MAT244 Ordinary Differential Equations

Overview

(1) Administrative
(2) Outline
(3) 1st order: Separable equations

- Examples presenting the algorithm
- More examples with inclass work
(4) Linear integrating factor

Term work

- Syllabus posted on Quercus.
- There will be 6 biweekly quizzes, two midterms, one assignment and a final exam.
- On portal you can now find all the weekly exercises. Quizzes will be drawn from them and midterms will be variations of them.
- First Quiz will be next week and it will be from the current week's exercises.

Outline

What is a linear ODE? A linear ordinary differential equation of order n is a relation of the form
$y^{(n)}=F\left(t, x, y^{\prime}, \ldots, y^{(n-1)}\right)$,
where F is some nice function, $t \in \mathbb{R}, \mathrm{y}=\mathrm{y}(\mathrm{t})$ is a function of t and
$y^{\prime}:=\frac{d y}{d t}, \ldots, y^{(n)}:=\frac{d^{n} y}{d t^{n}}$.
Examples include:

- $\mathrm{y}^{\prime}=\mathrm{y}(\mathrm{t})$ whose solution is the exponential $y(t)=e^{t}+c$,
- Solow-Swan model of economic growth (elasticity α) and constants c_{i}

Outline

What is a linear ODE? A linear ordinary differential equation of order n is a relation of the form
$y^{(n)}=F\left(t, x, y^{\prime}, \ldots, y^{(n-1)}\right)$,
where F is some nice function, $t \in \mathbb{R}, \mathrm{y}=\mathrm{y}(\mathrm{t})$ is a function of t and
$y^{\prime}:=\frac{d y}{d t}, \ldots, y^{(n)}:=\frac{d^{n} y}{d t^{n}}$.
Examples include:

- $\mathrm{y}^{\prime}=\mathrm{y}(\mathrm{t})$ whose solution is the exponential $y(t)=e^{t}+c$,
- Solow-Swan model of economic growth (elasticity α) and constants c_{i}

Outline

What is a linear ODE? A linear ordinary differential equation of order n is a relation of the form
$y^{(n)}=F\left(t, x, y^{\prime}, \ldots, y^{(n-1)}\right)$,
where F is some nice function, $t \in \mathbb{R}, \mathrm{y}=\mathrm{y}(\mathrm{t})$ is a function of t and
$y^{\prime}:=\frac{d y}{d t}, \ldots, y^{(n)}:=\frac{d^{n} y}{d t^{n}}$.
Examples include:

- $\mathrm{y}^{\prime}=\mathrm{y}(\mathrm{t})$ whose solution is the exponential $y(t)=e^{t}+c$,
- Solow-Swan model of economic growth (elasticity α) and constants c_{i}

$$
y^{\prime}=c_{1} y^{\alpha} e^{c_{2} t}-c_{3} y
$$

Outline

- May: Techniques in solving first order equations $\frac{d y}{d t}=F(y, t)$. Midterm 1 will be on them.
- June: Techniques in solving second order equations $\frac{d^{2} y}{d^{2} t}=F(y, t)$ and intro to systems of equations eg. $y(t)^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) y(t)$. Midterm 2 will be on them.

July: Continuation in studying systems of equations and then studying stability results for locally linear systems (eg. Competing species). The assignment will be on them.

Outline

- May: Techniques in solving first order equations $\frac{d y}{d t}=F(y, t)$. Midterm 1 will be on them.
- June: Techniques in solving second order equations $\frac{d^{2} y}{d^{2} t}=F(y, t)$ and intro to systems of equations eg. $y(t)^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) y(t)$. Midterm 2 will be on them.
- July: Continuation in studying systems of equations and then
studying stability results for locally linear systems (eg. Competing
species). The assignment will be on them.

Outline

- May: Techniques in solving first order equations $\frac{d y}{d t}=F(y, t)$. Midterm 1 will be on them.
- June: Techniques in solving second order equations $\frac{d^{2} y}{d^{2} t}=F(y, t)$ and intro to systems of equations eg. $y(t)^{\prime}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) y(t)$. Midterm 2 will be on them.
- July: Continuation in studying systems of equations and then studying stability results for locally linear systems (eg. Competing species). The assignment will be on them.

Compound interest

Let $P(t)$ be the number of dollars in a savings account at time t and suppose that the interest is compounded continuously at an annual interest rate $\mathrm{r}(\mathrm{t})$, that varies in time.

Compound interest

Let $P(t)$ be the number of dollars in a savings account at time t and suppose that the interest is compounded continuously at an annual interest rate $\mathrm{r}(\mathrm{t})$, that varies in time. Then
$P(t+\Delta t)=P(t)+r(t) \cdot P(t) \cdot \Delta t \Rightarrow \frac{d P}{d t}=r(t) P(t)$.
(1) We separate

Compound interest

Let $P(t)$ be the number of dollars in a savings account at time t and suppose that the interest is compounded continuously at an annual interest rate $\mathrm{r}(\mathrm{t})$, that varies in time. Then
$P(t+\Delta t)=P(t)+r(t) \cdot P(t) \cdot \Delta t \Rightarrow \frac{d P}{d t}=r(t) P(t)$.
(1) We separate

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=r(t) P \Rightarrow \frac{1}{P} \mathrm{~d} P=r(t) \mathrm{d} t
$$

Compound interest

(2) We integrate

$$
\begin{aligned}
& \int \frac{1}{P} \mathrm{~d} P=\int r(t) \mathrm{d} t \Rightarrow \\
& \ln |P|=\int r(t) \mathrm{d} t+c
\end{aligned}
$$

for some constant $c=P(0)$. Since $P \geq 0$ we obtain $P=\$ P(0) \exp \left\{\int r(t) \mathrm{d} t\right\}$.

