© Autonomous equations
@ Presenting the method: Popu
@ In class example

© 2nd order equations
@ Real roots
@ Presenting the method: Sprin

Figure: Direction field for
population logistic
equation.

MAT?244 Ordinary Differential Equations 1/24



Autonomous equations

The equations of the form

dy
—_— f
™ (v)

are called autonomous. Such equations might not have explicit solutions,
but it is possible to draw qualitative solutions for them.
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Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population
logistic equation.
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Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population
logistic equation.Let y(t) be the population of a given species at time t

then

dy y
1
dt r( K)y’

where r > 0 is called the intrinsic growth rate and K the saturation
level.
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Example-Presenting the method: Population logistics

En route to studying the competing species we will need the population
logistic equation.Let y(t) be the population of a given species at time t
then

dy y
1
dt r( K)y’

where r > 0 is called the intrinsic growth rate and K the saturation
level.Since y is a physical quantity, the y < 0 is ignored.
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
So the equilibrium solutions are ¢1(t) = 0, ¢2(t) = K.
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
So the equilibrium solutions are ¢1(t) = 0, ¢2(t) = K.
(2) We havey’ = (1 - %)y >0when K>y andy >0 (y <0is
ignored).
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
So the equilibrium solutions are ¢1(t) = 0, ¢2(t) = K.
(2) We havey’ = (1 - %)y >0when K>y andy >0 (y <0is
ignored). Therefore, the solutions started from below K will be
growing upwards to y = K.
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
So the equilibrium solutions are ¢1(t) = 0, ¢2(t) = K.

(2) We havey’ = (1 - %)y >0when K>y andy >0 (y <0is
ignored). Therefore, the solutions started from below K will be
growing upwards to y = K.

(3) On the other hand, y’ = (1 — %)y < 0 when K < y and
y > 0.
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Population logistics

(1) First we find the equilibrium solutions:
r(l—%)y=0=y=Kory=0.
So the equilibrium solutions are ¢1(t) = 0, ¢2(t) = K.

(2) We havey’ = (1 - %)y >0when K>y andy >0 (y <0is
ignored). Therefore, the solutions started from below K will be
growing upwards to y = K.

(3) On the other hand, y’ = (1 — %)y < 0 when K < y and
y > 0.Therefore, the solutions started from above K will be decaying
downwards to y = K.
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: |lim y = K.
t—o0
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: tlim y = K.Therefore, ¢o(t) = K is
—00

the asymptotically stable solution.
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: tlim y = K.Therefore, ¢o(t) = K is
—00

the asymptotically stable solution.

(5) On the other hand, we observe that if y is really small (i.e. close to
¢1 = 0) but still positive, the solutions still move away from ¢; and
go towards ¢o.
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: tlim y = K.Therefore, ¢o(t) = K is
—00

the asymptotically stable solution.

(5) On the other hand, we observe that if y is really small (i.e. close to
¢1 = 0) but still positive, the solutions still move away from ¢; and
go towards ¢o.Therefore, ¢7 is the asymptotically unstable solution.
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Population logistics

(4) So we observe that irrespective of the initial value the solution
converges to the saturation level: tlim y = K.Therefore, ¢o(t) = K is
—00

the asymptotically stable solution.

(5) On the other hand, we observe that if y is really small (i.e. close to
¢1 = 0) but still positive, the solutions still move away from ¢; and
go towards ¢o.Therefore, ¢7 is the asymptotically unstable solution.

(6) Physically that the population dynamics will return to the
saturation/capacity level K; the most the ecosystem can withhold.
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Matlab simulation for K = 3
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Method formal steps

Q First we draw the curves ¢;(t) = (t, y(t)) where f(y) = 0 (called the
equilibrium solutions or critical points ).
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Method formal steps

Q First we draw the curves ¢;(t) = (t, y(t)) where f(y) = 0 (called the
equilibrium solutions or critical points ).

@ These will separate the regions into y’ = f(y) > 0 and y’ = f(y) < 0.
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Method formal steps

Q First we draw the curves ¢;(t) = (t, y(t)) where f(y) = 0 (called the
equilibrium solutions or critical points ).

@ These will separate the regions into y' = f(y) > 0 and y' = f(y) < 0.
© We classify each ¢; as asymptotically stable if for y(t) starting close
to ¢; (i.e. ‘yo — ¢,(0)| < E)
lim y(t) = ¢;

t—00
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Method formal steps

Q First we draw the curves ¢;(t) = (t, y(t)) where f(y) = 0 (called the
equilibrium solutions or critical points ).

@ These will separate the regions into y’ = f(y) >0 and y' = f(y) < 0.

