, then ert , tert are both solutions of the
homogeneous equation ay ′′ + by ′ + c = 0 and so we can ignore them.
Thus,

ynh =
(
a2t

2 + ...+ ant
m+2

)
ert = t2

(
a2 + ...+ ant

m
)
ert .

Next we will work with

ay ′′ + by ′ + c = Ctmeαtsin
(
βt

)
=

1

2i
Ctmeαt+iβt − 1

2i
Ctmeαt−iβt .

Therefore, from the previous we make the guess

ynh =
(
a0 + a1t + ...+ ant

n
)
e

(
α+iβ

)
t +

(
b0 + b1t + ...+ bnt

n
)
e

(
α−iβ

)
t .

= eαt
(
c0 + c1t + ...+ cnt

n
)
cos

(
βt

)
+
(
d0 + d1t + ...+ dnt

n
)
eαtsin

(
βt

)
.

So as above we check whether r∗ = α+ iβ is a root and the same analysis
shows the result.
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Thus,

ynh =
(
a2t

2 + ...+ ant
m+2

)
ert = t2

(
a2 + ...+ ant

m
)
ert .

Next we will work with

ay ′′ + by ′ + c = Ctmeαtsin
(
βt

)
=

1

2i
Ctmeαt+iβt − 1

2i
Ctmeαt−iβt .

Therefore, from the previous we make the guess

ynh =
(
a0 + a1t + ...+ ant

n
)
e

(
α+iβ

)
t +

(
b0 + b1t + ...+ bnt

n
)
e

(
α−iβ

)
t .

= eαt
(
c0 + c1t + ...+ cnt

n
)
cos

(
βt

)
+
(
d0 + d1t + ...+ dnt

n
)
eαtsin

(
βt

)
.

So as above we check whether r∗ = α+ iβ is a root and the same analysis
shows the result.
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Example presenting the method

Resuming the spring example, let u
(
t
)

denote the displacement from the
equilibrium position. Then by Newton’s law one can obtain the equation

mu′′
(
t
)

+ γu′
(
t
)

+ ku
(
t
)

= F
(
t
)
,

where F
(
t
)

is any external force. Above we assumed that F
(
t
)

= 0, and
now we will take it to be any of the above mentioned functions. For
example,consider the equation

y ′′ + 3y ′ + 2y = sin
(
t
)
.

Here we are shaking the spring system periodically in time.
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1 First we are in the second case and so we make the ansatz

ynh(t
)

= tseαt [
(
a0+a1t+...+amt

m
)
cos

(
βt

)
+
(
b0+a1t+...+bmt

m
)
sin

(
βt

)
which simplifies because m = 0, α = 0 and β = 1:

ynh(t
)

= ts
(
a0cos

(
t
)

+ b0sin
(
t
))
.

2 Next we pick s, depending on whether a + iβ = i is a root of our
ODE’s characteristic equation:

r2 + 3r + 2 = 0.

3 Its roots are r1 = −2, r2 = −1 and so we set s = 0 and have

ynh(t
)

= a0cos
(
t
)

+ b0sin
(
t
)
.

MAT244 Ordinary Differential Equations 20 / 24



1 Plugging into our ode we obtain

y ′′ + 3y ′ + 2y

= −
(
a0cos

(
t
)

+ b0sin
(
t
))

+ 3
(
− a0sin

(
t
)

+ b0cos
(
t
))

+ 2
(
a0cos

(
t
)

+ b0sin
(
t
))

=
(
a0 + 3b0

)
cos

(
t
)

+
(
− 3a0 + b0

)
sin

(
t
)

and so to have this be equal to sin
(
t
)

we require{
a0 + 3b0 = 0

−3a0 + b0 = 0
⇒ a0 = −0.3, b0 = 0.1.

2 So the solution will be

ynh(t
)

= −0.3cos
(
t
)

+ 0.1sin
(
t
)
.

3 Therefore, the general solution will be:

y = ynh + c1e
−2t + c2e

−t .

4 But why is it periodic given that damping is involved
(
γ 6= 0

)
? The

sinusoidal external force keeps pumping energy into the system.
5 Matlab simulation
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In class example

Consider the spring system governed by

y ′′ + 2y ′ − 3y = 3tet .

Find the solution and its asymptotic behaviour.
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In class example

Consider the spring system governed by

y ′′ + 2y ′ − 3y = 2tetsin
(
t
)
.

Determine what form the solution will take.
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The End

MAT244 Ordinary Differential Equations 24 / 24


	Repeated roots
	Stability
	Stability criterion
	Price adjustment mechanism

	Method of undetermined coefficients

