Outline

(1) Autonomous equations

- Presenting the method: Popu
- In class example
(2) 2nd order equations
- Real roots
- Presenting the method: Sprin

Figure: Direction field for population logistic equation.

Autonomous equations

The equations of the form

$$
\frac{d y}{d t}=f(y)
$$

are called autonomous. Such equations might not have explicit solutions, but it is possible to draw qualitative solutions for them.

Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population logistic equation. Let $y(t)$ be the population of a given species at time t then

where $r>0$ is called the intrinsic growth rate and K the saturation level. Since y is a physical quantity, the $y<0$ is ignored.

Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population logistic equation. Let $y(t)$ be the population of a given species at time t then

$$
\frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y,
$$

where $r>0$ is called the intrinsic growth rate and K the saturation level. Since y is a physical quantity, the $y<0$ is ignored.

Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population logistic equation. Let $y(t)$ be the population of a given species at time t then

$$
\frac{d y}{d t}=r\left(1-\frac{y}{K}\right) y,
$$

where $r>0$ is called the intrinsic growth rate and K the saturation level. Since y is a physical quantity, the $y<0$ is ignored.

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

So the equilibrium solutions are $\phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv K$.
ignored). Therefore, the solutions started from below K will be
growing upwards to $y=K$.

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

So the equilibrium solutions are $\phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv K$.
(2) We have $y^{\prime}=\left(1-\frac{y}{K}\right) y>0$ when $K>y$ and $y>0(y<0$ is ignored).

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

So the equilibrium solutions are $\phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv K$.
(2) We have $y^{\prime}=\left(1-\frac{y}{K}\right) y>0$ when $K>y$ and $y>0(y<0$ is ignored). Therefore, the solutions started from below K will be growing upwards to $y=K$.
(3) On the other hand, $y^{\prime}=\left(1-\frac{y}{K}\right) y<0$ when $K<y$ and $y>0$. Therefore, the solutions started from above K will be decaying

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

So the equilibrium solutions are $\phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv K$.
(2) We have $y^{\prime}=\left(1-\frac{y}{K}\right) y>0$ when $K>y$ and $y>0(y<0$ is ignored). Therefore, the solutions started from below K will be growing upwards to $y=K$.
(3) On the other hand, $y^{\prime}=\left(1-\frac{y}{K}\right) y<0$ when $K<y$ and $y>0$. Therefore, the solutions started from above K will be decaying downwards to $y=K$.

Population logistics

(1) First we find the equilibrium solutions:

$$
r\left(1-\frac{y}{K}\right) y=0 \Rightarrow y=K \text { or } y=0
$$

So the equilibrium solutions are $\phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv K$.
(2) We have $y^{\prime}=\left(1-\frac{y}{K}\right) y>0$ when $K>y$ and $y>0(y<0$ is ignored). Therefore, the solutions started from below K will be growing upwards to $y=K$.
(3) On the other hand, $y^{\prime}=\left(1-\frac{y}{K}\right) y<0$ when $K<y$ and $y>0$. Therefore, the solutions started from above K will be decaying downwards to $y=K$.

Population logistics

(4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim _{t \rightarrow \infty} y=K$. Therefore, $\phi_{2}(t) \equiv K$ is the asymptotically stable solution.
(5) On the other hand, we observe that if y is really small (i.e. close to $\phi_{1}=0$) but still positive, the solutions still move away from ϕ_{1} and go towards ϕ_{2}.

Population logistics

(4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim _{t \rightarrow \infty} y=K$. Therefore, $\phi_{2}(t) \equiv K$ is the asymptotically stable solution.
(5) On the other hand, we observe that if y is really small (i.e. close to $\phi_{1}=0$) but still positive, the solutions still move away from ϕ_{1} and go towards ϕ_{2}. Therefore, ϕ_{1} is the asymptotically unstable solution.

Population logistics

(4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim _{t \rightarrow \infty} y=K$. Therefore, $\phi_{2}(t) \equiv K$ is the asymptotically stable solution.
(5) On the other hand, we observe that if y is really small (i.e. close to $\phi_{1}=0$) but still positive, the solutions still move away from ϕ_{1} and go towards ϕ_{2}.

