Week 2

Exercises marked $\left({ }^{*}\right)$ are harder and would not appear on quizzes. But variations of them may appear on the midterm. Exercises marked $\left({ }^{* *}\right)$ are above the required level.Most of the exercises are in the main textbook.

- Check whether the following equations are exact or not. If they are exact, provide the implicit solution.

1. $(2 x+3) d x+(2 y-2) d y=0$,
2. $(2 x+4 y) d x+(2 x-2 y) d y=0$,
3. $(y / x+6 x) d x+(\ln (x)-2) d y=0$,
4. $\frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}} d x+\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}} d y=0$.

- The following equations are not exact, but they satisfy a ratio condition i.e. $\frac{N_{x}-M_{y}}{M}$ depends only on y or $\frac{M_{y}-N_{x}}{N}$ depends only on x . Use the integrating factor approach to make them exact and determine the implicit solution.

1. $\left(3 x^{2} y+2 x y+y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0$,
2. $y^{\prime}=e^{2 x}+y-1$,
3. $y+\left(2 x y-e^{-2 y}\right) y^{\prime}=0$.

- $\left({ }^{*}\right)$ Find the perpendicular trajectories to the curves:

1. $y=e^{k \cdot x}$,
2. $y^{2}=k \cdot x$.
