Autonomous equations

- Presenting the method: Popu
- In class example

2 2nd order equations

- Real roots
- Presenting the method: Sprin

Figure: Direction field for population logistic equation.

The equations of the form

$$\frac{dy}{dt} = f(y)$$

are called **autonomous**. Such equations might not have explicit solutions, but it is possible to draw qualitative solutions for them.

En route to studying the competing species we will need the population logistic equation.Let y(t) be the population of a given species at time t then

$$\frac{dy}{dt} = r(1 - \frac{y}{K})y,$$

where r > 0 is called the intrinsic growth rate and K the saturation level.Since y is a physical quantity, the y < 0 is ignored.

En route to studying the competing species we will need the population logistic equation.Let y(t) be the population of a given species at time t then

$$\frac{dy}{dt}=r(1-\frac{y}{K})y,$$

where r > 0 is called the intrinsic growth rate and K the saturation level. Since y is a physical quantity, the y < 0 is ignored.

En route to studying the competing species we will need the population logistic equation.Let y(t) be the population of a given species at time t then

$$\frac{dy}{dt}=r(1-\frac{y}{K})y,$$

where r > 0 is called the intrinsic growth rate and K the saturation level.Since y is a physical quantity, the y < 0 is ignored.

$$r(1-\frac{y}{K})y=0 \Rightarrow y=K \text{ or } y=0.$$

So the equilibrium solutions are $\phi_1(t) \equiv 0, \phi_2(t) \equiv K$.

- We have y' = (1 ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K.
- (3) On the other hand, y' = (1 − ^y/_K)y < 0 when K < y and y > 0. Therefore, the solutions started from above K will be decaying downwards to y = K.

(1) First we find the equilibrium solutions: r(1 - ^y/_K)y = 0 ⇒ y = K or y = 0. So the equilibrium solutions are φ₁(t) ≡ 0, φ₂(t) ≡ K. (2) We have y' = (1 - ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K. (3) On the other hand, y' = (1 - ^x/_K)y < 0 when K < y and y > 0. Therefore, the solutions started from above K will be decayed.

y > 0. Therefore, the solutions started from above K will be decided downwards to y = K.

・ロト ・聞ト ・ヨト ・ヨトー

$$r(1-\frac{y}{K})y=0 \Rightarrow y=K \text{ or } y=0.$$

So the equilibrium solutions are $\phi_1(t) \equiv 0, \phi_2(t) \equiv K$.

- We have y' = (1 ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K.
- (3) On the other hand, y' = (1 ^y/_K)y < 0 when K < y and y > 0. Therefore, the solutions started from above K will be decaying downwards to y = K.

|山田 | 山田 | 山田 |

$$r(1-\frac{y}{K})y=0 \Rightarrow y=K \text{ or } y=0.$$

So the equilibrium solutions are $\phi_1(t) \equiv 0, \phi_2(t) \equiv K$.

- We have y' = (1 ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K.
- (3) On the other hand, y' = (1 ^y/_K)y < 0 when K < y and y > 0. Therefore, the solutions started from above K will be decaying downwards to y = K.

・ロト ・四ト ・ヨト ・ヨトー

$$r(1-\frac{y}{K})y=0 \Rightarrow y=K \text{ or } y=0.$$

So the equilibrium solutions are $\phi_1(t) \equiv 0, \phi_2(t) \equiv K$.

- We have y' = (1 ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K.
- (3) On the other hand, $y' = (1 \frac{y}{K})y < 0$ when K < y and y > 0. Therefore, the solutions started from above K will be decaying downwards to y = K.

|山田 | 小田 | (田)

$$r(1-\frac{y}{K})y=0 \Rightarrow y=K \text{ or } y=0.$$

So the equilibrium solutions are $\phi_1(t) \equiv 0, \phi_2(t) \equiv K$.

