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Figure: Direction field for
population logistic
equation.



Autonomous equations

The equations of the form

dy

dt
= f (y)

are called autonomous. Such equations might not have explicit solutions,
but it is possible to draw qualitative solutions for them.
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Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population
logistic equation.Let y(t) be the population of a given species at time t
then

dy

dt
= r(1− y

K
)y ,

where r > 0 is called the intrinsic growth rate and K the saturation
level.Since y is a physical quantity, the y < 0 is ignored.
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Population logistics

(1) First we find the equilibrium solutions:
r(1− y

K )y = 0⇒ y = K or y = 0.
So the equilibrium solutions are φ1(t) ≡ 0, φ2(t) ≡ K .

(2) We have y ′ = (1− y
K )y > 0 when K > y and y > 0 (y < 0 is

ignored). Therefore, the solutions started from below K will be
growing upwards to y = K .

(3) On the other hand, y ′ = (1− y
K )y < 0 when K < y and

y > 0.Therefore, the solutions started from above K will be decaying
downwards to y = K .
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: lim

t→∞
y = K .Therefore, φ2(t) ≡ K is

the asymptotically stable solution.

(5) On the other hand, we observe that if y is really small (i.e. close to
φ1 = 0) but still positive, the solutions still move away from φ1 and
go towards φ2.Therefore, φ1 is the asymptotically unstable solution.

(6) Physically that the population dynamics will return to the
saturation/capacity level K; the most the ecosystem can withhold.
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Matlab simulation for K = 3

MAT244 Ordinary Differential Equations 6 / 24



Method formal steps

1 First we draw the curves φi (t) = (t, y(t)) where f (y) = 0 (called the
equilibrium solutions or critical points ).

2 These will separate the regions into y ′ = f (y) > 0 and y ′ = f (y) < 0.

3 We classify each φi as asymptotically stable if for y(t) starting close
to φi (i.e. |y0 − φi (0)| < ε)

lim
t→∞

y(t) = φi

irrespective of whether y0 < φi (0), y0 > φi (0) and asymptotically
unstable if solutions that start close to the φi (t) curve, move away
from it.
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In class example

Consider the autonomous equation:

dy

dt
= y(2− y).

Identify the equilibrium solutions and classify them as stable or unstable.
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In class example

1 First we identify the equilibrium solutions:

dy

dt
= 0⇒ φ1(t) ≡ 0, φ2(t) ≡ 2.

2 Second we check the stability close to each solution. For y > 2 we
have, dy

dt < 0 and so the solution will decay towards φ2.For y ∈ [0, 2]

we have dy
dt > 0 and so the solution will increase towards φ2. For

y < 0 we have dy
dt < 0 and so the solution will decay to minus infinity.

3 Matlab simulation
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The general form of 2nd order equations is

y ′′ = f
(
t, y , y ′

)
.

We call them linear non-homogeneous if

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = g

(
t
)

and linear homogeneous if g
(
t
)

= 0

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = 0.

The method of characteristic equations is for homogeneous equations and
the methods of undetermined coefficients and of variation of parameters
for homogeneous equations.

MAT244 Ordinary Differential Equations 10 / 24



The general form of 2nd order equations is

y ′′ = f
(
t, y , y ′

)
.

We call them linear non-homogeneous if

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = g

(
t
)

and linear homogeneous if g
(
t
)

= 0

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = 0.

The method of characteristic equations is for homogeneous equations and
the methods of undetermined coefficients and of variation of parameters
for homogeneous equations.

MAT244 Ordinary Differential Equations 10 / 24



The general form of 2nd order equations is

y ′′ = f
(
t, y , y ′

)
.

We call them linear non-homogeneous if

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = g

(
t
)

and linear homogeneous if g
(
t
)

= 0

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = 0.

The method of characteristic equations is for homogeneous equations and
the methods of undetermined coefficients and of variation of parameters
for homogeneous equations.

MAT244 Ordinary Differential Equations 10 / 24



The general form of 2nd order equations is

y ′′ = f
(
t, y , y ′

)
.

We call them linear non-homogeneous if

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = g

(
t
)

and linear homogeneous if g
(
t
)

= 0

y ′′ + p
(
t
)
y ′ + q

(
t
)
y = 0.

The method of characteristic equations is for homogeneous equations and
the methods of undetermined coefficients and of variation of parameters
for homogeneous equations.

MAT244 Ordinary Differential Equations 10 / 24



Spring oscillation

Consider a mass m hanging at the rest on the end of a vertical spring of
length L, spring constant k and damping constant γ.

Figure: Spring mass
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Spring oscillation

Let u
(
t
)

denote the displacement from the equilibrium position. Then by
Newton’s law one can obtain the equation

mu′′
(
t
)

+ γu′
(
t
)

+ ku
(
t
)

= F
(
t
)
,

where F
(
t
)

is any external force, which for simplicity we will assume to be
zero.
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Spring oscillation

(1) Assume the solution is of the form y(t) = ert then inserting into our
ode we obtain:

mr2 + γr + k = 0,

which is called the characteristic equation for our ode.

