Outline

(1) Repeated roots
(2) Stability

- Stability criterion
- Price adjustment mechanism
(3) Method of undetermined coeffic

Figure: stabilization around market price

Repeated roots

In some cases the roots are equal when $b^{2}-4 a c=0$). For example, suppose that $\gamma^{2} \approx 4 \mathrm{~km}$ (called critically damped), then the roots will be

$$
r_{1}=r_{2}=-\frac{\gamma}{2 m}=: r
$$

Repeated roots

In some cases the roots are equal (when $b^{2}-4 a c=0$). For example, suppose that $\gamma^{2} \approx 4 \mathrm{~km}$ (called critically damped), then the roots will be

$$
r_{1}=r_{2}=-\frac{\gamma}{2 m}=: r
$$

If the ode $a y^{\prime \prime}+b y^{\prime}+c y=0$ has a characteristic equation with repeated root $r:=\frac{-b}{2 a}$, then its fundamental solution is of the form:

$$
y=c_{1} e^{r t}+c_{2} t e^{r t} .
$$

Proof.

For $y_{2}:=g(t) y_{1}$ we will first find which ode $g(t)$ must satisfy in order that y_{2} is a solution of our ode
$a\left(g(t) y_{1}\right)^{\prime \prime}+b\left(g(t) y_{1}\right)^{\prime}+c=0 \Rightarrow$
$a\left(g^{\prime \prime}(t) e^{r t}+2 g^{\prime} r e^{r t}\right)+b g^{\prime} e^{r t}=0 \Rightarrow$
where we used that y_{1} satisfies the ode
$0=a\left(g^{\prime \prime}(t)+g^{\prime}(a 2 r+b)=a g^{\prime \prime}+g^{\prime}\left(2 a \frac{-b}{2 a}+b\right)=a g^{\prime \prime} \Rightarrow \quad a g^{\prime \prime}=0 \Rightarrow\right.$ $g=c_{1}+c_{2} t$.

This is indeed the general solution because:

$$
W\left(y_{1}, y_{2}, t\right)=e^{r t}\left(e^{r t}+t e^{r t}\right)-r e^{r t} t e^{r t}=e^{r t} \neq 0
$$

In class example

Consider the IVP

$$
y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=2
$$

In class example

Consider the IVP

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=0, y^{\prime}(0)=2
$$

Consider nonhomogeneous equation of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=c
$$

where a, b, c are constants.

Consider nonhomogeneous equation of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=c
$$

where a, b, c are constants. By obtaining the solution y_{h} for the homogeneous problem, the solution for this nonhomogeneous problem will be:

$$
y=y_{h}+\frac{c}{b} .
$$

Consider nonhomogeneous equation of the form

$$
y^{\prime \prime}+a y^{\prime}+b y=c
$$

where a, b, c are constants. By obtaining the solution y_{h} for the homogeneous problem, the solution for this nonhomogeneous problem will be:

$$
y=y_{h}+\frac{c}{b}
$$

The solution $y_{s}:=\frac{c}{b}$ is called globally stable when $y \rightarrow y_{s}$, which is equivalent to saying $y_{h} \rightarrow 0$ as $t \rightarrow+\infty$.

Stability criterion

Consider non-homogeneous equation

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t)
$$

Then the solution is of the form $y=y_{h}+y_{s}$, where y_{h} solves the homogeneous problem and y_{s} is any solution of the nonhomogeneous problem.

Stability criterion

Consider non-homogeneous equation

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t)
$$

Then the solution is of the form $y=y_{h}+y_{s}$, where y_{h} solves the homogeneous problem and y_{s} is any solution of the nonhomogeneous problem. We have that

$$
\lim _{t \rightarrow \infty} y=y_{s} \text { iff } a>0, b>0
$$

Stability criterion

Consider non-homogeneous equation

$$
y^{\prime \prime}+a y^{\prime}+b y=f(t)
$$

Then the solution is of the form $y=y_{h}+y_{s}$, where y_{h} solves the homogeneous problem and y_{s} is any solution of the nonhomogeneous problem. We have that

$$
\lim _{t \rightarrow \infty} y=y_{s} \text { iff } a>0, b>0
$$

In other words, y_{s} is globally stable iff $a>0, b>0$ iff the real parts of the roots of the characteristic equation are both negative.

