Outline

(1) Wronskian
(2) Complex roots

Figure: oscillating system

Generalized solution

Suppose that y_{1}, y_{2} are solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+y=0
$$

Then the family of solutions

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

for arbitrary c_{1}, c_{2}, includes all possible solutions if and only if there is a t_{*} where the Wronskian of $y_{1}\left(t_{*}\right), y_{2}\left(t_{*}\right)$ is not zero.

Spring example

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

Spring example

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE.
computing the Wronskian we will check whether all possible solutions are of that form:

Spring example

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W\left(e^{r_{1} t}, e^{r_{2} t}, t\right)=e^{\left(r_{1}+r_{2}\right) t}\left(r_{2}-r_{1}\right) \neq 0
$$

Therefore, all solutions will be of the form: $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

Spring example

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W\left(e^{r_{1} t}, e^{r_{2} t}, t\right)=e^{\left(r_{1}+r_{2}\right) t}\left(r_{2}-r_{1}\right) \neq 0
$$

Therefore, all solutions will be of the form: $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

In class examples

Consider the equation $y^{\prime \prime}-2 y^{\prime}+y=0$ and functions $y_{1}:=e^{t}, y_{2}:=t e^{t}$. Consider the ode $y^{\prime \prime}-y^{\prime}-2 y=0$ and functions $y_{1}:=e^{2 t}, y_{2}:=-2 e^{2 t}$.

Complex roots

In some cases the roots are complex (when $b^{2}-4 a c<0$). For example, suppose that there is no damping in the above example $(\gamma=0)$, then the equation will be:

$$
m u^{\prime \prime}+k u=0
$$

Therefore, the roots will be $r= \pm \sqrt{-k / m}= \pm i \sqrt{k / m}=: \pm i \omega$, where we define $i:=\sqrt{-1}$ called the imaginary i . The main result we will need is Euler's formula
$\cos (\omega t)+i \sin (\omega t)$

Complex roots

In some cases the roots are complex (when $b^{2}-4 a c<0$). For example, suppose that there is no damping in the above example $(\gamma=0)$, then the equation will be:

$$
m u^{\prime \prime}+k u=0
$$

Therefore, the roots will be $r= \pm \sqrt{-k / m}= \pm i \sqrt{k / m}=: \pm i \omega$, where we define $i:=\sqrt{-1}$ called the imaginary i .

Euler's formula

$e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)$.

Complex roots

In some cases the roots are complex (when $b^{2}-4 a c<0$). For example, suppose that there is no damping in the above example $(\gamma=0)$, then the equation will be:

$$
m u^{\prime \prime}+k u=0
$$

Therefore, the roots will be $r= \pm \sqrt{-k / m}= \pm i \sqrt{k / m}=: \pm i \omega$, where we define $i:=\sqrt{-1}$ called the imaginary i . The main result we will need is Euler's formula

$$
e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)
$$

Oscillation

Here we can easily check that $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

Oscillation

Here we can easily check that $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W(\cos (\omega t), \sin (\omega t), t)=\omega \cos ^{2}(\omega t)+\omega \sin ^{2}(\omega t)=\omega \neq 0
$$

Therefore, all solutions will be of the form: $y=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$ where c_{i} could be complex constants. Physically this periodicity is expected because there is no external force or damping to remove energy from the

Oscillation

Here we can easily check that $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W(\cos (\omega t), \sin (\omega t), t)=\omega \cos ^{2}(\omega t)+\omega \sin ^{2}(\omega t)=\omega \neq 0 .
$$

Therefore, all solutions will be of the form: $y=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$, where c_{i} could be complex constants.
because there is no external force or damping to remove energy from the spring and so it can keep oscillating forever.

Oscillation

Here we can easily check that $y_{1}(t)=\cos (\omega t)$ and $y_{2}(t)=\sin (\omega t)$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W(\cos (\omega t), \sin (\omega t), t)=\omega \cos ^{2}(\omega t)+\omega \sin ^{2}(\omega t)=\omega \neq 0
$$

Therefore, all solutions will be of the form: $y=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)$, where c_{i} could be complex constants. Physically this periodicity is expected because there is no external force or damping to remove energy from the spring and so it can keep oscillating forever.

In-class example

Consider the equation $y^{\prime \prime}+y=0, y(\pi / 3)=2, y^{\prime}(\pi / 3)=-4$

In-class example

(1) The roots are $r^{2}+1=0 \Rightarrow r= \pm i$ and so the general solution is

$$
y(t)=c_{1} e^{i t}+c_{2} e^{-i t}=a_{1} \cos (t)+a_{2} \sin (t)
$$

(2) Using the initial conditions we obtain:

$$
2=a_{1} \frac{1}{2}+a_{2} \frac{\sqrt{3}}{2} \text { and }-4=-a_{1} \frac{\sqrt{3}}{2}+a_{2} \frac{1}{2}
$$

(3) Solving these two equations gives: $a_{1}=(1+2 \sqrt{3}), a_{2}=-(2-\sqrt{3})$ and so the solution for our IVP is:

$$
y(t)=(1+2 \sqrt{3}) \cos (t)-(2-\sqrt{3}) \sin (t)
$$

In-class example

Figure: Spring mass

So as $t \rightarrow \infty$ the system simply keeps oscillating steadily. Physically this is because it is damping free $\gamma=0$.

In-class example

Consider the equation $y^{\prime \prime}-2 y^{\prime}+5 y=0, y(\pi / 2)=0, y^{\prime}(\pi / 2)=2$

In-class example

(1) The roots are $r^{2}-2 r+5=0 \Rightarrow r=1 \pm i 2$ and so the general solution is

$$
y(t)=c_{1} e^{t(1+2 i)}+c_{2} e^{t(1-2 i)}=e^{t}\left(a_{1} \cos (2 t)+a_{2} \sin (2 t)\right)
$$

(2) Using the initial conditions we obtain:

$$
0=e^{\frac{\pi}{2}}\left(a_{1} \cdot 0+a_{2} \cdot 1\right) \text { and } 2=a_{2} e^{\frac{\pi}{2}}+e^{\frac{\pi}{2}}\left(-a_{1} 2\right)
$$

(3) Solving these two equations gives: $a_{1}=0, a_{2}=-e^{-\pi / 2}$ and so the solution for our IVP is:

$$
y(t)=-e^{t-\pi / 2} \sin (2 t)
$$

In-class example

Figure: Spring mass

So as $t \rightarrow \infty$ the system simply keeps oscillating with increasing amplitude. Physically this is because the damping is negeative $\gamma=-2<0$ and so instead of removing energy, it adds.

The End