(3) For example if $r(t)=t^{2}$ and $P(0)=\$ 10^{3}$ we get

(4) In other words, we got the formula for the future value of $P(0)$

Compound interest

(2) We integrate

$$
\begin{aligned}
& \int \frac{1}{P} \mathrm{~d} P=\int r(t) \mathrm{d} t \Rightarrow \\
& \ln |P|=\int r(t) \mathrm{d} t+c
\end{aligned}
$$

for some constant $c=P(0)$. Since $P \geq 0$ we obtain

$$
P=\$ P(0) \exp \left\{\int r(t) \mathrm{d} t\right\}
$$

(3) For example if $r(t)=t^{2}$ and $P(0)=\$ 10^{3}$ we get

$$
P(t)=\$ 10^{3} \cdot \exp \left\{\frac{t^{3}}{3}\right\}
$$

Compound interest

(2) We integrate

$$
\begin{aligned}
& \int \frac{1}{P} \mathrm{~d} P=\int r(t) \mathrm{d} t \Rightarrow \\
& \ln |P|=\int r(t) \mathrm{d} t+c
\end{aligned}
$$

for some constant $c=P(0)$. Since $P \geq 0$ we obtain

$$
P=\$ P(0) \exp \left\{\int r(t) \mathrm{d} t\right\} .
$$

(3) For example if $r(t)=t^{2}$ and $P(0)=\$ 10^{3}$ we get

$$
P(t)=\$ 10^{3} \cdot \exp \left\{\frac{t^{3}}{3}\right\}
$$

(4) In other words, we got the formula for the future value of $P(0)$.

Separable equations form

There are equations of the form

$$
y^{\prime}=f(t, y)=f_{1}(t) \cdot f_{2}(y)
$$

or in more standard form:

$$
M(t) d t+N(y) d y=0
$$

Here are the formal steps for solving such equations: (1) Separate variables to either side

Separable equations form

There are equations of the form

$$
y^{\prime}=f(t, y)=f_{1}(t) \cdot f_{2}(y)
$$

or in more standard form:

$$
M(t) d t+N(y) d y=0
$$

Here are the formal steps for solving such equations:
((Separate variables to either side

Cㄹ Integrate both sides

Separable equations form

There are equations of the form

$$
y^{\prime}=f(t, y)=f_{1}(t) \cdot f_{2}(y)
$$

or in more standard form:

$$
M(t) d t+N(y) d y=0
$$

Here are the formal steps for solving such equations:
(1) Separate variables to either side
$M(t)+N(y) \frac{\mathrm{d} y}{\mathrm{~d} t}=0 \Rightarrow N(y) \mathrm{d} y=-M(t) \mathrm{d} t$
(2) Integrate both sides
$\int N(y) \mathrm{d} y=-\int M(t) \mathrm{d} t$.

Separable equations form

There are equations of the form

$$
y^{\prime}=f(t, y)=f_{1}(t) \cdot f_{2}(y)
$$

or in more standard form:

$$
M(t) d t+N(y) d y=0
$$

Here are the formal steps for solving such equations:
(1) Separate variables to either side

$$
M(t)+N(y) \frac{\mathrm{d} y}{\mathrm{~d} t}=0 \Rightarrow N(y) \mathrm{d} y=-M(t) \mathrm{d} t
$$

(2) Integrate both sides

$$
\int N(y) \mathrm{d} y=-\int M(t) \mathrm{d} t
$$

Nonlinear

It can even tackle non-linear equations:
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{t-5}{y^{2}}, \quad y(0)=1$.
(1) We first separate and integrate

(3) and using $y(0)=1$ we obtain

Nonlinear

It can even tackle non-linear equations:
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{t-5}{y^{2}}, \quad y(0)=1$.
(1) We first separate and integrate

$$
\int y^{2} \mathrm{~d} y=\int(t-5) \mathrm{d} t
$$

(2) This gives

(3) and using $y(0)=1$ we obtain

Nonlinear

It can even tackle non-linear equations:
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{t-5}{y^{2}}, \quad y(0)=1$.
(1) We first separate and integrate

$$
\int y^{2} \mathrm{~d} y=\int(t-5) \mathrm{d} t
$$

(2) This gives

$$
\frac{y^{3}}{3}=\frac{t^{2}}{2}-5 t+c
$$

(3) and using $y(0)=1$ we obtain

$$
y(t)=\left(\frac{3 t^{2}}{2}-15 t+1\right)^{1 / 3}
$$

Restricted solution

Consider IVP (initial value problem)
$y^{\prime}=\frac{2 x-3}{2 y}, \quad y(0)=2$.
(1) We separate and integrate