As with constant $f(\mathrm{t})$, we again obtain that the generalized solution is of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+y_{s}=: y_{h}+y_{s} .
$$

So by studying when $y_{h} \rightarrow 0$, we can identify when y_{s} is the globally stable solution.

As with constant $f(\mathrm{t})$, we again obtain that the generalized solution is of the form

$$
y=c_{1} y_{1}+c_{2} y_{2}+y_{s}=: y_{h}+y_{s} .
$$

So by studying when $y_{h} \rightarrow 0$, we can identify when y_{s} is the globally stable solution.
(1) If the characteristic equation has two real distinct roots r_{1}, r_{2} then

$$
y_{h}=c_{1} e^{r_{1}}+c_{2} e^{r_{2} t}
$$

and so y_{s} is stable iff $r_{1}, r_{2}<0$. The roots are

$$
r_{1}=\frac{-a+\sqrt{a^{2}-4 b}}{2}, r_{2}=\frac{-a-\sqrt{a^{2}-4 b}}{2}
$$

We have $r_{1}<0 \Leftrightarrow b>0$ and $r_{2}<0 \Leftrightarrow a>0$.
(2) If the characteristic equation has two complex roots r_{1}, r_{2} then

$$
y_{h}=e^{-\frac{\partial}{2}}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

and so y_{s} is stable iff $a>0$. The condition $b>0$ follows from $a^{2}<4 b$.
(2) If the characteristic equation has two complex roots r_{1}, r_{2} then

$$
y_{h}=e^{-\frac{\partial}{2}}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

and so y_{s} is stable iff $a>0$. The condition $b>0$ follows from $a^{2}<4 b$.
(3) If the characteristic equation has a double root $r=r_{1}=r_{2}$ then

$$
y_{h}=e^{r t}\left(c_{1}+c_{2} t\right)
$$

and so y_{s} is stable iff $r=\frac{-a}{2}<0 \Rightarrow a>0$. The condition $b>0$ follows from $a^{2}=4 b$.

Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or decreasing.

$$
D(P)=a-b P+m P^{\prime}+n P^{\prime \prime} \text { and } S(P)=\alpha+\beta P+u P^{\prime}+w P^{\prime \prime}
$$

Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or decreasing.

$$
D(P)=a-b P+m P^{\prime}+n P^{\prime \prime} \text { and } S(P)=\alpha+\beta P+u P^{\prime}+w P^{\prime \prime}
$$

where $a, b, \alpha, \beta>0$ and m, n, u, w can be any sign.

Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or decreasing.

$$
D(P)=a-b P+m P^{\prime}+n P^{\prime \prime} \text { and } S(P)=\alpha+\beta P+u P^{\prime}+w P^{\prime \prime}
$$

where $a, b, \alpha, \beta>0$ and m, n, u, w can be any sign. For now we will study it from the buyers perspective and set $u=w=0$.

Price adjustment mechanism

Buyers may also base their behavior on whether the price is increasing or decreasing.

$$
D(P)=a-b P+m P^{\prime}+n P^{\prime \prime} \text { and } S(P)=\alpha+\beta P+u P^{\prime}+w P^{\prime \prime}
$$

where $a, b, \alpha, \beta>0$ and m, n, u, w can be any sign. For now we will study it from the buyers perspective and set $u=w=0$. To obtain an ODE for it, we assume that the market is cleared and thus $D(P)=S(P)$.