Physically that the population dynamics will return to the
saturation/capacity level K; the most the ecosystem can withhold

Population logistics

(4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim _{t \rightarrow \infty} y=K$. Therefore, $\phi_{2}(t) \equiv K$ is the asymptotically stable solution.
(5) On the other hand, we observe that if y is really small (i.e. close to $\phi_{1}=0$) but still positive, the solutions still move away from ϕ_{1} and go towards ϕ_{2}. Therefore, ϕ_{1} is the asymptotically unstable solution.
(6) Physically that the population dynamics will return to the
saturation/capacity level K; the most the ecosystem can withhold

Population logistics

(4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim _{t \rightarrow \infty} y=K$. Therefore, $\phi_{2}(t) \equiv K$ is the asymptotically stable solution.
(5) On the other hand, we observe that if y is really small (i.e. close to $\phi_{1}=0$) but still positive, the solutions still move away from ϕ_{1} and go towards ϕ_{2}. Therefore, ϕ_{1} is the asymptotically unstable solution.
(6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

Matlab simulation for $K=3$

Method formal steps

(1) First we draw the curves $\phi_{i}(t)=(t, y(t))$ where $f(y)=0$ (called the equilibrium solutions or critical points).
(c) These will separate the regions into $y^{\prime}=f(y)>0$ and $y^{\prime}=f(y)<0$.

Method formal steps

(1) First we draw the curves $\phi_{i}(t)=(t, y(t))$ where $f(y)=0$ (called the equilibrium solutions or critical points).
(2) These will separate the regions into $y^{\prime}=f(y)>0$ and $y^{\prime}=f(y)<0$.
(3) We classify each ϕ_{i} as asymptotically stable if for $y(t)$ starting close to ϕ_{i} (i.e. $\left|y_{0}-\phi_{i}(0)\right|<\varepsilon$)

irrespective of whether $y_{0}<\phi_{i}(0), y_{0}>\phi_{i}(0)$ and asymptotically unstable if solutions that start close to the $\phi:(t)$ curve move awav

Method formal steps

(1) First we draw the curves $\phi_{i}(t)=(t, y(t))$ where $f(y)=0$ (called the equilibrium solutions or critical points).
(2) These will separate the regions into $y^{\prime}=f(y)>0$ and $y^{\prime}=f(y)<0$.
(3) We classify each ϕ_{i} as asymptotically stable if for $y(t)$ starting close to ϕ_{i} (i.e. $\left|y_{0}-\phi_{i}(0)\right|<\varepsilon$)

$$
\lim _{t \rightarrow \infty} y(t)=\phi_{i}
$$

irrespective of whether $y_{0}<\phi_{i}(0), y_{0}>\phi_{i}(0)$ and asymptotically unstable if solutions that start close to the $\phi_{i}(t)$ curve, move away from it.

Method formal steps

(1) First we draw the curves $\phi_{i}(t)=(t, y(t))$ where $f(y)=0$ (called the equilibrium solutions or critical points).
(2) These will separate the regions into $y^{\prime}=f(y)>0$ and $y^{\prime}=f(y)<0$.
(3) We classify each ϕ_{i} as asymptotically stable if for $y(t)$ starting close to ϕ_{i} (i.e. $\left|y_{0}-\phi_{i}(0)\right|<\varepsilon$)

$$
\lim _{t \rightarrow \infty} y(t)=\phi_{i}
$$

irrespective of whether $y_{0}<\phi_{i}(0), y_{0}>\phi_{i}(0)$ and asymptotically unstable if solutions that start close to the $\phi_{i}(t)$ curve, move away from it.

In class example

Consider the autonomous equation:

$$
\frac{d y}{d t}=y(2-y)
$$

Identify the equilibrium solutions and classify them as stable or unstable.