(2) Suppose that m = 1lb, γ = 5lb/ft/s and k = 6lb/ftthen we obtain
the roots r1 = −2, r2 = −3.

(3) Therefore, the general solution will be

u
(
t
)

= c1e
−2t + c2e

−3t .

(4) Further if y(0) = 0, y ′(0) = 1 we obtain c1 = 1, c2 = −1:

u
(
t
)

= e−2t − e−3t .
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Method formal steps

1 We assume that the solution is of the form y
(
t
)

= ert
(
this is called

making an ansatz
)
.This gives(

ar2 + br + c
)
ert = 0⇒ ar2 + br + c = 0,

which equation is called the characteristic equation.

2 So to solve the above ode, it suffices to find the two roots r1, r2.

3 Then the general solution is of the form:

y
(
t
)

= c1e
r1t + c2e

r2t .
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In class example

Consider the IVP

4y ′′ − y = 0, y
(
− 2

)
= 1, y ′

(
− 2

)
= −1.

Solve and determine long term behaviour.
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In class example

1 We obtain the characteristic equation 4r2 − 1 = 0⇒ r = ±1
2 and so

the general solution will be

y
(
t
)

= c1e
t
2 + c2e

− t
2 .

2 Using the initial conditions we obtain:

1 = c1e
−1 + c2e and 1 =

1

2

(
c1e
−1 − c2e

)
.

3 Solving these two equations gives: c1 = −1
2e, c2 = 3

2e
−1 and so the

solution for our IVP is:

y
(
t
)

= −1

2
e1+ t

2 +
3

2
e−

t
2
−1.

4 Therefore, as t → +∞ we obtain y → −∞.
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In class example

Consider the IVP

y ′′ + 5y ′ + 6y = 0, y
(
0
)

= 2, y ′
(
0
)

= 1.

Solve and determine long term behaviour.
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In class example

1 The characteristic equation is r2 + 5r + 6 = 0⇒ r = −2,−3 and so
the general solution will be:

y
(
t
)

= c1e
−2t + c2e

−3t

Using the initial conditions we obtain:

2 = c1 + c2 and 1 = −2c1 − 3c2.

2 Solving these two equations gives: c1 = 7, c2 = −5 and so the
solution for our IVP is:

y
(
t
)

= 7e−2t − 5e−3t .

3 Therefore, as t → +∞ we obtain y → 0.
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General solution

Now we will show that the general solution of linear homogeneous ode is
always of the form:

y
(
t
)

= c1y1 + c2y2,

where yi are solutions for it that satisfy a linear independence condition
that is called the Wronskian. Then {y1, y2} will be called the
fundamental solution because it can generate all others.
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Generalized solution

Suppose that y1, y2 are solutions of

y ′′ + p
(
t
)
y ′ + y = 0.

Then the family of solutions

y = c1y1 + c2y2

for arbitrary c1, c2, includes all possible solutions if and only if there is a t∗
where the Wronskian of y1

(
t∗
)
, y2

(
t∗
)

is not zero.
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Consider general solution φ
(
t
)

of the above ODE. We will show that there
are constants a,b s.t. φ

(
t
)

= ay1 + by2.Let t∗ be the time for which
W

(
y1, y2, t∗

)
6= 0 and let K0 = φ

(
t∗
)
,K1 = φ′

(
t∗
)
.Then[

y1

(
t∗
)

y2

(
t∗
)

y ′1
(
t∗
)

y ′2
(
t∗
)](a

b

)
=

(
K0

K1

)
has a solution

(a
b

)
because the matrix is invertible.So if

ζ
(
t
)

:= ay1

(
t
)

+ by2

(
t
)

we have ζ
(
t∗
)

= K0, ζ
′(t∗) = K1. Therefore, the

existence and uniqueness theorem for 2nd order odes gives us
φ
(
t
)

= ζ
(
t
)

= ay1

(
t
)

+ by2

(
t
)

for all t.
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Going back to the spring example, the characteristic equation is

mr2 + γr + k = 0.

Assume that it has two distinct real roots r1, r2 and so we can easily check
that y1

(
t
)

= er1t , y2

(
t
)

= er2t are both solutions for this ODE. Now by
computing the Wronskian we will check whether all possible solutions are
of that form:

W
(
er1t , er2t , t

)
= e

(
r1+r2

)
t(r2 − r1

)
6= 0.

Therefore, all solutions will be of the form: y = c1e
r1t + c2e

r2t .
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Method formal steps

Consider arbitrary initial condition be y
(
t0

)
= y0.

1 Assuming that y = c1y1 + c2y2 we obtain the following system

Wmatrix =

[
y1

(
t0

)
y2

(
t0

)
y ′1
(
t0

)
y ′2
(
t0

)] =

(
y0

y ′0

)

2 Then we compute the determinant of this system

W = det
(
Wmatrix

)
= y1

(
t0

)
y ′2
(
t0

)
− y2

(
t0

)
y ′1
(
t0

)
.

3 If it is not zero, then the general solution will be of the form
y = c1y1 + c2y2.

4 If it is zero for all possible t0, then these y1, y2 will not generate all
solutions.
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The End
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