© We classify each ¢; as asymptotically stable if for y(t) starting close
to ¢; (i.e. ‘yo — ¢,(0)| < E)
Jim y(t) = ¢i

irrespective of whether yp < ¢;(0), yo > ¢;(0) and asymptotically
unstable if solutions that start close to the ¢;(t) curve, move away
from it.
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In class example

Consider the autonomous equation:

Identify the equilibrium solutions and classify them as stable or unstable.
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In class example

© First we identify the equilibrium solutions:

d
d—{ — 0= 61(t) = 0, ha(t) = 2.

@ Second we check the stability close to each solution. For y > 2 we
have, % < 0 and so the solution will decay towards ¢,.
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In class example

© First we identify the equilibrium solutions:

=0= =0, =2
dt ¢1(t) = 0, ¢o(t)
Q Second we check the stability close to each solution. For y > 2 we

have, & dt < 0 and so the solution will decay towards ¢;.For y € [0, 2]

we have Zt > 0 and so the solution will increase towards ¢,.
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In class example

@ First we identify the equilibrium solutions:

dt_0:>¢1()70 ¢2()E

Q Second we check the stability close to each solution. For y > 2 we
have, & dt < 0 and so the solution will decay towards ¢;.For y € [0, 2]
we have Zt >0 and so the solution will increase towards ¢». For

y <0 we have ¢ E < 0 and so the solution will decay to minus infinity.

© Matlab simulation
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The general form of 2nd order equations is

y'="1f(t,y.y').
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The general form of 2nd order equations is
y'=1f(ty,y').
We call them linear non-homogeneous if

y'+p(t)y +a(t)y =g(t)
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The general form of 2nd order equations is
y" = f(t,y,y').
We call them linear non-homogeneous if
y'+p(t)y' +a(t)y = 8(t)
and linear homogeneous if g(t) =0

y"+p(t)y’ +q(t)y =0.

MAT?244 Ordinary Differential Equations 10 / 24



The general form of 2nd order equations is
y" = f(t,y,y').
We call them linear non-homogeneous if
y'+p(t)y' +a(t)y = 8(t)
and linear homogeneous if g(t) =0
y"+p(t)y’ +q(t)y =0.

The method of characteristic equations is for homogeneous equations and
the methods of undetermined coefficients and of variation of parameters
for homogeneous equations.
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Spring oscillation

Consider a mass m hanging at the rest on the end of a vertical spring of
length L, spring constant k and damping constant ~.

A

Puositive Direction

Figure: Spring mass
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Spring oscillation

Let u(t) denote the displacement from the equilibrium position.
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Spring oscillation

Let u(t) denote the displacement from the equilibrium position. Then by
Newton’s law one can obtain the equation

mu”(t) + 'yu/(t) + ku(t) = F(t),

where F(t) is any external force, which for simplicity we will assume to be
zero.
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Spring oscillation

(1) Assume the solution is of the form y(t) = e

MAT?244 Ordinary Differential Equations 13 /24



Spring oscillation

(1) Assume the solution is of the form y(t) = e™ then inserting into our
ode we obtain:
mr® 4+ ~yr 4k =0,

which is called the characteristic equation for our ode.
(2) Suppose that m = 1/b,y = 5lb/ft/s and k = 6/b/ft
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Spring oscillation

(1) Assume the solution is of the form y(t) = e™ then inserting into our
ode we obtain:
mr® 4+ ~yr 4k =0,
which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b,y = 5Ib/ft/s and k = 6/b/ftthen we obtain
the roots rp = —2,» = —3.
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Spring oscillation

(1) Assume the solution is of the form y(t) = e™ then inserting into our
ode we obtain:
mr® 4+ ~yr 4k =0,
which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b,y = 5Ib/ft/s and k = 6/b/ftthen we obtain
the roots rp = —2,» = —3.

(3) Therefore, the general solution will be

u(t) = cle_zt + c2e_3t.
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Spring oscillation

(1) Assume the solution is of the form y(t) = e™ then inserting into our
ode we obtain:
mr® 4+ ~yr 4k =0,

which is called the characteristic equation for our ode.

(2) Suppose that m = 1/b,y = 5Ib/ft/s and k = 6/b/ftthen we obtain
the roots rp = —2,» = —3.

(3) Therefore, the general solution will be

u(t) = cle_zt + c2e_3t.

(4) Further if y(0) =0,y’(0) = 1 we obtain ¢; =1, = —1:

u(t) = e %t — 73t
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Method formal steps

© We assume that the solution is of the form y(t) = e (this is called
making an ansatz).
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Method formal steps

© We assume that the solution is of the form y(t) = e (this is called
making an ansatz).This gives

(ar2+br+c)e't:0$ar2+br+c:0,

which equation is called the characteristic equation.
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Method formal steps

© We assume that the solution is of the form y(t) = e (this is called
making an ansatz).This gives

(ar2+br+c)e't:0$ar2+br+c:0,

which equation is called the characteristic equation.