In class example

(1) First we identify the equilibrium solutions:

$$
\frac{d y}{d t}=0 \Rightarrow \phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv 2
$$

(2) Second we check the stability close to each solution. For $y>2$ we have, $\frac{d y}{d t}<0$ and so the solution will decay towards ϕ_{2}. For $y \in[0,2]$ we have $\frac{d y}{d t}>0$ and so the solution will increase towards ϕ_{2}. For (3) Matlab simulation

In class example

(1) First we identify the equilibrium solutions:

$$
\frac{d y}{d t}=0 \Rightarrow \phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv 2
$$

(2) Second we check the stability close to each solution. For $y>2$ we have, $\frac{d y}{d t}<0$ and so the solution will decay towards ϕ_{2}. For $y \in[0,2]$ we have $\frac{d y}{d t}>0$ and so the solution will increase towards ϕ_{2}.
(3) Matlab simulation

In class example

(1) First we identify the equilibrium solutions:

$$
\frac{d y}{d t}=0 \Rightarrow \phi_{1}(t) \equiv 0, \phi_{2}(t) \equiv 2
$$

(2) Second we check the stability close to each solution. For $y>2$ we have, $\frac{d y}{d t}<0$ and so the solution will decay towards ϕ_{2}. For $y \in[0,2]$ we have $\frac{d y}{d t}>0$ and so the solution will increase towards ϕ_{2}. For $y<0$ we have $\frac{d y}{d t}<0$ and so the solution will decay to minus infinity.
(3) Matlab simulation

The general form of 2 nd order equations is

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) .
$$

We call them linear non-homogeneous if

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and linear homogeneous if $g(t)=0$

The general form of 2 nd order equations is

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

We call them linear non-homogeneous if

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and linear homogeneous if $g(t)=0$

The general form of 2 nd order equations is

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

We call them linear non-homogeneous if

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and linear homogeneous if $g(t)=0$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

The method of characteristic equations is for homogeneous equations and the methods of undetermined coefficients and of variation of parameters for homogeneous equations.

The general form of 2 nd order equations is

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

We call them linear non-homogeneous if

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

and linear homogeneous if $g(t)=0$

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

The method of characteristic equations is for homogeneous equations and the methods of undetermined coefficients and of variation of parameters for homogeneous equations.

Spring oscillation

Consider a mass m hanging at the rest on the end of a vertical spring of length L , spring constant k and damping constant γ.

Figure: Spring mass

Spring oscillation

Let $\mathrm{u}(\mathrm{t})$ denote the displacement from the equilibrium position. Newton's law one can obtain the equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t),
$$

where $F(t)$ is any external force, which for simplicity we will assume to be zero.

Spring oscillation

Let $\mathrm{u}(\mathrm{t})$ denote the displacement from the equilibrium position. Then by Newton's law one can obtain the equation

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t)
$$

where $F(t)$ is any external force, which for simplicity we will assume to be zero.

Spring oscillation

(1) Assume the solution is of the form $y(t)=e^{r t}$ then inserting into our ode we obtain: $m r^{2}+\gamma r+k=0$,
which is called the characteristic equation for our ode.
(2) Suppose that $m=1 \mathrm{lb}, \gamma=5 \mathrm{lb} / \mathrm{ft} / \mathrm{s}$ and $k=6 \mathrm{lb} / \mathrm{ft}$ then we obtain

Spring oscillation

(1) Assume the solution is of the form $y(t)=e^{r t}$ then inserting into our ode we obtain:

$$
m r^{2}+\gamma r+k=0
$$

which is called the characteristic equation for our ode.
(2) Suppose that $m=1 \mathrm{lb}, \gamma=5 \mathrm{lb} / \mathrm{ft} / \mathrm{s}$ and $k=6 \mathrm{lb} / \mathrm{ft}$ then we obtain the roots $r_{1}=-2, r_{2}=-3$.
(3) Therefore, the general solution will be

Spring oscillation

(1) Assume the solution is of the form $y(t)=e^{r t}$ then inserting into our ode we obtain:

$$
m r^{2}+\gamma r+k=0
$$

which is called the characteristic equation for our ode.
(2) Suppose that $m=1 \mathrm{lb}, \gamma=5 \mathrm{lb} / \mathrm{ft} / \mathrm{s}$ and $k=6 \mathrm{lb} / \mathrm{ft}$ then we obtain the roots $r_{1}=-2, r_{2}=-3$.
(3) Therefore, the general solution will be

