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Term work

Syllabus posted on Quercus.

There will be 6 biweekly quizzes, two midterms, one assignment and a
final exam.

On portal you can now find all the weekly exercises. Quizzes will be
drawn from them and midterms will be variations of them.

First Quiz will be next week and it will be from the current week’s
exercises.
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Outline

What is a linear ODE? A linear ordinary differential equation of order n is
a relation of the form

y (n) = F (t, x , y ′, ..., y (n−1)),

where F is some nice function, t ∈ R, y=y(t) is a function of t and

y ′ :=
dy

dt
, ..., y (n) :=

dny

dtn
.

Examples include:

y’=y(t) whose solution is the exponential y(t) = et + c ,

Solow-Swan model of economic growth (elasticity α) and constants ci

y ′ = c1y
αec2t − c3y .
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Outline

May: Techniques in solving first order equations dy
dt = F (y , t).

Midterm 1 will be on them.

June: Techniques in solving second order equations d2y
d2t

= F (y , t) and

intro to systems of equations eg. y(t)′ =

(
1 2
0 1

)
y(t). Midterm 2

will be on them.

July: Continuation in studying systems of equations and then
studying stability results for locally linear systems (eg. Competing
species). The assignment will be on them.
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Compound interest

Let P(t) be the number of dollars in a savings account at time t and
suppose that the interest is compounded continuously at an annual
interest rate r(t), that varies in time.Then

P(t + ∆t) = P(t) + r(t) · P(t) ·∆t ⇒ dP

dt
= r(t)P(t).

(1) We separate

dP

dt
= r(t)P ⇒ 1

P
dP = r(t)dt
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Compound interest

(2) We integrate

∫
1

P
dP =

∫
r(t)dt ⇒

ln |P| =

∫
r(t)dt + c

for some constant c = P(0). Since P ≥ 0 we obtain

P = $P(0)exp
{∫

r(t)dt
}
.

(3) For example if r(t) = t2 and P(0) = $103 we get

P(t) = $103 · exp
{ t3

3

}
(4) In other words, we got the formula for the future value of P(0).
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Separable equations form

There are equations of the form

y ′ = f (t, y) = f1(t) · f2(y)

or in more standard form:

M(t)dt + N(y)dy = 0.

Here are the formal steps for solving such equations:
1 Separate variables to either side

M(t) + N(y)
dy

dt
= 0⇒ N(y)dy = −M(t)dt

2 Integrate both sides

∫
N(y)dy = −

∫
M(t)dt.
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Nonlinear

It can even tackle non-linear equations:

dy

dt
=

t − 5

y2
, y(0) = 1.

(1) We first separate and integrate∫
y2dy =

∫
(t − 5)dt.

(2) This gives

y3

3
=

t2

2
− 5t + c .

(3) and using y(0) = 1 we obtain

y(t) =

(
3t2

2
− 15t + 1

)1/3

.
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Restricted solution

Consider IVP (initial value problem)

y ′ =
2x − 3

2y
, y(0) = 2.

(1) We separate and integrate∫
ydy =

∫
(2x − 3) dx ⇒ y2

2
= x2 − 3x + c .

(2) Using the initial condition we get

y =
√

2(x2 − 3x + 2) =
√

2(x − 1)(x − 2).

(3) and since the square root is only defined for positive numbers, we
require

x > 2 or x < 1.
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Asymptotic solution

Consider IVP
dy

dt
= t(1 + b · y), y(0) = 0

for b 6= 0

(1) We separate and integrate

1

b
ln(1 + b · y) =

t2

2
+ c .

(2) Using the initial condition we obtain

y =
1

b

(
exp
{
b

(
t2

2

)}
− 1

)
.

(3) So the asymptotic behaviour, as t → ±∞, depends on b:

y → +∞ if b > 0

y → −1

b
if b < 0 .
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Implicit solution

Consider IVP

dy

dt
=

t2 + 1

cos(y) + ey
, y(0) = π.

(1) We separate and integrate∫
(cos(y) + ey )dy =

∫
(t2 + 1)dt ⇒ sin(y) + ey =

t3

3
+ t + c .

(2) Using y(0) = π we get

sin(y) + ey =
t3

3
+ t + eπ.

(3) This equation cannot be directly solved in terms of y. One only has
an implicit solution that is obtained numerically.
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Cobb-Douglas production model

Let X (t) denote the national product, K(t) the capital stock and L(t) the
number of workers in a country at time t. We have the following relations:

X = AK 1−αLα,K ′ = sX and L = L0e
λt ,

where A, s, L0 are constants and 0 < α < 1 is called elasticity. The first is
the Cobb-Douglas production model. The second says that aggregate
investment is proportional to output.The third says that the labour forces
grows exponentially.Using these three we obtain the equation

K ′ = sX = ceαλtK 1−α,

where c := AsLα0 .
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Cobb-Douglas production model: Solution

(1) We first separate and integrate∫
Kα−1dK =

∫
ceαλtdt.

(2) This gives

Kα

α
= c

eαλt

αλ
+ C .