(2) Using the initial condition we get

Restricted solution

Consider IVP (initial value problem)
$y^{\prime}=\frac{2 x-3}{2 y}, \quad y(0)=2$.
(1) We separate and integrate

$$
\int y \mathrm{~d} y=\int(2 x-3) \mathrm{d} x \Rightarrow \frac{y^{2}}{2}=x^{2}-3 x+c
$$

(2) Using the initial condition we get
$y=\sqrt{2\left(x^{2}-3 x+2\right)}=\sqrt{2(x-1)(x-2) .}$
and since the square root is only defined for positive numbers, we reauire

Restricted solution

Consider IVP (initial value problem)
$y^{\prime}=\frac{2 x-3}{2 y}, \quad y(0)=2$.
(1) We separate and integrate

$$
\int y \mathrm{~d} y=\int(2 x-3) \mathrm{d} x \Rightarrow \frac{y^{2}}{2}=x^{2}-3 x+c
$$

(2) Using the initial condition we get

$$
y=\sqrt{2\left(x^{2}-3 x+2\right)}=\sqrt{2(x-1)(x-2)}
$$

(3) and since the square root is only defined for positive numbers, we require

Restricted solution

Consider IVP (initial value problem)
$y^{\prime}=\frac{2 x-3}{2 y}, \quad y(0)=2$.
(1) We separate and integrate

$$
\int y \mathrm{~d} y=\int(2 x-3) \mathrm{d} x \Rightarrow \frac{y^{2}}{2}=x^{2}-3 x+c
$$

(2) Using the initial condition we get

$$
y=\sqrt{2\left(x^{2}-3 x+2\right)}=\sqrt{2(x-1)(x-2)}
$$

(3) and since the square root is only defined for positive numbers, we require

$$
x>2 \text { or } x<1
$$

Asymptotic solution

$$
\begin{aligned}
& \text { Consider IVP } \\
& \frac{d y}{d t}=t(1+b \cdot y), \quad y(0)=0 \\
& \text { for } b \neq 0
\end{aligned}
$$

(1) We separate and integrate

$$
\frac{1}{b} \ln (1+b \cdot y)=\frac{t^{2}}{2}+c
$$

(2) Using the initial condition we obtain

Asymptotic solution

Consider IVP

$\frac{d y}{d t}=t(1+b \cdot y), \quad y(0)=0$
for $b \neq 0$
(1) We separate and integrate

$$
\frac{1}{b} \ln (1+b \cdot y)=\frac{t^{2}}{2}+c
$$

(2) Using the initial condition we obtain
$y=\frac{1}{b}\left(\exp \left\{b\left(\frac{t^{2}}{2}\right)\right\}-1\right)$
(3) So the asymptotic behaviour, as $t \rightarrow \pm \infty$, depends on b:

Asymptotic solution

Consider IVP
$\frac{d y}{d t}=t(1+b \cdot y), \quad y(0)=0$
for $b \neq 0$
(1) We separate and integrate

$$
\frac{1}{b} \ln (1+b \cdot y)=\frac{t^{2}}{2}+c
$$

(2) Using the initial condition we obtain

$$
y=\frac{1}{b}\left(\exp \left\{b\left(\frac{t^{2}}{2}\right)\right\}-1\right) .
$$

(3) So the asymptotic behaviour, as $t \rightarrow \pm \infty$, depends on b :

Asymptotic solution

Consider IVP

$\frac{d y}{d t}=t(1+b \cdot y), \quad y(0)=0$
for $b \neq 0$
(1) We separate and integrate

$$
\frac{1}{b} \ln (1+b \cdot y)=\frac{t^{2}}{2}+c
$$

(2) Using the initial condition we obtain

$$
y=\frac{1}{b}\left(\exp \left\{b\left(\frac{t^{2}}{2}\right)\right\}-1\right)
$$

(3) So the asymptotic behaviour, as $t \rightarrow \pm \infty$, depends on b :

$$
\begin{aligned}
& y \rightarrow+\infty \text { if } b>0 \\
& y \rightarrow \frac{-1}{b} \text { if } b<0
\end{aligned}
$$

Implicit solution

Consider IVP

$\frac{d y}{d t}=\frac{t^{2}+1}{\cos (y)+e^{y}}, y(0)=\pi$.
(1) We separate and integrate

Implicit solution

Consider IVP

$\frac{d y}{d t}=\frac{t^{2}+1}{\cos (y)+e^{y}}, y(0)=\pi$.
(1) We separate and integrate

$$
\int\left(\cos (y)+e^{y}\right) d y=\int\left(t^{2}+1\right) d t \Rightarrow \sin (y)+e^{y}=\frac{t^{3}}{3}+t+c
$$

(2) Using $y(0)=\pi$ we get

Implicit solution

Consider IVP

$\frac{d y}{d t}=\frac{t^{2}+1}{\cos (y)+e^{y}}, y(0)=\pi$.
(1) We separate and integrate

$$
\int\left(\cos (y)+e^{y}\right) d y=\int\left(t^{2}+1\right) d t \Rightarrow \sin (y)+e^{y}=\frac{t^{3}}{3}+t+c
$$

(2) Using $y(0)=\pi$ we get

$$
\sin (y)+e^{y}=\frac{t^{3}}{3}+t+e^{\pi}
$$

(3) This equation cannot be directly solved in terms of y. One only has an implicit solution that is obtained numerically.

