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Figure: oscillating system



Generalized solution

Suppose that y1, y2 are solutions of

y ′′ + p
(
t
)
y ′ + y = 0.

Then the family of solutions

y = c1y1 + c2y2

for arbitrary c1, c2, includes all possible solutions if and only if there is a t∗
where the Wronskian of y1

(
t∗
)
, y2

(
t∗
)

is not zero.

MAT244 Ordinary Differential Equations 2 / 13



Spring example

Going back to the spring example, the characteristic equation is

mr2 + γr + k = 0.

Assume that it has two distinct real roots r1, r2 and so we can easily check
that y1

(
t
)

= er1t , y2

(
t
)

= er2t are both solutions for this ODE. Now by
computing the Wronskian we will check whether all possible solutions are
of that form:

W
(
er1t , er2t , t

)
= e

(
r1+r2

)
t(r2 − r1

)
6= 0.

Therefore, all solutions will be of the form: y = c1e
r1t + c2e

r2t .
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In class examples

Consider the equation y ′′ − 2y ′ + y = 0 and functions y1 := et , y2 := tet .
Consider the ode y ′′ − y ′ − 2y = 0 and functions y1 := e2t , y2 := −2e2t .
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Complex roots

In some cases the roots are complex
(
when b2 − 4ac < 0

)
. For example,

suppose that there is no damping in the above example
(
γ = 0

)
, then the

equation will be:
mu′′ + ku = 0.

Therefore, the roots will be r = ±
√
−k/m = ±i

√
k/m =: ±iω, where we

define i :=
√
−1 called the imaginary i. The main result we will need is

Euler’s formula
e iωt = cos

(
ωt
)

+ isin
(
ωt
)
.
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Oscillation

Here we can easily check that y1

(
t
)

= cos
(
ωt
)

and y2

(
t
)

= sin
(
ωt
)

are
both solutions for this ODE. Now by computing the Wronskian we will
check whether all possible solutions are of that form:

W
(
cos
(
ωt
)
, sin

(
ωt
)
, t
)

= ωcos2
(
ωt
)

+ ωsin2
(
ωt
)

= ω 6= 0.

Therefore, all solutions will be of the form: y = c1cos
(
ωt
)

+ c2sin
(
ωt
)

,
where ci could be complex constants.Physically this periodicity is expected
because there is no external force or damping to remove energy from the
spring and so it can keep oscillating forever.
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In-class example

Consider the equation y ′′ + y = 0, y
(
π/3

)
= 2, y ′

(
π/3

)
= −4
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In-class example

1 The roots are r2 + 1 = 0⇒ r = ±i and so the general solution is

y
(
t
)

= c1e
it + c2e

−it = a1cos
(
t
)

+ a2sin
(
t
)
.

2 Using the initial conditions we obtain:

2 = a1
1

2
+ a2

√
3

2
and − 4 = −a1

√
3

2
+ a2

1

2
.

3 Solving these two equations gives: a1 =
(
1 + 2

√
3
)
, a2 = −

(
2−
√

3
)

and so the solution for our IVP is:

y
(
t
)

=
(
1 + 2

√
3
)
cos
(
t
)
−
(
2−
√

3
)
sin
(
t
)
.
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In-class example

Figure: Spring mass

So as t →∞ the system simply keeps oscillating steadily. Physically this is
because it is damping free γ = 0.
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In-class example

Consider the equation y ′′ − 2y ′ + 5y = 0, y
(
π/2

)
= 0, y ′

(
π/2

)
= 2

MAT244 Ordinary Differential Equations 10 / 13



In-class example

1 The roots are r2 − 2r + 5 = 0⇒ r = 1± i2 and so the general
solution is

y
(
t
)

= c1e
t
(

1+2i
)

+ c2e
t
(

1−2i
)

= et
(
a1cos

(
2t
)

+ a2sin
(
2t
))
.

2 Using the initial conditions we obtain:

0 = e
π
2
(
a1 · 0 + a2 · 1

)
and 2 = a2e

π
2 + e

π
2
(
− a12

)
.

3 Solving these two equations gives: a1 = 0, a2 = −e−π/2 and so the
solution for our IVP is:

y
(
t
)

= −et−π/2sin
(
2t
)
.
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In-class example

Figure: Spring mass

So as t →∞ the system simply keeps oscillating with increasing
amplitude. Physically this is because the damping is negeative γ = −2 < 0
and so instead of removing energy, it adds.
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The End
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