(3) We find the constant C by plugging in the initial condition, so we get

C := Kα
0 −

sALα0
λ and in turn

K = [Kα
0 +

sALα0
λ

(
eαλt

αλ
− 1)]1/α.
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Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio K
L (also called

the capital-labor ratio) as t → +∞:

K

L
=

1

L0eλt
[Kα

0 +
sALα0
λ

(
eαλt

αλ
− 1)]1/α

(5) For simplicity we will first compute the asymptotic of

(
K

L
)α =

1

Lα0 e
λαt

[Kα
0 +

sALα0
λ

(
eαλt

αλ
− 1)].

(6) We note that the only surving term is the following:

≈ 1

Lα0 e
λαt

sALα0
λ

eαλt

αλ
=

sA

λ
.

(7) This means that in the long term the national product per worker will
be approximately constant

X

L
= A

K

L
(
L

K
)α ≈ A(

sA

λ
)1/α(

sA

λ
)−1 = A(

sA

λ
)1/α−1.
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Linear

An equation is called linear if it is of the form:

y ′ + p(t)y = g(t)

for continuous functions p,g. We will solve such equations with a clever
use of product rule.
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Radioactive isotopes

A rock contains two radioactive isotopes R1,R2 with R1 decaying into R2

with rate 5e−10tkg/sec . So if y(t) is the total mass of R2, we obtain:

dy

dt
= rate of creation of R2 - rate of decay of R2

= 5e−10t − ky(t),

where k > 0 is the decay constant for R2. Also assume that y(0) = 40kg .
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Radioactive isotopes

(1) We first multiply by yet unknown µ(t)

µ(t)
dy

dt
+ µ(t)ky(t) = µ(t)5e−10t .

(2) We want to find a µ s.t. µ′(t) = µ(t)k because then

d

dt
(µ(t)y(t)) = µ(t)

dy

dt
+ µ(t)ky(t) = µ(t)5e−10t

and so

y(t) = µ(t)−1

∫
µ(s)5e−10sds.

(3) We require µ′(t) = µ(t)k, which can be easily solved to give:

µ(t) = ekt .
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Radioactive isotopes

(3) Then by product rule we have

d

dt
(ekty(t)) = 5e(k−10)t ⇒ y(t) = 5e−10t + ektc = 5e−10t + 35e−kt

where we used the initial condition y(0) = 40kg .

(4) Therefore, we indeed obtain that y → 0 as t → +∞.
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Formal steps

(1) Starting from y ′ + p(t)y = g(t), we multiply both sides by a function
µ(t) that we will determine later:

µ(t) · y ′ + µ(t)p(t) · y = µ(t)g(t).

(2) By setting µ′ = µ(t)p(t) we observe that we can use the product rule:

µ · y ′ + µ′ · y = µg(t)⇒ d

dt
(µy) = µg(t).

(3) Therefore,

y(t) =
1

µ(t)

∫ t

0
µ(s)g(s)ds + c .

(4) To determine µ(t) we use µ′ = µ(t)p(t) to get:

µ(t) = exp
{∫ t

0
p(s)ds

}
.
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example 1

Consider the equation

y ′ − 2y = t2e2t .

(1) We multiply by µ(t)

µy ′ − 2µy = µt2e2t .

(2) We solve

µ′(t) = −2µ(t)⇒ µ = exp
{
− 2t

}
.

d

dt
(e−2ty) = e−2tt2e2t = t2.

(3) We integrate both sides

y(t) = e2t t
3

3
+ c.
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example 2

Consider equation

y ′ +
1

2
y =

1

2
et/3.

(1) We start with the first step of multiplying by µ(t) of our choice

µ(t)y ′ + µ(t)
1

2
y = µ(t)

1

2
et/3

(2) We observe that to make use of product rule we need

µ′(t) =
1

2
µ(t)

⇒ ln |µ(t)| =
1

2
t + c ′ ⇒ µ(t) = et/2

(3) Therefore, by product rule

d

dt
(µ(t) · y) = µ(t)

1

2
et/3 =

1

2
e

5t
6

y(t) = e−t/2(
3

5
e

5t
6 + c)⇒

y(t) =
3

5
e

t
3 + ce−

t
2
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Price adjument mechanism

When the price of a good is p, the total demand is D(p) = a - bp and the
total supply is S(p) = α+ βp, where a, b, α, and β are positive constants.
When demand exceeds supply, price rises, and when supply exceeds
demand it falls. The speed at which the price changes is proportional to
the difference between supply and demand. Specifically

p′ = λ(D(p)− S(p))

for λ > 0.
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(1) We multiple by µ to get

µp′ + µλ(b + β)p = λ(a− α).

(2) We obtain µ

µ′ = λ(b + β)µ⇒ µ = exp
{
λ(b + β)t

}
.

(3) Therefore, by product rule we obtain

∂

∂t
(µp) = exp

{
λ(b+β)t

}
λ(a−α)⇒ p(t) = cexp

{
−λ(b+β)t

}
+

(a− α)

(b + β)
.

1 So as t → +∞ the price of this good converges to (a−α)
(b+β) .
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The End
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