Implicit solution

Consider IVP
$\frac{d y}{d t}=\frac{t^{2}+1}{\cos (y)+e^{y}}, y(0)=\pi$.
(1) We separate and integrate

$$
\int\left(\cos (y)+e^{y}\right) d y=\int\left(t^{2}+1\right) d t \Rightarrow \sin (y)+e^{y}=\frac{t^{3}}{3}+t+c
$$

(2) Using $y(0)=\pi$ we get

$$
\sin (y)+e^{y}=\frac{t^{3}}{3}+t+e^{\pi}
$$

(3) This equation cannot be directly solved in terms of y. One only has an implicit solution that is obtained numerically.

Cobb-Douglas production model

Let $X(t)$ denote the national product, $\mathrm{K}(\mathrm{t})$ the capital stock and $\mathrm{L}(\mathrm{t})$ the number of workers in a country at time t . We have the following relations:
$X=A K^{1-\alpha} L^{\alpha}, K^{\prime}=s X$ and $L=L_{0} e^{\lambda t}$,
where A, s, L_{0} are constants and $0<\alpha<1$ is called elasticity. The first is

Cobb-Douglas production model

Let $X(t)$ denote the national product, $\mathrm{K}(\mathrm{t})$ the capital stock and $\mathrm{L}(\mathrm{t})$ the number of workers in a country at time t . We have the following relations:
$X=A K^{1-\alpha} L^{\alpha}, K^{\prime}=s X$ and $L=L_{0} e^{\lambda t}$,
where A, s, L_{0} are constants and $0<\alpha<1$ is called elasticity. The first is the Cobb-Douglas production model. The second says that aggregate
investment is proportional to output. The third says that the labour forces

Cobb-Douglas production model

Let $X(t)$ denote the national product, $\mathrm{K}(\mathrm{t})$ the capital stock and $\mathrm{L}(\mathrm{t})$ the number of workers in a country at time t . We have the following relations:
$X=A K^{1-\alpha} L^{\alpha}, K^{\prime}=s X$ and $L=L_{0} e^{\lambda t}$,
where A, s, L_{0} are constants and $0<\alpha<1$ is called elasticity. The first is the Cobb-Douglas production model. The second says that aggregate investment is proportional to output.
grows exponentially.Using these three we obtain the equation

Cobb-Douglas production model

Let $X(t)$ denote the national product, $\mathrm{K}(\mathrm{t})$ the capital stock and $\mathrm{L}(\mathrm{t})$ the number of workers in a country at time t . We have the following relations:
$X=A K^{1-\alpha} L^{\alpha}, K^{\prime}=s X$ and $L=L_{0} e^{\lambda t}$,
where A, s, L_{0} are constants and $0<\alpha<1$ is called elasticity. The first is the Cobb-Douglas production model. The second says that aggregate investment is proportional to output. The third says that the labour forces grows exponentially. Using these three we obtain the equation
where $c:=A s L_{0}^{\alpha}$

Cobb-Douglas production model

Let $X(t)$ denote the national product, $\mathrm{K}(\mathrm{t})$ the capital stock and $\mathrm{L}(\mathrm{t})$ the number of workers in a country at time t. We have the following relations:
$X=A K^{1-\alpha} L^{\alpha}, K^{\prime}=s X$ and $L=L_{0} e^{\lambda t}$,
where A, s, L_{0} are constants and $0<\alpha<1$ is called elasticity. The first is the Cobb-Douglas production model. The second says that aggregate investment is proportional to output. The third says that the labour forces grows exponentially.Using these three we obtain the equation
$K^{\prime}=s X=c e^{\alpha \lambda t} K^{1-\alpha}$,
where $c:=A s L_{0}^{\alpha}$.

Cobb-Douglas production model: Solution

(1) We first separate and integrate

(2) This gives

(3) We find the constant C by plugging in the initial condition, so we get $C=K \alpha-s A L_{0}^{\alpha}$ and in turn

Cobb-Douglas production model: Solution

(1) We first separate and integrate

$$
\int K^{\alpha-1} d K=\int c e^{\alpha \lambda t} d t
$$

(2) This gives

$$
\frac{K^{\alpha}}{\alpha}=c \frac{e^{\alpha \lambda t}}{\alpha \lambda}+C .
$$

(3) We find the constant C by plugging in the initial condition, so we get $C:=K_{0}^{\alpha}-\frac{s A L_{0}^{\alpha}}{\lambda}$ and in turn

Cobb-Douglas production model: Solution

(1) We first separate and integrate

$$
\int K^{\alpha-1} d K=\int c e^{\alpha \lambda t} d t
$$

(2) This gives

$$
\frac{K^{\alpha}}{\alpha}=c \frac{e^{\alpha \lambda t}}{\alpha \lambda}+C
$$

(3) We find the constant C by plugging in the initial condition, so we get $C:=K_{0}^{\alpha}-\frac{s A L_{0}^{\alpha}}{\lambda}$ and in turn

Cobb-Douglas production model: Solution

(1) We first separate and integrate

$$
\int K^{\alpha-1} d K=\int c e^{\alpha \lambda t} d t
$$

(2) This gives

$$
\frac{K^{\alpha}}{\alpha}=c \frac{e^{\alpha \lambda t}}{\alpha \lambda}+C
$$

(3) We find the constant C by plugging in the initial condition, so we get $C:=K_{0}^{\alpha}-\frac{s A L_{0}^{\alpha}}{\lambda}$ and in turn
$K=\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$.