$$
a-b P+m P^{\prime}+n P^{\prime \prime}=\alpha+\beta P \Rightarrow P^{\prime \prime}+\frac{m}{n} P^{\prime}-\frac{b+\beta}{n} P=\frac{\alpha-a}{n}
$$

oscillatory system

For example, suppose $a=40, b=2, m=-2, \alpha=-5, \beta=3, n=-1$ then our ode will be:

$$
P^{\prime \prime}+2 P^{\prime}+5 P=45
$$

and for $m=2$

$$
P^{\prime \prime}-2 P^{\prime}+5 P=45
$$

The corresponding solutions will be

$$
P(t)=e^{-t}\left[a_{1} \cos (2 t)+a_{2} \sin (2 t)\right]+9
$$

and

$$
P(t)=e^{t}\left[a_{1} \cos (2 t)+a_{2} \sin (2 t)\right]+9
$$

Matlab simulation

In class example

Solve the IVP and determine long term behaviour

$$
y^{\prime \prime}+5 y^{\prime}+6 y=3, y(0)=2, y^{\prime}(0)=1
$$

In class example

Solve the IVP and determine long term behaviour

$$
y^{\prime \prime}+y=9, y(\pi / 3)=2, y^{\prime}(\pi / 3)=-4
$$

We will now consider non-homogeneous equations with constant coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

We will now consider non-homogeneous equations with constant coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

By managing to find a particular solution $y_{n h}$, then we can generate every other one. Let v be any another solution, then

$$
a\left(v-y_{n h}\right)^{\prime \prime}+b\left(v-y_{n h}\right)^{\prime}+c\left(v-y_{n h}\right)=f(t)-f(t)=0 .
$$

We will now consider non-homogeneous equations with constant coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

By managing to find a particular solution $y_{n h}$, then we can generate every other one. Let v be any another solution, then

$$
a\left(v-y_{n h}\right)^{\prime \prime}+b\left(v-y_{n h}\right)^{\prime}+c\left(v-y_{n h}\right)=f(t)-f(t)=0 .
$$

Therefore, by finding the fundamental set of solutions y_{1}, y_{2} for the homogeneous problem we have

$$
v-y_{n h}=c_{1} y_{1}+c_{2} y_{2} \Rightarrow v=y_{n h}+c_{1} y_{1}+c_{2} y_{2} .
$$

We will now consider non-homogeneous equations with constant coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

By managing to find a particular solution $y_{n h}$, then we can generate every other one. Let v be any another solution, then

$$
a\left(v-y_{n h}\right)^{\prime \prime}+b\left(v-y_{n h}\right)^{\prime}+c\left(v-y_{n h}\right)=f(t)-f(t)=0 .
$$

Therefore, by finding the fundamental set of solutions y_{1}, y_{2} for the homogeneous problem we have

$$
v-y_{n h}=c_{1} y_{1}+c_{2} y_{2} \Rightarrow v=y_{n h}+c_{1} y_{1}+c_{2} y_{2} .
$$

So we managed to generate any solution starting from $y_{n h}, y_{1}, y_{2}$.

We will now consider non-homogeneous equations with constant coefficients of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

By managing to find a particular solution $y_{n h}$, then we can generate every other one. Let v be any another solution, then

$$
a\left(v-y_{n h}\right)^{\prime \prime}+b\left(v-y_{n h}\right)^{\prime}+c\left(v-y_{n h}\right)=f(t)-f(t)=0
$$

Therefore, by finding the fundamental set of solutions y_{1}, y_{2} for the homogeneous problem we have

$$
v-y_{n h}=c_{1} y_{1}+c_{2} y_{2} \Rightarrow v=y_{n h}+c_{1} y_{1}+c_{2} y_{2} .
$$

So we managed to generate any solution starting from $y_{n h}, y_{1}, y_{2}$. Here we will find $y_{n h}$ for $f(t)$ of the following possible forms:

$$
f_{1}(t):=C t^{m} e^{r_{*} t}, f_{2}(t):=C t^{m} e^{\alpha} \cos (\beta t), f_{3}(t):=C t^{m} e^{\alpha t} \sin (\beta t)
$$

forcing term $f=c t^{m} e^{r, t}$

If $f=c t^{m} e^{r_{*} t}$ then we make the ansatz (assume the solution to be of the form)

$$
y_{n h}(t)=t^{s}\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) e^{r_{*} t}
$$

forcing term $f=c t^{m} e^{r, t}$

If $f=c t^{m} e^{r_{*} t}$ then we make the ansatz (assume the solution to be of the form)

$$
y_{n h}(t)=t^{s}\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) e^{r_{*} t}
$$