- We have y' = (1 ^y/_K)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the solutions started from below K will be growing upwards to y = K.
- (3) On the other hand, $y' = (1 \frac{y}{K})y < 0$ when K < y and y > 0. Therefore, the solutions started from above K will be decaying downwards to y = K.

|山田 | 小田 | (田)

- (4) So we observe that irrespective of the initial value the solution converges to the saturation level: lim y = K. Therefore, φ₂(t) ≡ K is the asymptotically stable solution.
- (5) On the other hand, we observe that if y is really small (i.e. close to $\phi_1 = 0$) but still positive, the solutions still move away from ϕ_1 and go towards ϕ_2 . Therefore, ϕ_1 is the asymptotically unstable solution.
- (6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

- (4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim_{t\to\infty} y = K$. Therefore, $\phi_2(t) \equiv K$ is the asymptotically stable solution.
- (5) On the other hand, we observe that if y is really small (i.e. close to φ₁ = 0) but still positive, the solutions still move away from φ₁ and go towards φ₂. Therefore, φ₁ is the asymptotically unstable solution.
 (6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

- (4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim_{t\to\infty} y = K$. Therefore, $\phi_2(t) \equiv K$ is the asymptotically stable solution.
- (5) On the other hand, we observe that if y is really small (i.e. close to $\phi_1 = 0$) but still positive, the solutions still move away from ϕ_1 and go towards ϕ_2 . Therefore, ϕ_1 is the asymptotically unstable solution.
- (6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

- (4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim_{t\to\infty} y = K$. Therefore, $\phi_2(t) \equiv K$ is the asymptotically stable solution.
- (5) On the other hand, we observe that if y is really small (i.e. close to $\phi_1 = 0$) but still positive, the solutions still move away from ϕ_1 and go towards ϕ_2 . Therefore, ϕ_1 is the asymptotically unstable solution.
- (6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

- (4) So we observe that irrespective of the initial value the solution converges to the saturation level: $\lim_{t\to\infty} y = K$. Therefore, $\phi_2(t) \equiv K$ is the asymptotically stable solution.
- (5) On the other hand, we observe that if y is really small (i.e. close to $\phi_1 = 0$) but still positive, the solutions still move away from ϕ_1 and go towards ϕ_2 . Therefore, ϕ_1 is the asymptotically unstable solution.
- (6) Physically that the population dynamics will return to the saturation/capacity level K; the most the ecosystem can withhold.

Matlab simulation for K = 3

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Provide the regions into y' = f(y) > 0 and y' = f(y) < 0.
 We classify each φ_i as asymptotically stable if for y(t) starting close

to ϕ_i (i.e. $|y_0 - \phi_i(0)| < \varepsilon$)

$$\lim_{t\to\infty}y(t)=\phi_i$$

irrespective of whether $y_0 < \phi_i(0), y_0 > \phi_i(0)$ and **asymptotically unstable** if solutions that start close to the $\phi_i(t)$ curve, move away from it.

- 本間 と 本語 と 本語 と

2 These will separate the regions into y' = f(y) > 0 and y' = f(y) < 0.

We classify each φ_i as asymptotically stable if for y(t) starting close to φ_i (i.e. |y₀ - φ_i(0)| < ε)</p>

$$\lim_{t\to\infty}y(t)=\phi_i$$

irrespective of whether $y_0 < \phi_i(0), y_0 > \phi_i(0)$ and **asymptotically unstable** if solutions that start close to the $\phi_i(t)$ curve, move away from it.

・ロト ・聞ト ・ ヨト ・ ヨト

2 These will separate the regions into y' = f(y) > 0 and y' = f(y) < 0.

We classify each φ_i as asymptotically stable if for y(t) starting close to φ_i (i.e. |y₀ - φ_i(0)| < ε)

$$\lim_{t\to\infty}y(t)=\phi_i$$

irrespective of whether $y_0 < \phi_i(0), y_0 > \phi_i(0)$ and **asymptotically unstable** if solutions that start close to the $\phi_i(t)$ curve, move away from it.

・ロト ・聞ト ・ ヨト ・ ヨトー

2 These will separate the regions into y' = f(y) > 0 and y' = f(y) < 0.

We classify each φ_i as asymptotically stable if for y(t) starting close to φ_i (i.e. |y₀ - φ_i(0)| < ε)

$$\lim_{t\to\infty}y(t)=\phi_i$$

irrespective of whether $y_0 < \phi_i(0), y_0 > \phi_i(0)$ and **asymptotically unstable** if solutions that start close to the $\phi_i(t)$ curve, move away from it.