Cobb-Douglas production model: Solution

(1) We first separate and integrate

$$
\int K^{\alpha-1} d K=\int c e^{\alpha \lambda t} d t
$$

(2) This gives

$$
\frac{K^{\alpha}}{\alpha}=c \frac{e^{\alpha \lambda t}}{\alpha \lambda}+C
$$

(3) We find the constant C by plugging in the initial condition, so we get $C:=K_{0}^{\alpha}-\frac{s A L_{0}^{\alpha}}{\lambda}$ and in turn
$K=\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$.

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:

(5) For simplicity we will first compute the asymptotic of

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of
$\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]$.
(6) We note that the only surving term is the following:

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

$$
\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right] .
$$

(6) We note that the only surving term is the following:

be approximately constant

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of
$\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]$.
(6) We note that the only surving term is the following:
$\approx \frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}} \frac{s A L_{0}^{\alpha}}{\lambda} \frac{e^{\alpha \lambda t}}{\alpha \lambda}=\frac{s A}{\lambda}$.
(7) This means that in the long term the national product per worker will be approximately constant

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

$$
\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right] .
$$

(6) We note that the only surving term is the following:

$$
\approx \frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}} \frac{s A L_{0}^{\alpha}}{\lambda} \frac{e^{\alpha \lambda t}}{\alpha \lambda}=\frac{s A}{\lambda} .
$$

(7) This means that in the long term the national product per worker will be approximately constant

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

$$
\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]
$$

(6) We note that the only surving term is the following:

$$
\approx \frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}} \frac{s A L_{0}^{\alpha}}{\lambda} \frac{e^{\alpha \lambda t}}{\alpha \lambda}=\frac{s A}{\lambda} .
$$

(7) This means that in the long term the national product per worker will be approximately constant

$$
\frac{X}{L}=A \frac{K}{L}\left(\frac{L}{K}\right)^{\alpha} \approx A\left(\frac{s A}{\lambda}\right)^{1 / \alpha}\left(\frac{s A}{\lambda}\right)^{-1}=A\left(\frac{s A}{\lambda}\right)^{1 / \alpha-1} .
$$

Cobb-Douglas production model: Asymptotic behaviour

(4) Next we study the asymptotic behaviour of the ratio $\frac{K}{L}$ (also called the capital-labor ratio) as $t \rightarrow+\infty$:
$\frac{K}{L}=\frac{1}{L_{0} e^{\lambda t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]^{1 / \alpha}$
(5) For simplicity we will first compute the asymptotic of

$$
\left(\frac{K}{L}\right)^{\alpha}=\frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}}\left[K_{0}^{\alpha}+\frac{s A L_{0}^{\alpha}}{\lambda}\left(\frac{e^{\alpha \lambda t}}{\alpha \lambda}-1\right)\right]
$$

(6) We note that the only surving term is the following:

$$
\approx \frac{1}{L_{0}^{\alpha} e^{\lambda \alpha t}} \frac{s A L_{0}^{\alpha}}{\lambda} \frac{e^{\alpha \lambda t}}{\alpha \lambda}=\frac{s A}{\lambda} .
$$

(7) This means that in the long term the national product per worker will be approximately constant

$$
\frac{X}{L}=A \frac{K}{L}\left(\frac{L}{K}\right)^{\alpha} \approx A\left(\frac{s A}{\lambda}\right)^{1 / \alpha}\left(\frac{s A}{\lambda}\right)^{-1}=A\left(\frac{s A}{\lambda}\right)^{1 / \alpha-1} .
$$

Linear

An equation is called linear if it is of the form:
$y^{\prime}+p(t) y=g(t)$
for continuous functions p,g. We will solve such equations with a clever use of product rule.

Linear

An equation is called linear if it is of the form:
$y^{\prime}+p(t) y=g(t)$
for continuous functions p,g. We will solve such equations with a clever use of product rule.

