Week 4

- Wronskian

1. Consider the equation $y^{\prime \prime}-y^{\prime}-2 y=0$
(a) Show that $y_{1}(t):=e^{-t}, y_{2}(t):=e^{2 t}$ form a fundamental solution.
(b) Show that each of $y_{3}(t):=-2 e^{2 t}, y_{4}(t):=y_{1}(t)+2 y_{2}(t)$ and $y_{5}(t):=2 y_{1}(t)-2 y_{3}(t)$ are solutions to the above ode.
(c) Which of the following pairs give rise to a fundamental solution:

$$
\left\{y_{1}, y_{3}\right\},\left\{y_{2}, y_{3}\right\},\left\{y_{1}, y_{4}\right\},\left\{y_{4}, y_{5}\right\}
$$

- Complex roots

1. Imagine a spring satisfying the following equations. Find the solution, do a rough sketch and describe its asymptotic behaviour (steady/growing/decaying oscilation). Compare this with the stability criterion.
(a) $y^{\prime \prime}+4 y=0, y(0)=0, y^{\prime}(0)=1$,
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=0, y(\pi / 4)=2, y^{\prime}(\pi / 4)=-2$.

- Repeated roots

1. Find the solution, do a rough sketch and describe its asymptotic behaviour. Compare this with the stability criterion.
(a) $9 y^{\prime \prime}-12 y^{\prime}+4 y=0, y(0)=2, y^{\prime}(0)=-1$,
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0, y(-1)=2, y^{\prime}(-1)=1$.
2. Consider the problem

$$
y^{\prime \prime}-y^{\prime}+\frac{y}{4}=0, y(0)=2, y^{\prime}(0)=b
$$

Find the solution and determine for which b, the solution remains positive for all $t>0$. Compare this with the stability criterion.

- Let the demand and supply be

$$
D(P)=9-P+P^{\prime}+3 P^{\prime \prime} \text { and } S(P)=-1+4 P+2 P^{\prime}+5 P^{\prime \prime}
$$

with $P(0)=4, P^{\prime}(0)=4$

1. Derive the price ode (see notes), and find the price solution.
2. Does it have a globally stable solution as $t \rightarrow+\infty$? What does the stability criterion tell you?