Now the way we pick the exponent s , depends on whether or not r_{*} is a root of the characteristic equation of our ODE. The reason for this can be seen in the proof below.

forcing term $f=c t^{m} e^{r, t}$

If $f=c t^{m} e^{r_{*} t}$ then we make the ansatz (assume the solution to be of the form)

$$
y_{n h}(t)=t^{s}\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) e^{r_{*} t}
$$

Now the way we pick the exponent s , depends on whether or not r_{*} is a root of the characteristic equation of our ODE. The reason for this can be seen in the proof below.
(1) If r_{*} is not a root, then we set $s:=0$.
(2) If r_{*} is a simple root, then we set $s:=1$.
(3) If r_{*} is a double root, then we set $s:=2$.

First we will work with

$$
a y^{\prime \prime}+b y^{\prime}+c=C t^{m} e^{r_{*} t}
$$

We make the guess

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right) e^{r t}
$$

for some yet undetermined n . Then plugging it into our ode we obtain

$$
\begin{aligned}
& a y_{n h}^{\prime \prime}+b y_{n h}^{\prime}+c y_{n h} \\
& =a_{n}\left(a r^{2}+b r+c\right) t^{n} e^{r t}+\left(a_{n} n(2 a r+b)+a_{n-1}\left(a r^{2}+b r+c\right)\right) t^{n-1} e^{r t} \\
& +\left[a_{n}(n-1) a+a_{n-1}(n-1)(2 a r+b)+a_{n-2}\left(a r^{2}+b r+c\right)\right] t^{n-2} e^{r t}
\end{aligned}
$$

+ lower order terms.

$f=c t^{m} e^{r, t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$f=c t^{m} e^{r_{*} t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m}\right) e^{r t}
$$

$f=c t^{m} e^{r, t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Case 2: If r is a simple root, then $a r^{2}+b r+c=0$ and we are left with t^{n-1} being the leading term and so $n-1:=m$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}
$$

$f=c t^{m} e^{r_{*} t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Case 2: If r is a simple root, then $a r^{2}+b r+c=0$ and we are left with t^{n-1} being the leading term and so $n-1:=m$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}
$$

Moreover, since r is a root, the $y_{0}:=a_{0} e^{r t}$ will solve the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c=0$ and so we can ignore it (due to additivity of solutions).

$f=c t^{m} e^{r_{2} t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Case 2: If r is a simple root, then $a r^{2}+b r+c=0$ and we are left with t^{n-1} being the leading term and so $n-1:=m$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}
$$

Moreover, since r is a root, the $y_{0}:=a_{0} e^{r t}$ will solve the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c=0$ and so we can ignore it (due to additivity of solutions). Thus,

$$
y_{n h}(t)=\left(a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}=t\left(a_{1}+\ldots+a_{n} t^{m}\right) e^{r t}
$$

$f=c t^{m} e^{r_{2} t}$

Case 1: If r is not a root of the characteristic equation $a r^{2}+b r+c$, then the leading term t^{n} remains and so to obtain t^{m} we must set $\mathrm{n}:=\mathrm{m}$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Case 2: If r is a simple root, then $a r^{2}+b r+c=0$ and we are left with t^{n-1} being the leading term and so $n-1:=m$.

$$
y_{n h}(t)=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}
$$

Moreover, since r is a root, the $y_{0}:=a_{0} e^{r t}$ will solve the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c=0$ and so we can ignore it (due to additivity of solutions). Thus,

$$
y_{n h}(t)=\left(a_{1} t+\ldots+a_{n} t^{m+1}\right) e^{r t}=t\left(a_{1}+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Case 3: If r is a double root, then $a r^{2}+b r+c=0,2 a r+b=0$ and we are left with t^{n-2} being the leading term and so $n-2:=m$.

$$
y_{n h}=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+2}\right) e^{r t}
$$

Case 3: If r is a double root, then $a r^{2}+b r+c=0,2 a r+b=0$ and we are left with t^{n-2} being the leading term and so $n-2:=m$.

$$
y_{n h}=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{m+2}\right) e^{r t}
$$