Radioactive isotopes

A rock contains two radioactive isotopes R_{1}, R_{2} with R_{1} decaying into R_{2} with rate $5 e^{-10 t} \mathrm{~kg} / \mathrm{sec}$. So if $y(t)$ is the total mass of R_{2}, we obtain:
$\frac{d y}{d t}=$ rate of creation of R_{2} - rate of decay of R_{2}
where $k>0$ is the decay constant for R_{2}. Also assume that $y(0)=40 \mathrm{~kg}$

Radioactive isotopes

A rock contains two radioactive isotopes R_{1}, R_{2} with R_{1} decaying into R_{2} with rate $5 e^{-10 t} \mathrm{~kg} / \mathrm{sec}$. So if $y(t)$ is the total mass of R_{2}, we obtain:
$\frac{d y}{d t}=$ rate of creation of R_{2} - rate of decay of R_{2}
$=5 e^{-10 t}-k y(t)$,
where $k>0$ is the decay constant for R_{2}. Also assume that $y(0)=40 \mathrm{~kg}$

Radioactive isotopes

A rock contains two radioactive isotopes R_{1}, R_{2} with R_{1} decaying into R_{2} with rate $5 e^{-10 t} \mathrm{~kg} / \mathrm{sec}$. So if $y(t)$ is the total mass of R_{2}, we obtain:
$\frac{d y}{d t}=$ rate of creation of R_{2} - rate of decay of R_{2}
$=5 e^{-10 t}-k y(t)$,
where $k>0$ is the decay constant for R_{2}. Also assume that $y(0)=40 \mathrm{~kg}$.

Radioactive isotopes

(1) We first multiply by yet unknown $\mu(t)$
$\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t}$.
(2) We want to find a μ s.t. $\mu^{\prime}(t)=\mu(t) k$ because then $\frac{d}{d t}(\mu(t) y(t))=\mu^{\prime}(t) \frac{d y}{d t}+\mu^{\prime}(t) k y(t)=\mu^{(}(t) 5 e^{-10 t}$

Radioactive isotopes

(1) We first multiply by yet unknown $\mu(t)$

$$
\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t}
$$

(2) We want to find a μ s.t. $\mu^{\prime}(t)=\mu(t) k$ because then

$$
\frac{d}{d t}(\mu(t) y(t))=\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t}
$$

$y(t)=\mu(t)^{-1} \int \mu(s) 5 e^{-10 s} d s$.

Radioactive isotopes

(1) We first multiply by yet unknown $\mu(t)$

$$
\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t}
$$

(2) We want to find a μ s.t. $\mu^{\prime}(t)=\mu(t) k$ because then

$$
\begin{aligned}
& \frac{d}{d t}(\mu(t) y(t))=\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t} \\
& \text { and so }
\end{aligned}
$$

$$
y(t)=\mu(t)^{-1} \int \mu(s) 5 e^{-10 s} d s
$$

(3) We require $\mu^{\prime}(t)=\mu(t) k$, which can be easily solved to give:

Radioactive isotopes

(1) We first multiply by yet unknown $\mu(t)$

$$
\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t}
$$

(2) We want to find a μ s.t. $\mu^{\prime}(t)=\mu(t) k$ because then

$$
\begin{aligned}
& \frac{d}{d t}(\mu(t) y(t))=\mu(t) \frac{d y}{d t}+\mu(t) k y(t)=\mu(t) 5 e^{-10 t} \\
& \text { and so }
\end{aligned}
$$

$$
y(t)=\mu(t)^{-1} \int \mu(s) 5 e^{-10 s} d s
$$

(3) We require $\mu^{\prime}(t)=\mu(t) k$, which can be easily solved to give:

$$
\mu(t)=e^{k t}
$$

Radioactive isotopes

(3) Then by product rule we have
$\frac{d}{d t}\left(e^{k t} y(t)\right)=5 e^{(k-10) t} \Rightarrow y(t)=5 e^{-10 t}+e^{k t} c=5 e^{-10 t}+35 e^{-k t}$ where we used the initial condition $y(0)=40 \mathrm{~kg}$.
(4) Therefore, we indeed obtain that $y \rightarrow 0$ as $t \rightarrow+\infty$.

Radioactive isotopes

(3) Then by product rule we have
$\frac{d}{d t}\left(e^{k t} y(t)\right)=5 e^{(k-10) t} \Rightarrow y(t)=5 e^{-10 t}+e^{k t} c=5 e^{-10 t}+35 e^{-k t}$
where we used the initial condition $y(0)=40 \mathrm{~kg}$.
(4) Therefore, we indeed obtain that $y \rightarrow 0$ as $t \rightarrow+\infty$.

Radioactive isotopes

(3) Then by product rule we have
$\frac{d}{d t}\left(e^{k t} y(t)\right)=5 e^{(k-10) t} \Rightarrow y(t)=5 e^{-10 t}+e^{k t} c=5 e^{-10 t}+35 e^{-k t}$
where we used the initial condition $y(0)=40 \mathrm{~kg}$.
(4) Therefore, we indeed obtain that $y \rightarrow 0$ as $t \rightarrow+\infty$.