Spring oscillation

(1) Assume the solution is of the form $y(t)=e^{r t}$ then inserting into our ode we obtain:

$$
m r^{2}+\gamma r+k=0
$$

which is called the characteristic equation for our ode.
(2) Suppose that $m=1 \mathrm{lb}, \gamma=5 \mathrm{lb} / \mathrm{ft} / \mathrm{s}$ and $k=6 \mathrm{lb} / \mathrm{ft}$ then we obtain the roots $r_{1}=-2, r_{2}=-3$.
(3) Therefore, the general solution will be

$$
u(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

(4) Further if $y(0)=0, y^{\prime}(0)=1$ we obtain $c_{1}=1, c_{2}=-1$:

Spring oscillation

(1) Assume the solution is of the form $y(t)=e^{r t}$ then inserting into our ode we obtain:

$$
m r^{2}+\gamma r+k=0
$$

which is called the characteristic equation for our ode.
(2) Suppose that $m=1 \mathrm{lb}, \gamma=5 \mathrm{lb} / \mathrm{ft} / \mathrm{s}$ and $k=6 \mathrm{lb} / \mathrm{ft}$ then we obtain the roots $r_{1}=-2, r_{2}=-3$.
(3) Therefore, the general solution will be

$$
u(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

(4) Further if $y(0)=0, y^{\prime}(0)=1$ we obtain $c_{1}=1, c_{2}=-1$:

$$
u(t)=e^{-2 t}-e^{-3 t}
$$

Method formal steps

(1) We assume that the solution is of the form $y(t)=e^{r t}$ (this is called making an ansatz). This gives

$$
\left(a r^{2}+b r+c\right) e^{r t}=0 \Rightarrow a r^{2}+b r+c=0
$$

which equation is called the characteristic equation.
(2) So to solve the above ode, it suffices to find the two roots r_{1}, r_{2}

Method formal steps

(1) We assume that the solution is of the form $y(t)=e^{r t}$ (this is called making an ansatz). This gives

$$
\left(a r^{2}+b r+c\right) e^{r t}=0 \Rightarrow a r^{2}+b r+c=0
$$

which equation is called the characteristic equation.
(2) So to solve the above ode, it suffices to find the two roots r_{1}, r_{2}
(0) Then the general solution is of the form:

Method formal steps

(1) We assume that the solution is of the form $y(t)=e^{r t}$ (this is called making an ansatz). This gives

$$
\left(a r^{2}+b r+c\right) e^{r t}=0 \Rightarrow a r^{2}+b r+c=0
$$

which equation is called the characteristic equation.
(2) So to solve the above ode, it suffices to find the two roots r_{1}, r_{2}.
(3) Then the general solution is of the form:

Method formal steps

(1) We assume that the solution is of the form $y(t)=e^{r t}$ (this is called making an ansatz). This gives

$$
\left(a r^{2}+b r+c\right) e^{r t}=0 \Rightarrow a r^{2}+b r+c=0
$$

which equation is called the characteristic equation.
(2) So to solve the above ode, it suffices to find the two roots r_{1}, r_{2}.
(3) Then the general solution is of the form:

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

In class example

Consider the IVP

$$
4 y^{\prime \prime}-y=0, y(-2)=1, y^{\prime}(-2)=-1
$$

Solve and determine long term behaviour.

In class example

(1) We obtain the characteristic equation $4 r^{2}-1=0 \Rightarrow r= \pm \frac{1}{2}$ the general solution will be

In class example

(1) We obtain the characteristic equation $4 r^{2}-1=0 \Rightarrow r= \pm \frac{1}{2}$ and so the general solution will be

$$
y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{-\frac{t}{2}}
$$

(2) Using the initial conditions we obtain:

(3) Solving these two equations gives: $c_{1}=-\frac{1}{2} e, c_{2}=\frac{3}{2} e^{-1}$ and so the solution for our IVP is:

In class example

(1) We obtain the characteristic equation $4 r^{2}-1=0 \Rightarrow r= \pm \frac{1}{2}$ and so the general solution will be

$$
y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{-\frac{t}{2}}
$$

(2) Using the initial conditions we obtain:

$$
1=c_{1} e^{-1}+c_{2} e \text { and } 1=\frac{1}{2}\left(c_{1} e^{-1}-c_{2} e\right) .
$$

(3) Solving these two equations gives: $c_{1}=-\frac{1}{2} e, c_{2}=\frac{3}{2} e^{-1}$ and so the solution for our IVP is:

