Week 2

Exercises marked (*) are harder and would not appear on quizzes. But variations of them may appear on the midterm. Exercises marked (**) are above the required level. Most of the exercises are in the main textbook.

- Check whether the following equations are exact or not. If they are exact, provide the implicit solution.
 - 1. (2x+3)dx+(2y-2)dy=0,
 - $2. \ (2x+4y)dx+(2x-2y)dy{=}0,$
 - 3. $(y/x + 6x)dx + (\ln(x) 2)dy = 0$,
 - 4. $\frac{x}{(x^2+y^2)^{3/2}}dx + \frac{y}{(x^2+y^2)^{3/2}}dy = 0.$
- The following equations are not exact, but they satisfy a ratio condition i.e. $\frac{N_x M_y}{M}$ depends only on y or $\frac{M_y N_x}{N}$ depends only on x. Use the integrating factor approach to make them exact and determine the implicit solution.
 - 1. $(3x^2y + 2xy + y^3)dx + (x^2 + y^2)dy = 0,$ 2. $y' = e^{2x} + y - 1,$
 - 3. $y + (2xy e^{-2y})y' = 0.$
- (*) Find the perpendicular trajectories to the curves:
 - 1. $y = e^{k \cdot x}$, 2. $y^2 = k \cdot x$.