@ So to solve the above ode, it suffices to find the two roots r, r>.
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Method formal steps

© We assume that the solution is of the form y(t) = e (this is called
making an ansatz).This gives

(ar2+br+c)e't:0$ar2+br+c:0,

which equation is called the characteristic equation.
@ So to solve the above ode, it suffices to find the two roots r, r>.

© Then the general solution is of the form:

y(t) = et + et
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In class example

Consider the IVP

4y" —y=0,y(-2) =1y (-2) = 1L

Solve and determine long term behaviour.
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In class example

@ We obtain the characteristic equation 4r> —1 =0 = r = :t%
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In class example

@ We obtain the characteristic equation 4r> —1 =0 = r = :t% and so
the general solution will be
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In class example

@ We obtain the characteristic equation 4r> —1 =0 = r = :t% and so
the general solution will be

_t
2-

y(t) = cre? + ce

@ Using the initial conditions we obtain:

l=ce '+ cgeandl= (cle_1 — c2e).

N
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In class example

@ We obtain the characteristic equation 4r> —1 =0 = r = :t% and so
the general solution will be

_t
2-

y(t) = cre? + ce

@ Using the initial conditions we obtain:

1
l=ce '+ cgeandl= §(c1e_1 — c2e).
© Solving these two equations gives: ¢; = —%e, o = %e_l and so the
solution for our IVP is:
1 143 3 1
t) = ——e" "2 4 —e 2
y(t) = =3 5
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In class example

@ We obtain the characteristic equation 4r> —1 =0 = r = :t% and so
the general solution will be

_t
2-

y(t) = cre? + ce

@ Using the initial conditions we obtain:

1
l=ce '+ cgeandl= §(c1e_1 — c2e).
© Solving these two equations gives: ¢; = —%e, o = %e_l and so the
solution for our IVP is:
1 1+4 3 _t_q
t) = ——e" "2+ —-e 2 .
y(t) = =3 5

@ Therefore, as t — 400 we obtain y — —oc.



In class example

Consider the IVP
y" +5y +6y=0,y(0) =2,y/(0) = 1.

Solve and determine long term behaviour.
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In class example

@ The characteristic equation is r> +5r+6 =0=r = —2, -3
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In class example

@ The characteristic equation is r> +5r+6 =0 = r = —2, -3 and so
the general solution will be:

y(t) =cre™® + et
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In class example

@ The characteristic equation is r> +5r+6 =0 = r = —2, -3 and so
the general solution will be:

y(t) = cre ?t 4+ e 3t
Using the initial conditions we obtain:
=c+candl=-2¢ —3c.
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In class example

@ The characteristic equation is r> +5r+6 =0 = r = —2, -3 and so
the general solution will be:

y(t) = cre ?t 4+ e 3t
Using the initial conditions we obtain:
=c+candl=-2¢ —3c.
@ Solving these two equations gives: ¢; = 7,¢c = —b and so the

solution for our IVP is:

y(t) =7e % —5e 3.
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In class example

@ The characteristic equation is r> +5r+6 =0 = r = —2, -3 and so
the general solution will be:

y(t) = cre ?t 4+ e 3t
Using the initial conditions we obtain:

2=c1+cand 1= —-2¢ — 30.

@ Solving these two equations gives: ¢; = 7,¢c = —b and so the
solution for our IVP is:

y(t) =7e % —5e 3.

© Therefore, as t — 400 we obtain y — 0.

MAT?244 Ordinary Differential Equations



General solution

Now we will show that the general solution of linear homogeneous ode is
always of the form:

)/(t) =cay1 + Gy,
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General solution

Now we will show that the general solution of linear homogeneous ode is

always of the form:
)/(t) =cay1 + Gy,

where y; are solutions for it that satisfy a linear independence condition
that is called the Wronskian.
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General solution

Now we will show that the general solution of linear homogeneous ode is
always of the form:

y(t) = an + ays,
where y; are solutions for it that satisfy a linear independence condition

that is called the Wronskian. Then {y1, y2} will be called the
fundamental solution because it can generate all others.
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Generalized solution

Suppose that yy, y» are solutions of
y'+p(t)y'+y=0.
Then the family of solutions
y=ayi+ay

for arbitrary c1, ¢2, includes all possible solutions if and only if there is a t,
where the Wronskian of yl(t*),yz(t*) is not zero.
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Consider general solution ¢(t) of the above ODE. We will show that there
are constants a,b s.t. qb(t) = ay1 + bys.
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Consider general solution ¢(t) of the above ODE. We will show that there
are constants a,b s.t. qb(t) = ay; + by».Let t, be the time for which