In class example

(1) We obtain the characteristic equation $4 r^{2}-1=0 \Rightarrow r= \pm \frac{1}{2}$ and so the general solution will be

$$
y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{-\frac{t}{2}}
$$

(2) Using the initial conditions we obtain:

$$
1=c_{1} e^{-1}+c_{2} e \text { and } 1=\frac{1}{2}\left(c_{1} e^{-1}-c_{2} e\right) .
$$

(3) Solving these two equations gives: $c_{1}=-\frac{1}{2} e, c_{2}=\frac{3}{2} e^{-1}$ and so the solution for our IVP is:

$$
y(t)=-\frac{1}{2} e^{1+\frac{t}{2}}+\frac{3}{2} e^{-\frac{t}{2}-1} .
$$

In class example

(1) We obtain the characteristic equation $4 r^{2}-1=0 \Rightarrow r= \pm \frac{1}{2}$ and so the general solution will be

$$
y(t)=c_{1} e^{\frac{t}{2}}+c_{2} e^{-\frac{t}{2}}
$$

(2) Using the initial conditions we obtain:

$$
1=c_{1} e^{-1}+c_{2} e \text { and } 1=\frac{1}{2}\left(c_{1} e^{-1}-c_{2} e\right) .
$$

(3) Solving these two equations gives: $c_{1}=-\frac{1}{2} e, c_{2}=\frac{3}{2} e^{-1}$ and so the solution for our IVP is:

$$
y(t)=-\frac{1}{2} e^{1+\frac{t}{2}}+\frac{3}{2} e^{-\frac{t}{2}-1} .
$$

(9) Therefore, as $t \rightarrow+\infty$ we obtain $y \rightarrow-\infty$.

In class example

Consider the IVP

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0, y(0)=2, y^{\prime}(0)=1
$$

Solve and determine long term behaviour.

In class example

(1) The characteristic equation is $r^{2}+5 r+6=0 \Rightarrow r=-2,-3$ the general solution will be:

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using the initial conditions we obtain:

In class example

(1) The characteristic equation is $r^{2}+5 r+6=0 \Rightarrow r=-2,-3$ and so the general solution will be:

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using the initial conditions we obtain:

In class example

(1) The characteristic equation is $r^{2}+5 r+6=0 \Rightarrow r=-2,-3$ and so the general solution will be:

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using the initial conditions we obtain:

$$
2=c_{1}+c_{2} \text { and } 1=-2 c_{1}-3 c_{2}
$$

(3) Solving these two equations gives: $c_{1}=7, c_{2}=-5$ and so the solution for our IVP is:

$$
y(t)=7 e^{-2 t}-5 e^{-3 t}
$$

In class example

(1) The characteristic equation is $r^{2}+5 r+6=0 \Rightarrow r=-2,-3$ and so the general solution will be:

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using the initial conditions we obtain:

$$
2=c_{1}+c_{2} \text { and } 1=-2 c_{1}-3 c_{2}
$$

(2) Solving these two equations gives: $c_{1}=7, c_{2}=-5$ and so the solution for our IVP is:

$$
y(t)=7 e^{-2 t}-5 e^{-3 t}
$$

(3) Therefore, as $t \rightarrow+\infty$ we obtain $y \rightarrow 0$.

In class example

(1) The characteristic equation is $r^{2}+5 r+6=0 \Rightarrow r=-2,-3$ and so the general solution will be:

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}
$$

Using the initial conditions we obtain:

$$
2=c_{1}+c_{2} \text { and } 1=-2 c_{1}-3 c_{2}
$$

(2) Solving these two equations gives: $c_{1}=7, c_{2}=-5$ and so the solution for our IVP is:

$$
y(t)=7 e^{-2 t}-5 e^{-3 t}
$$

(3) Therefore, as $t \rightarrow+\infty$ we obtain $y \rightarrow 0$.

General solution

Now we will show that the general solution of linear homogeneous ode is always of the form:

$$
y(t)=c_{1} y_{1}+c_{2} y_{2}
$$

where y_{i} are solutions for it that satisfy a linear independence condition that is called the Wronskian. Then $\left\{y_{1}, y_{2}\right\}$ will be called the fundamental solution because it can generate all others.