(曰) (圖) (圖) (圖) 三頭

Consider the autonomous equation:

$$\frac{dy}{dt} = y(2-y).$$

Identify the equilibrium solutions and classify them as stable or unstable.

イロト イポト イヨト イヨト

First we identify the equilibrium solutions:

$$rac{dy}{dt}=0 \Rightarrow \phi_1(t)\equiv 0, \phi_2(t)\equiv 2.$$

Second we check the stability close to each solution. For y > 2 we have, dy/dt < 0 and so the solution will decay towards φ₂. For y ∈ [0, 2] we have dy/dt > 0 and so the solution will increase towards φ₂. For y < 0 we have dy/dt < 0 and so the solution will decay to minus infinity.
Matlab simulation

First we identify the equilibrium solutions:

$$rac{dy}{dt}=0 \Rightarrow \phi_1(t)\equiv 0, \phi_2(t)\equiv 2.$$

Second we check the stability close to each solution. For y > 2 we have, dy/dt < 0 and so the solution will decay towards φ₂. For y ∈ [0, 2] we have dy/dt > 0 and so the solution will increase towards φ₂. For y < 0 we have dy/dt < 0 and so the solution will decay to minus infinity.
Matlab simulation

First we identify the equilibrium solutions:

$$rac{dy}{dt}=0\Rightarrow\phi_1(t)\equiv 0,\phi_2(t)\equiv 2.$$

Second we check the stability close to each solution. For y > 2 we have, dy/dt < 0 and so the solution will decay towards φ₂. For y ∈ [0, 2] we have dy/dt > 0 and so the solution will increase towards φ₂. For y < 0 we have dy/dt < 0 and so the solution will decay to minus infinity.
Matlab simulation

$$y''=f(t,y,y').$$

We call them linear non-homogeneous if

$$y'' + p(t)y' + q(t)y = g(t)$$

and linear homogeneous if g(t) = 0

$$y'' + p(t)y' + q(t)y = 0.$$

$$y''=f(t,y,y').$$

We call them linear non-homogeneous if

$$y'' + p(t)y' + q(t)y = g(t)$$

and linear homogeneous if g(t) = 0

$$y'' + p(t)y' + q(t)y = 0.$$

$$y''=f(t,y,y').$$

We call them linear non-homogeneous if

$$y'' + p(t)y' + q(t)y = g(t)$$

and linear homogeneous if g(t) = 0

$$y'' + p(t)y' + q(t)y = 0.$$

$$y''=f(t,y,y').$$

We call them linear non-homogeneous if

$$y'' + p(t)y' + q(t)y = g(t)$$

and linear homogeneous if g(t) = 0

$$y'' + p(t)y' + q(t)y = 0.$$

Consider a mass m hanging at the rest on the end of a vertical spring of length L, spring constant k and damping constant γ .

Figure: Spring mass

Let $u\!\left(t\right)$ denote the displacement from the equilibrium position. Then by Newton's law one can obtain the equation

$$mu''(t) + \gamma u'(t) + ku(t) = F(t),$$

where F(t) is any external force, which for simplicity we will assume to be zero.

Let $u\!\left(t\right)$ denote the displacement from the equilibrium position. Then by Newton's law one can obtain the equation

$$mu''(t) + \gamma u'(t) + ku(t) = F(t),$$

where F(t) is any external force, which for simplicity we will assume to be zero.

(1) Assume the solution is of the form $y(t) = e^{rt}$ then inserting into our ode we obtain:

$$mr^2 + \gamma r + k = 0,$$

which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b, γ = 5/b/ft/s and k = 6/b/ft then we obtain the roots r₁ = -2, r₂ = -3.

(3) Therefore, the general solution will be

$$u(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

(4) Further if y(0) = 0, y'(0) = 1 we obtain $c_1 = 1, c_2 = -1$:

$$u(t) = e^{-2t} - e^{-3t}.$$

(1) Assume the solution is of the form $y(t) = e^{rt}$ then inserting into our ode we obtain:

$$mr^2 + \gamma r + k = 0,$$

which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b, $\gamma = 5/b/ft/s$ and k = 6/b/ft then we obtain the roots $r_1 = -2$, $r_2 = -3$.