Moreover, since r is a repeated root, then $e^{r t}$, $t e^{r t}$ are both solutions of the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c=0$ and so we can ignore them. Thus,

$$
y_{n h}=\left(a_{2} t^{2}+\ldots+a_{n} t^{m+2}\right) e^{r t}=t^{2}\left(a_{2}+\ldots+a_{n} t^{m}\right) e^{r t}
$$

Next we will work with

$$
a y^{\prime \prime}+b y^{\prime}+c=C t^{m} e^{\alpha t} \sin (\beta t)=\frac{1}{2 i} C t^{m} e^{\alpha t+i \beta t}-\frac{1}{2 i} C t^{m} e^{\alpha t-i \beta t}
$$

Therefore, from the previous we make the guess

$$
\begin{aligned}
& y_{n h}=\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right) e^{(\alpha+i \beta) t}+\left(b_{0}+b_{1} t+\ldots+b_{n} t^{n}\right) e^{(\alpha-i \beta) t} \\
& =e^{\alpha t}\left(c_{0}+c_{1} t+\ldots+c_{n} t^{n}\right) \cos (\beta t)+\left(d_{0}+d_{1} t+\ldots+d_{n} t^{n}\right) e^{\alpha t} \sin (\beta t)
\end{aligned}
$$

So as above we check whether $r_{*}=\alpha+i \beta$ is a root and the same analysis shows the result.

Example presenting the method

Resuming the spring example, let $u(t)$ denote the displacement from the equilibrium position. Then by Newton's law one can obtain the equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t)
$$

where $F(t)$ is any external force. Above we assumed that $F(t)=0$, and now we will take it to be any of the above mentioned functions. For example,consider the equation

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t)
$$

Here we are shaking the spring system periodically in time.
(1) First we are in the second case and so we make the ansatz
$y_{n h}(t)=t^{s} e^{\alpha t}\left[\left(a_{0}+a_{1} t+\ldots+a_{m} t^{m}\right) \cos (\beta t)+\left(b_{0}+a_{1} t+\ldots+b_{m} t^{m}\right) \sin (\beta\right.$ which simplifies because $m=0, \alpha=0$ and $\beta=1$:

$$
y_{n h}(t)=t^{s}\left(a_{0} \cos (t)+b_{0} \sin (t)\right)
$$

(2) Next we pick s , depending on whether $a+i \beta=i$ is a root of our ODE's characteristic equation:

$$
r^{2}+3 r+2=0
$$

(3) Its roots are $r_{1}=-2, r_{2}=-1$ and so we set $s=0$ and have

$$
y_{n h}(t)=a_{0} \cos (t)+b_{0} \sin (t)
$$

(1) Plugging into our ode we obtain

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y \\
& =-\left(a_{0} \cos (t)+b_{0} \sin (t)\right)+3\left(-a_{0} \sin (t)+b_{0} \cos (t)\right) \\
& +2\left(a_{0} \cos (t)+b_{0} \sin (t)\right) \\
& =\left(a_{0}+3 b_{0}\right) \cos (t)+\left(-3 a_{0}+b_{0}\right) \sin (t)
\end{aligned}
$$

and so to have this be equal to $\sin (t)$ we require

$$
\left\{\begin{array}{rl}
a_{0}+3 b_{0}=0 & -3 a_{0}+b_{0}=0
\end{array} \Rightarrow a_{0}=-0.3, b_{0}=0.1\right.
$$

(2) So the solution will be

$$
y_{n h}(t)=-0.3 \cos (t)+0.1 \sin (t)
$$

(3) Therefore, the general solution will be:

$$
y=y_{n h}+c_{1} e^{-2 t}+c_{2} e^{-t}
$$

(9) But why is it periodic given that damping is involved $(\gamma \neq 0)$? The sinusoidal external force keeps pumping energy into the system.
๑ Matlab simulation

In class example

Consider the spring system governed by

$$
y^{\prime \prime}+2 y^{\prime}-3 y=3 t e^{t}
$$

Find the solution and its asymptotic behaviour.

In class example

Consider the spring system governed by

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 t e^{t} \sin (t)
$$

Determine what form the solution will take.

The End