General solution

Now we will show that the general solution of linear homogeneous ode is always of the form:

$$
y(t)=c_{1} y_{1}+c_{2} y_{2}
$$

where y_{i} are solutions for it that satisfy a linear independence condition that is called the Wronskian. Then $\left\{y_{1}, y_{2}\right\}$ will be called the fundamental solution because it can generate all others.

General solution

Now we will show that the general solution of linear homogeneous ode is always of the form:

$$
y(t)=c_{1} y_{1}+c_{2} y_{2}
$$

where y_{i} are solutions for it that satisfy a linear independence condition that is called the Wronskian. Then $\left\{y_{1}, y_{2}\right\}$ will be called the fundamental solution because it can generate all others.

Generalized solution

Suppose that y_{1}, y_{2} are solutions of

$$
y^{\prime \prime}+p(t) y^{\prime}+y=0
$$

Then the family of solutions

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

for arbitrary c_{1}, c_{2}, includes all possible solutions if and only if there is a t_{*} where the Wronskian of $y_{1}\left(t_{*}\right), y_{2}\left(t_{*}\right)$ is not zero.

Consider general solution $\phi(t)$ of the above ODE. We will show that there are constants a,b s.t. $\phi(t)=a y_{1}+b y_{2}$. Let t_{*} be the time for which $W\left(y_{1}, y_{2}, t_{*}\right) \neq 0$ and let $K_{0}=\phi\left(t_{*}\right), K_{1}=\phi^{\prime}\left(t_{*}\right)$. Then

Consider general solution $\phi(t)$ of the above ODE. We will show that there are constants a,b s.t. $\phi(t)=a y_{1}+b y_{2}$. Let t_{*} be the time for which $W\left(y_{1}, y_{2}, t_{*}\right) \neq 0$ and let $K_{0}=\phi\left(t_{*}\right), K_{1}=\phi^{\prime}\left(t_{*}\right)$.

has a solution $\binom{a}{b}$ because the matrix is invertible. So if

Consider general solution $\phi(t)$ of the above ODE. We will show that there are constants a,b s.t. $\phi(t)=a y_{1}+b y_{2}$. Let t_{*} be the time for which $W\left(y_{1}, y_{2}, t_{*}\right) \neq 0$ and let $K_{0}=\phi\left(t_{*}\right), K_{1}=\phi^{\prime}\left(t_{*}\right)$.Then

$$
\left[\begin{array}{ll}
y_{1}\left(t_{*}\right) & y_{2}\left(t_{*}\right) \\
y_{1}^{\prime}\left(t_{*}\right) & y_{2}^{\prime}\left(t_{*}\right)
\end{array}\right]\binom{a}{b}=\binom{K_{0}}{K_{1}}
$$

has a solution $\binom{a}{b}$ because the matrix is invertible.

Consider general solution $\phi(t)$ of the above ODE. We will show that there are constants a,b s.t. $\phi(t)=a y_{1}+b y_{2}$. Let t_{*} be the time for which $W\left(y_{1}, y_{2}, t_{*}\right) \neq 0$ and let $K_{0}=\phi\left(t_{*}\right), K_{1}=\phi^{\prime}\left(t_{*}\right)$.Then

$$
\left[\begin{array}{ll}
y_{1}\left(t_{*}\right) & y_{2}\left(t_{*}\right) \\
y_{1}^{\prime}\left(t_{*}\right) & y_{2}^{\prime}\left(t_{*}\right)
\end{array}\right]\binom{a}{b}=\binom{K_{0}}{K_{1}}
$$

has a solution $\binom{a}{b}$ because the matrix is invertible. So if $\zeta(t):=a y_{1}(t)+b y_{2}(t)$ we have $\zeta\left(t_{*}\right)=K_{0}, \zeta^{\prime}\left(t_{*}\right)=K_{1}$.