W (y1,y2,t) # 0 and let Ko = ¢(t.), K1 = ¢/ (t.).
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Consider general solution ¢(t) of the above ODE. We will show that there
are constants a,b s.t. qb(t) = ay; + by».Let t, be the time for which
W (y1,y2,t) # 0 and let Ko = ¢(t), K1 = ¢/(t.). Then

i) ] ()= G)

has a solution (7) because the matrix is invertible.
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Consider general solution ¢(t) of the above ODE. We will show that there
are constants a,b s.t. qb(t) = ay; + by».Let t, be the time for which

W (y1,y2,t) # 0 and let Ko = ¢(t), K1 = ¢/(t.). Then

it el ()= ()
vi(t) ya(t)| \b Ki

has a solution (7) because the matrix is invertible.So if
C(t) = ayl(t) + byz(t) we have C(t*) = KO,C’(t*) = Kj.
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Consider general solution ¢(t) of the above ODE. We will show that there
are constants a,b s.t. qb(t) = ay; + by».Let t, be the time for which
W (y1,y2,t) # 0 and let Ko = ¢(t), K1 = ¢/(t.). Then

B9 2410~ (2)
has a solution (7) because the matrix is invertible.So if
C(t) = ayl(t) + byz(t) we have C(t*) = KO,C’(t*) = Ki. Therefore, the
existence and uniqueness theorem for 2nd order odes gives us
(;S(t) = C(t) =ay; (t) + byz(t) for all t.
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Going back to the spring example, the characteristic equation is

mr® +yr+ k =0.
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Going back to the spring example, the characteristic equation is
mr® +yr+ k =0.

Assume that it has two distinct real roots r1, r» and so we can easily check
that y1 (t) = e*, y»(t) = e"* are both solutions for this ODE.
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Going back to the spring example, the characteristic equation is
mr® +yr+ k =0.

Assume that it has two distinct real roots r1, r» and so we can easily check
that y1(t) = %, y»(t) = e"* are both solutions for this ODE. Now by
computing the Wronskian we will check whether all possible solutions are
of that form:

W (et et t) = e(rlJrrz)t(rz —n) #0.
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Going back to the spring example, the characteristic equation is
mr® +yr+ k =0.

Assume that it has two distinct real roots r1, r» and so we can easily check
that y1(t) = %, y»(t) = e"* are both solutions for this ODE. Now by
computing the Wronskian we will check whether all possible solutions are
of that form:

W (et et t) = e(rlJrrz)t(rz —n) #0.

Therefore, all solutions will be of the form: y = ciet + cye™t.
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Method formal steps

Consider arbitrary initial condition be y(tg) = yo.
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Method formal steps

Consider arbitrary initial condition be y(tg) = yo.
@ Assuming that y = c1y1 + cy» we obtain the following system

Wnatrix = [yl(to) Y2(t0)] _ (YO)

vi(to) v5(to) 7
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Method formal steps

Consider arbitrary initial condition be y(tg) = yo.
@ Assuming that y = c1y1 + cy» we obtain the following system

Wnatrix = [yl(to) Y2(t0)] _ (YO)

vi(to) v5(to) 7

@ Then we compute the determinant of this system
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Method formal steps

Consider arbitrary initial condition be y(tg) = yo.
@ Assuming that y = c1y1 + cy» we obtain the following system

Wnatrix = [yl(to) Y2(t0)] _ (YO)

vi(to) v5(to) 7

@ Then we compute the determinant of this system

W = det(Wnmatrix) = y1(to) y2(to) — y2(to)y1 (to)-

@ If it is not zero, then the general solution will be of the form
Yy =cy1 + ay.
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Method formal steps

Consider arbitrary initial condition be y(tg) = yo.
@ Assuming that y = c1y1 + cy» we obtain the following system

Wnatrix = [yl(to) Y2(t0)] _ (YO)

vi(to) v5(to) 7

@ Then we compute the determinant of this system

W = det(Wnmatrix) = y1(to) y2(to) — y2(to)y1 (to)-

@ If it is not zero, then the general solution will be of the form
Yy =cy1 + ay.

@ If it is zero for all possible tg, then these y1, y» will not generate all
solutions.
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The End

MAT?244 Ordinary Diff

ntial Equations 24 / 24



	Autonomous equations
	Presenting the method: Population logistics
	In class example

	2nd order equations
	Real roots
	Presenting the method: Spring oscillation