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

$$
\mu \cdot y^{\prime}+\mu^{\prime} \cdot y=\mu g(t) \Rightarrow \frac{d}{d t}(\mu y)=\mu g(t)
$$

(3) Therefore,

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

$$
\mu \cdot y^{\prime}+\mu^{\prime} \cdot y=\mu g(t) \Rightarrow \frac{d}{d t}(\mu y)=\mu g(t) .
$$

(3) Therefore,

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

$$
\mu \cdot y^{\prime}+\mu^{\prime} \cdot y=\mu g(t) \Rightarrow \frac{d}{d t}(\mu y)=\mu g(t)
$$

(3) Therefore,

$$
y(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) g(s) d s+c
$$

(4) To determine $\mu(t)$ we use $\mu^{\prime}=\mu(t) p(t)$ to get:

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

$$
\mu \cdot y^{\prime}+\mu^{\prime} \cdot y=\mu g(t) \Rightarrow \frac{d}{d t}(\mu y)=\mu g(t)
$$

(3) Therefore,
$y(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) g(s) d s+c$.
(4) To determine $\mu(t)$ we use $\mu^{\prime}=\mu(t) p(t)$ to get:
$\mu(t)=\exp \left\{\int_{0} p(s) d s\right\}$

Formal steps

(1) Starting from $y^{\prime}+p(t) y=g(t)$, we multiply both sides by a function $\mu(t)$ that we will determine later:
$\mu(t) \cdot y^{\prime}+\mu(t) p(t) \cdot y=\mu(t) g(t)$.
(2) By setting $\mu^{\prime}=\mu(t) p(t)$ we observe that we can use the product rule:

$$
\mu \cdot y^{\prime}+\mu^{\prime} \cdot y=\mu g(t) \Rightarrow \frac{d}{d t}(\mu y)=\mu g(t)
$$

(3) Therefore,

$$
y(t)=\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) g(s) d s+c
$$

(4) To determine $\mu(t)$ we use $\mu^{\prime}=\mu(t) p(t)$ to get:

$$
\mu(t)=\exp \left\{\int_{0}^{t} p(s) d s\right\}
$$

example 1

Consider the equation

$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

example 1

Consider the equation
$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

$$
\mu y^{\prime}-2 \mu y=\mu t^{2} e^{2 t}
$$

(2) We solve

$$
\mu^{\prime}(t)=-2 \mu(t) \Rightarrow \mu=\exp \{-2 t\}
$$

example 1

Consider the equation
$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

$$
\mu y^{\prime}-2 \mu y=\mu t^{2} e^{2 t}
$$

(2) We solve

$$
\mu^{\prime}(t)=-2 \mu(t) \Rightarrow \mu=\exp \{-2 t\}
$$

(3) We integrate both sides

example 1

Consider the equation
$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

$$
\mu y^{\prime}-2 \mu y=\mu t^{2} e^{2 t}
$$

(2) We solve

$$
\begin{aligned}
& \mu^{\prime}(t)=-2 \mu(t) \Rightarrow \mu=\exp \{-2 t\} \\
& \frac{d}{d t}\left(e^{-2 t} y\right)=e^{-2 t} t^{2} e^{2 t}=t^{2}
\end{aligned}
$$

(3) We integrate both sides

example 1

Consider the equation
$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

$$
\mu y^{\prime}-2 \mu y=\mu t^{2} e^{2 t}
$$

(2) We solve

$$
\begin{aligned}
& \mu^{\prime}(t)=-2 \mu(t) \Rightarrow \mu=\exp \{-2 t\} \\
& \frac{d}{d t}\left(e^{-2 t} y\right)=e^{-2 t} t^{2} e^{2 t}=t^{2}
\end{aligned}
$$

(3) We integrate both sides

$$
y(t)=e^{2 t} \frac{t^{3}}{3}+c
$$

example 1

Consider the equation
$y^{\prime}-2 y=t^{2} e^{2 t}$.
(1) We multiply by $\mu(t)$

$$
\mu y^{\prime}-2 \mu y=\mu t^{2} e^{2 t}
$$

(2) We solve

$$
\begin{aligned}
& \mu^{\prime}(t)=-2 \mu(t) \Rightarrow \mu=\exp \{-2 t\} \\
& \frac{d}{d t}\left(e^{-2 t} y\right)=e^{-2 t} t^{2} e^{2 t}=t^{2}
\end{aligned}
$$

(3) We integrate both sides

$$
y(t)=e^{2 t} \frac{t^{3}}{3}+c
$$

example 2

Consider equation

$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice
$\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}$
(2) We observe that to make use of product rule we need

example 2

Consider equation
$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice

$$
\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}
$$

(2) We observe that to make use of product rule we need

$\mu^{\prime}(t)=\frac{1}{2} \mu^{\prime}(t)$

example 2

Consider equation
$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice

$$
\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}
$$

(2) We observe that to make use of product rule we need

$$
\mu^{\prime}(t)=\frac{1}{2} \mu(t)
$$

(3) Therefore, by product rule

example 2

Consider equation
$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice

$$
\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}
$$

(2) We observe that to make use of product rule we need

$$
\begin{aligned}
& \mu^{\prime}(t)=\frac{1}{2} \mu(t) \\
& \Rightarrow \ln |\mu(t)|=\frac{1}{2} t+c^{\prime} \Rightarrow \mu(t)=e^{t / 2}
\end{aligned}
$$

(3) Therefore, by product rule

$$
\frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}}
$$

example 2

Consider equation
$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice

$$
\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}
$$

(2) We observe that to make use of product rule we need

$$
\begin{aligned}
& \mu^{\prime}(t)=\frac{1}{2} \mu(t) \\
& \Rightarrow \ln |\mu(t)|=\frac{1}{2} t+c^{\prime} \Rightarrow \mu(t)=e^{t / 2}
\end{aligned}
$$