Consider general solution $\phi(t)$ of the above ODE. We will show that there are constants a,b s.t. $\phi(t)=a y_{1}+b y_{2}$. Let t_{*} be the time for which $W\left(y_{1}, y_{2}, t_{*}\right) \neq 0$ and let $K_{0}=\phi\left(t_{*}\right), K_{1}=\phi^{\prime}\left(t_{*}\right)$.Then

$$
\left[\begin{array}{ll}
y_{1}\left(t_{*}\right) & y_{2}\left(t_{*}\right) \\
y_{1}^{\prime}\left(t_{*}\right) & y_{2}^{\prime}\left(t_{*}\right)
\end{array}\right]\binom{a}{b}=\binom{K_{0}}{K_{1}}
$$

has a solution $\binom{a}{b}$ because the matrix is invertible. So if $\zeta(t):=a y_{1}(t)+$ by $_{2}(t)$ we have $\zeta\left(t_{*}\right)=K_{0}, \zeta^{\prime}\left(t_{*}\right)=K_{1}$. Therefore, the existence and uniqueness theorem for 2nd order odes gives us $\phi(t)=\zeta(t)=a y_{1}(t)+b y_{2}(t)$ for all t .

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE.

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W\left(e^{r_{1} t}, e^{r_{2} t}, t\right)=e^{\left(r_{1}+r_{2}\right) t}\left(r_{2}-r_{1}\right) \neq 0
$$

Therefore, all solutions will be of the form: $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

Going back to the spring example, the characteristic equation is

$$
m r^{2}+\gamma r+k=0
$$

Assume that it has two distinct real roots r_{1}, r_{2} and so we can easily check that $y_{1}(t)=e^{r_{1} t}, y_{2}(t)=e^{r_{2} t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$
W\left(e^{r_{1} t}, e^{r_{2} t}, t\right)=e^{\left(r_{1}+r_{2}\right) t}\left(r_{2}-r_{1}\right) \neq 0 .
$$

Therefore, all solutions will be of the form: $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.

Method formal steps

Consider arbitrary initial condition be $y\left(t_{0}\right)=y_{0}$.
(1) Assuming that $y=c_{1} y_{1}+c_{2} y_{2}$ we obtain the following system

$$
W_{\text {matrix }}=\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\binom{y_{0}}{y_{0}^{\prime}}
$$

(2) Then we compute the determinant of this system

Method formal steps

Consider arbitrary initial condition be $y\left(t_{0}\right)=y_{0}$.
(1) Assuming that $y=c_{1} y_{1}+c_{2} y_{2}$ we obtain the following system

$$
W_{\text {matrix }}=\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\binom{y_{0}}{y_{0}^{\prime}}
$$

(2) Then we compute the determinant of this system
(3) If it is not zero, then the general solution will be of the form

Method formal steps

Consider arbitrary initial condition be $y\left(t_{0}\right)=y_{0}$.
(1) Assuming that $y=c_{1} y_{1}+c_{2} y_{2}$ we obtain the following system

$$
W_{\text {matrix }}=\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\binom{y_{0}}{y_{0}^{\prime}}
$$

(2) Then we compute the determinant of this system

$$
W=\operatorname{det}\left(W_{\text {matrix }}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right) .
$$

(3) If it is not zero, then the general solution will be of the form $y=c_{1} y_{1}+c_{2} y_{2}$.
(-) If it is zero for all possible t_{0}, then these y_{1}, y_{2} will not generate all solutions.

Method formal steps

Consider arbitrary initial condition be $y\left(t_{0}\right)=y_{0}$.
(1) Assuming that $y=c_{1} y_{1}+c_{2} y_{2}$ we obtain the following system

$$
W_{\text {matrix }}=\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\binom{y_{0}}{y_{0}^{\prime}}
$$

(2) Then we compute the determinant of this system

$$
W=\operatorname{det}\left(W_{\text {matrix }}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)
$$

(3) If it is not zero, then the general solution will be of the form $y=c_{1} y_{1}+c_{2} y_{2}$.
(- If it is zero for all possible t_{0}, then these y_{1}, y_{2} will not generate all solutions.

Method formal steps

Consider arbitrary initial condition be $y\left(t_{0}\right)=y_{0}$.
(1) Assuming that $y=c_{1} y_{1}+c_{2} y_{2}$ we obtain the following system

$$
W_{\text {matrix }}=\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]=\binom{y_{0}}{y_{0}^{\prime}}
$$

(2) Then we compute the determinant of this system

$$
W=\operatorname{det}\left(W_{\text {matrix }}\right)=y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{2}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)
$$

(3) If it is not zero, then the general solution will be of the form $y=c_{1} y_{1}+c_{2} y_{2}$.
(9) If it is zero for all possible t_{0}, then these y_{1}, y_{2} will not generate all solutions.

The End