(3) Therefore, the general solution will be

$$u(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

(4) Further if y(0) = 0, y'(0) = 1 we obtain $c_1 = 1, c_2 = -1$:

$$u(t) = e^{-2t} - e^{-3t}.$$

米国 とくほとくほど

(1) Assume the solution is of the form $y(t) = e^{rt}$ then inserting into our ode we obtain:

$$mr^2 + \gamma r + k = 0,$$

which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b, $\gamma = 5/b/ft/s$ and k = 6/b/ft then we obtain the roots $r_1 = -2$, $r_2 = -3$.

(3) Therefore, the general solution will be

$$u(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

(4) Further if y(0) = 0, y'(0) = 1 we obtain $c_1 = 1, c_2 = -1$:

$$u(t) = e^{-2t} - e^{-3t}.$$

(本部)と 本語 と 本語を

(1) Assume the solution is of the form $y(t) = e^{rt}$ then inserting into our ode we obtain:

$$mr^2 + \gamma r + k = 0,$$

which is called the characteristic equation for our ode.

- (2) Suppose that m = 1/b, $\gamma = 5/b/ft/s$ and k = 6/b/ft then we obtain the roots $r_1 = -2$, $r_2 = -3$.
- (3) Therefore, the general solution will be

$$u(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

(4) Further if y(0) = 0, y'(0) = 1 we obtain $c_1 = 1, c_2 = -1$:

$$u(t) = e^{-2t} - e^{-3t}.$$

|山田 | 山田 | 山田 |

Spring oscillation

(1) Assume the solution is of the form $y(t) = e^{rt}$ then inserting into our ode we obtain:

$$mr^2 + \gamma r + k = 0,$$

which is called the characteristic equation for our ode.

- (2) Suppose that m = 1/b, $\gamma = 5/b/ft/s$ and k = 6/b/ft then we obtain the roots $r_1 = -2$, $r_2 = -3$.
- (3) Therefore, the general solution will be

$$u(t) = c_1 e^{-2t} + c_2 e^{-3t}.$$

(4) Further if y(0) = 0, y'(0) = 1 we obtain $c_1 = 1$, $c_2 = -1$:

$$u(t)=e^{-2t}-e^{-3t}.$$

We assume that the solution is of the form y(t) = e^{rt} (this is called making an ansatz). This gives

$$(ar^2 + br + c)e^{rt} = 0 \Rightarrow ar^2 + br + c = 0,$$

which equation is called the characteristic equation.

So to solve the above ode, it suffices to find the two roots r₁, r₂.
Then the general solution is of the form:

$$y(t)=c_1e^{r_1t}+c_2e^{r_2t}.$$

• We assume that the solution is of the form $y(t) = e^{rt}$ (this is called making an ansatz). This gives

$$(ar^2 + br + c)e^{rt} = 0 \Rightarrow ar^2 + br + c = 0,$$

which equation is called the characteristic equation.

So to solve the above ode, it suffices to find the two roots r₁, r₂.
Then the general solution is of the form:

$$y(t)=c_1e^{r_1t}+c_2e^{r_2t}.$$

• We assume that the solution is of the form $y(t) = e^{rt}$ (this is called making an ansatz). This gives

$$(ar^2 + br + c)e^{rt} = 0 \Rightarrow ar^2 + br + c = 0,$$

which equation is called the characteristic equation.

So to solve the above ode, it suffices to find the two roots r₁, r₂.
Then the general solution is of the form:

$$y(t)=c_1e^{r_1t}+c_2e^{r_2t}.$$

• We assume that the solution is of the form $y(t) = e^{rt}$ (this is called making an ansatz). This gives

$$(ar^2 + br + c)e^{rt} = 0 \Rightarrow ar^2 + br + c = 0,$$

which equation is called the characteristic equation.

- **2** So to solve the above ode, it suffices to find the two roots r_1, r_2 .
- Then the general solution is of the form:

$$y(t)=c_1e^{r_1t}+c_2e^{r_2t}.$$

Consider the IVP

$$4y'' - y = 0, y(-2) = 1, y'(-2) = -1.$$

Solve and determine long term behaviour.