(3) Therefore, by product rule

$$
\frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}}
$$

example 2

Consider equation
$y^{\prime}+\frac{1}{2} y=\frac{1}{2} e^{t / 3}$.
(1) We start with the first step of multiplying by $\mu(t)$ of our choice

$$
\mu(t) y^{\prime}+\mu(t) \frac{1}{2} y=\mu(t) \frac{1}{2} e^{t / 3}
$$

(2) We observe that to make use of product rule we need

$$
\begin{aligned}
& \mu^{\prime}(t)=\frac{1}{2} \mu(t) \\
& \Rightarrow \ln |\mu(t)|=\frac{1}{2} t+c^{\prime} \Rightarrow \mu(t)=e^{t / 2}
\end{aligned}
$$

(3) Therefore, by product rule

$$
\frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}}
$$

example 2

(3) Therefore, by product rule

$$
\frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}}
$$

example 2

(3) Therefore, by product rule

$$
\begin{aligned}
& \frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}} \\
& y(t)=e^{-t / 2}\left(\frac{3}{5} e^{\frac{5 t}{6}}+c\right) \Rightarrow \\
& y(t)=\frac{3}{5} e^{\frac{t}{3}}+c e^{-\frac{t}{2}}
\end{aligned}
$$

example 2

(3) Therefore, by product rule

$$
\begin{aligned}
& \frac{d}{d t}(\mu(t) \cdot y)=\mu(t) \frac{1}{2} e^{t / 3}=\frac{1}{2} e^{\frac{5 t}{6}} \\
& y(t)=e^{-t / 2}\left(\frac{3}{5} e^{\frac{5 t}{6}}+c\right) \Rightarrow \\
& y(t)=\frac{3}{5} e^{\frac{t}{3}}+c e^{-\frac{t}{2}}
\end{aligned}
$$

Price adjument mechanism

When the price of a good is p, the total demand is $D(p)=a-b p$ and the total supply is $S(p)=\alpha+\beta p$, where $\mathrm{a}, \mathrm{b}, \alpha$, and β are positive constants.
When demand exceeds supply, price rises, and when supply exceeds demand it falls. The speed at which the price changes is proportional to the difference between supply and demand. Specifically

Price adjument mechanism

When the price of a good is p, the total demand is $D(p)=a-b p$ and the total supply is $S(p)=\alpha+\beta p$, where $\mathrm{a}, \mathrm{b}, \alpha$, and β are positive constants. When demand exceeds supply, price rises, and when supply exceeds demand it falls. The speed at which the price changes is proportional to the difference between supply and demand.
$p^{\prime}=\lambda(D(p)-S(p))$

Price adjument mechanism

When the price of a good is p, the total demand is $D(p)=a-b p$ and the total supply is $S(p)=\alpha+\beta p$, where $\mathrm{a}, \mathrm{b}, \alpha$, and β are positive constants. When demand exceeds supply, price rises, and when supply exceeds demand it falls. The speed at which the price changes is proportional to the difference between supply and demand. Specifically
$p^{\prime}=\lambda(D(p)-S(p))$
for $\lambda>0$.
(1) We multiple by μ to get

$$
\mu p^{\prime}+\mu \lambda(b+\beta) p=\lambda(a-\alpha)
$$

(2) We obtain μ

(1) We multiple by μ to get

$$
\mu p^{\prime}+\mu \lambda(b+\beta) p=\lambda(a-\alpha)
$$

(2) We obtain μ

$$
\mu^{\prime}=\lambda(b+\beta) \mu \Rightarrow \mu=\exp \{\lambda(b+\beta) t\}
$$

(3) Therefore, by product rule we obtain

(1) We multiple by μ to get

$$
\mu p^{\prime}+\mu \lambda(b+\beta) p=\lambda(a-\alpha)
$$

(2) We obtain μ

$$
\mu^{\prime}=\lambda(b+\beta) \mu \Rightarrow \mu=\exp \{\lambda(b+\beta) t\}
$$

(3) Therefore, by product rule we obtain

$$
\frac{\partial}{\partial t}(\mu p)=\exp \{\lambda(b+\beta) t\} \lambda(a-\alpha) \Rightarrow p(t)=\operatorname{cexp}\{-\lambda(b+\beta) t\}+\frac{(a-\alpha)}{(b+\beta)}
$$

(1) We multiple by μ to get

$$
\mu p^{\prime}+\mu \lambda(b+\beta) p=\lambda(a-\alpha)
$$

(2) We obtain μ

$$
\mu^{\prime}=\lambda(b+\beta) \mu \Rightarrow \mu=\exp \{\lambda(b+\beta) t\}
$$

(3) Therefore, by product rule we obtain

$$
\frac{\partial}{\partial t}(\mu p)=\exp \{\lambda(b+\beta) t\} \lambda(a-\alpha) \Rightarrow p(t)=\operatorname{cexp}\{-\lambda(b+\beta) t\}+\frac{(a-\alpha)}{(b+\beta)}
$$

(1) So as $t \rightarrow+\infty$ the price of this good converges to $\frac{(a-\alpha)}{(b+\beta)}$.

The End