æ

B ▶ < B ▶

- 一司

() We obtain the characteristic equation $4r^2 - 1 = 0 \Rightarrow r = \pm \frac{1}{2}$ and so

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 e^{-\frac{t}{2}}.$$

$$1 = c_1 e^{-1} + c_2 e$$
 and $1 = \frac{1}{2} (c_1 e^{-1} - c_2 e).$

$$y(t) = -\frac{1}{2}e^{1+\frac{t}{2}} + \frac{3}{2}e^{-\frac{t}{2}-1}.$$

We obtain the characteristic equation 4r² − 1 = 0 ⇒ r = ±¹/₂ and so the general solution will be

$$y(t)=c_1e^{\frac{t}{2}}+c_2e^{-\frac{t}{2}}.$$

② Using the initial conditions we obtain:

$$1 = c_1 e^{-1} + c_2 e$$
 and $1 = \frac{1}{2} (c_1 e^{-1} - c_2 e).$

Solving these two equations gives: c₁ = -¹/₂e, c₂ = ³/₂e⁻¹ and so the solution for our IVP is:

$$y(t) = -\frac{1}{2}e^{1+\frac{t}{2}} + \frac{3}{2}e^{-\frac{t}{2}-1}.$$

Therefore, as $t \to +\infty$ we obtain $y \to -\infty$

We obtain the characteristic equation 4r² − 1 = 0 ⇒ r = ±¹/₂ and so the general solution will be

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 e^{-\frac{t}{2}}.$$

Osing the initial conditions we obtain:

$$1 = c_1 e^{-1} + c_2 e$$
 and $1 = \frac{1}{2} (c_1 e^{-1} - c_2 e)$.

3 Solving these two equations gives: $c_1 = -\frac{1}{2}e, c_2 = \frac{3}{2}e^{-1}$ and so the solution for our IVP is:

$$y(t) = -\frac{1}{2}e^{1+\frac{t}{2}} + \frac{3}{2}e^{-\frac{t}{2}-1}.$$

Therefore, as $t \to +\infty$ we obtain $y \to -\infty$.

We obtain the characteristic equation 4r² − 1 = 0 ⇒ r = ±¹/₂ and so the general solution will be

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 e^{-\frac{t}{2}}.$$

2 Using the initial conditions we obtain:

$$1 = c_1 e^{-1} + c_2 e$$
 and $1 = \frac{1}{2} (c_1 e^{-1} - c_2 e)$.

Solving these two equations gives: $c_1 = -\frac{1}{2}e, c_2 = \frac{3}{2}e^{-1}$ and so the solution for our IVP is:

$$y(t) = -\frac{1}{2}e^{1+\frac{t}{2}} + \frac{3}{2}e^{-\frac{t}{2}-1}.$$

Interestion $y \to -\infty$. In the second second

We obtain the characteristic equation 4r² − 1 = 0 ⇒ r = ±¹/₂ and so the general solution will be

$$y(t) = c_1 e^{\frac{t}{2}} + c_2 e^{-\frac{t}{2}}.$$

Osing the initial conditions we obtain:

$$1 = c_1 e^{-1} + c_2 e$$
 and $1 = \frac{1}{2} (c_1 e^{-1} - c_2 e)$.

Solving these two equations gives: $c_1 = -\frac{1}{2}e, c_2 = \frac{3}{2}e^{-1}$ and so the solution for our IVP is:

$$y(t) = -\frac{1}{2}e^{1+\frac{t}{2}} + \frac{3}{2}e^{-\frac{t}{2}-1}.$$

• Therefore, as $t \to +\infty$ we obtain $y \to -\infty$.

Consider the IVP

$$y'' + 5y' + 6y = 0, y(0) = 2, y'(0) = 1.$$

Solve and determine long term behaviour.

æ

(日) (周) (三) (三)

• The characteristic equation is $r^2 + 5r + 6 = 0 \Rightarrow r = -2, -3$ and so

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

$$2 = c_1 + c_2$$
 and $1 = -2c_1 - 3c_2$.

$$y(t) = 7e^{-2t} - 5e^{-3t}.$$

• The characteristic equation is $r^2 + 5r + 6 = 0 \Rightarrow r = -2, -3$ and so the general solution will be:

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Using the initial conditions we obtain:

$$2 = c_1 + c_2$$
 and $1 = -2c_1 - 3c_2$.

Solving these two equations gives: c₁ = 7, c₂ = -5 and so the solution for our IVP is:

$$y(t) = 7e^{-2t} - 5e^{-3t}.$$

Solution Therefore, as $t \to +\infty$ we obtain $y \to 0$.

• The characteristic equation is $r^2 + 5r + 6 = 0 \Rightarrow r = -2, -3$ and so the general solution will be:

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Using the initial conditions we obtain:

$$2 = c_1 + c_2$$
 and $1 = -2c_1 - 3c_2$.

② Solving these two equations gives: $c_1 = 7, c_2 = -5$ and so the solution for our IVP is:

$$y(t) = 7e^{-2t} - 5e^{-3t}.$$

(a) Therefore, as $t \to +\infty$ we obtain $y \to 0$.

• The characteristic equation is $r^2 + 5r + 6 = 0 \Rightarrow r = -2, -3$ and so the general solution will be:

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Using the initial conditions we obtain:

$$2 = c_1 + c_2$$
 and $1 = -2c_1 - 3c_2$.

Solving these two equations gives: $c_1 = 7, c_2 = -5$ and so the solution for our IVP is:

$$y(t)=7e^{-2t}-5e^{-3t}.$$

③ Therefore, as $t \to +\infty$ we obtain $y \to 0$.

• The characteristic equation is $r^2 + 5r + 6 = 0 \Rightarrow r = -2, -3$ and so the general solution will be:

$$y(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Using the initial conditions we obtain:

$$2 = c_1 + c_2$$
 and $1 = -2c_1 - 3c_2$.

Solving these two equations gives: $c_1 = 7, c_2 = -5$ and so the solution for our IVP is:

$$y(t)=7e^{-2t}-5e^{-3t}.$$

Solution Therefore, as $t \to +\infty$ we obtain $y \to 0$.

Now we will show that the general solution of linear homogeneous ode is always of the form:

 $y(t)=c_1y_1+c_2y_2,$

where y_i are solutions for it that satisfy a linear independence condition that is called the **Wronskian**. Then $\{y_1, y_2\}$ will be called the **fundamental solution** because it can generate all others.

Now we will show that the general solution of linear homogeneous ode is always of the form:

$$y(t)=c_1y_1+c_2y_2,$$

where y_i are solutions for it that satisfy a linear independence condition that is called the **Wronskian**. Then $\{y_1, y_2\}$ will be called the **fundamental solution** because it can generate all others.

Now we will show that the general solution of linear homogeneous ode is always of the form:

$$y(t)=c_1y_1+c_2y_2,$$

where y_i are solutions for it that satisfy a linear independence condition that is called the **Wronskian**. Then $\{y_1, y_2\}$ will be called the **fundamental solution** because it can generate all others.

Suppose that y_1, y_2 are solutions of

$$y'' + p(t)y' + y = 0.$$

Then the family of solutions

$$y = c_1 y_1 + c_2 y_2$$

for arbitrary c_1, c_2 , includes all possible solutions if and only if there is a t_* where the Wronskian of $y_1(t_*), y_2(t_*)$ is not zero.

$$\begin{bmatrix} y_1(t_*) & y_2(t_*) \\ y'_1(t_*) & y'_2(t_*) \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} K_0 \\ K_1 \end{pmatrix}$$

$$\begin{bmatrix} y_1(t_*) & y_2(t_*) \\ y'_1(t_*) & y'_2(t_*) \end{bmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} K_0 \\ K_1 \end{pmatrix}$$

$$\begin{bmatrix} y_1(t_*) & y_2(t_*) \\ y'_1(t_*) & y'_2(t_*) \end{bmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \begin{pmatrix} \mathsf{K}_0 \\ \mathsf{K}_1 \end{pmatrix}$$

$$\begin{bmatrix} y_1(t_*) & y_2(t_*) \\ y'_1(t_*) & y'_2(t_*) \end{bmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \begin{pmatrix} \mathsf{K}_0 \\ \mathsf{K}_1 \end{pmatrix}$$

$$\begin{bmatrix} y_1(t_*) & y_2(t_*) \\ y'_1(t_*) & y'_2(t_*) \end{bmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} = \begin{pmatrix} \mathsf{K}_0 \\ \mathsf{K}_1 \end{pmatrix}$$

$$mr^2 + \gamma r + k = 0.$$

Assume that it has two distinct real roots r_1, r_2 and so we can easily check that $y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$W(e^{r_1t}, e^{r_2t}, t) = e^{(r_1+r_2)t}(r_2 - r_1) \neq 0.$$

$$mr^2 + \gamma r + k = 0.$$

Assume that it has two distinct real roots r_1, r_2 and so we can easily check that $y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$W(e^{r_1t}, e^{r_2t}, t) = e^{(r_1+r_2)t}(r_2 - r_1) \neq 0.$$

$$mr^2 + \gamma r + k = 0.$$

Assume that it has two distinct real roots r_1, r_2 and so we can easily check that $y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$W(e^{r_1t}, e^{r_2t}, t) = e^{(r_1+r_2)t}(r_2-r_1) \neq 0.$$

$$mr^2 + \gamma r + k = 0.$$

Assume that it has two distinct real roots r_1, r_2 and so we can easily check that $y_1(t) = e^{r_1 t}, y_2(t) = e^{r_2 t}$ are both solutions for this ODE. Now by computing the Wronskian we will check whether all possible solutions are of that form:

$$W(e^{r_1t}, e^{r_2t}, t) = e^{(r_1+r_2)t}(r_2-r_1) \neq 0.$$

() Assuming that $y = c_1y_1 + c_2y_2$ we obtain the following system

$$W_{matrix} = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix} = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

Then we compute the determinant of this system

$$W = det(W_{matrix}) = y_1(t_0)y'_2(t_0) - y_2(t_0)y'_1(t_0).$$

- If it is not zero, then the general solution will be of the form $y = c_1y_1 + c_2y_2$.
- If it is zero for all possible t₀, then these y₁, y₂ will not generate all solutions.

- 4 個 ト - 4 三 ト - 4 三 ト

• Assuming that $y = c_1y_1 + c_2y_2$ we obtain the following system

$$W_{matrix} = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} = \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}$$

Then we compute the determinant of this system

$$W = det(W_{matrix}) = y_1(t_0)y'_2(t_0) - y_2(t_0)y'_1(t_0).$$

- If it is not zero, then the general solution will be of the form $y = c_1y_1 + c_2y_2$.
- If it is zero for all possible t₀, then these y₁, y₂ will not generate all solutions.

• Assuming that $y = c_1y_1 + c_2y_2$ we obtain the following system

$$W_{matrix} = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} = \begin{pmatrix} y_0 \\ y'_0 \end{pmatrix}$$

2 Then we compute the determinant of this system

$$W = det(W_{matrix}) = y_1(t_0)y'_2(t_0) - y_2(t_0)y'_1(t_0).$$

- If it is not zero, then the general solution will be of the form $y = c_1y_1 + c_2y_2$.
- If it is zero for all possible t_0 , then these y_1, y_2 will not generate all solutions.

• Assuming that $y = c_1y_1 + c_2y_2$ we obtain the following system

$$W_{matrix} = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix} = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

2 Then we compute the determinant of this system

$$W = det(W_{matrix}) = y_1(t_0)y'_2(t_0) - y_2(t_0)y'_1(t_0).$$

If it is not zero, then the general solution will be of the form $y = c_1y_1 + c_2y_2$.

If it is zero for all possible t₀, then these y₁, y₂ will not generate all solutions.

() Assuming that $y = c_1y_1 + c_2y_2$ we obtain the following system

$$W_{matrix} = \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix} = \begin{pmatrix} y_0 \\ y_0' \end{pmatrix}$$

2 Then we compute the determinant of this system

$$W = det(W_{matrix}) = y_1(t_0)y'_2(t_0) - y_2(t_0)y'_1(t_0).$$

- 3 If it is not zero, then the general solution will be of the form $y = c_1y_1 + c_2y_2$.
- If it is zero for all possible t₀, then these y₁, y₂ will not generate all solutions.

The End

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト