Week 1

Exercises marked $\left(^{*}\right)$ are harder and will not appear on quizzes. But variations of them may appear on the midterm. Exercises marked $\left({ }^{* *}\right)$ are above the required level and will not appear on midterms or final exam. Most of the exercises are in the main textbook.

- Linear integrating factor (2.1)

- Find the general solution and use it to determine how solutions behave as $t \rightarrow+\infty$

1. $y^{\prime}+3 y=t+e^{-2 t}$
2. $y^{\prime}+y=t e^{-t}+1$,
3. $\left(^{*}\right) y^{\prime}+\frac{1}{t} y=3 \cos (2 t), t>0$

- Find the general solution and use it to determine the asymptotic behavior for different values of a

1. $y^{\prime}-\frac{1}{2} y=2 \cos (t), y(0)=a$ as $t \rightarrow+\infty$,
2. (*) $t y^{\prime}+(t+1) y=2 t e^{-t}, y(1)=a, 0<t$ as $t \rightarrow 0$.
3. (*)A rock contains two radioactive isotopes R_{1}, R_{2} with R_{1} decaying into R_{2} with rate $5 e^{-20 t} \mathrm{~kg} / \mathrm{sec}$. So if $y(t)$ is the total mass of R_{2}, we obtain:

$$
\begin{aligned}
\frac{d y}{d t} & =\text { rate of creation of } R_{2}-\text { rate of decay of } R_{2} \\
& =5 e^{-20 t}-k y(t),
\end{aligned}
$$

where $k>0$ is the decay constant for R_{2}. Also assume that $y(0)=40 \mathrm{~kg}$.
4. $\left(^{*}\right)$ For demand $D(P)=2-2 P(t)$ and supply $S(P)=1+P(t)$ let

$$
\frac{d P}{d t}=(D(P)-S(P))
$$

Find $P(t)$ and its limit for $t \rightarrow+\infty$.

- Separable (2.2):

- a)Find the solution of the given initial value problem and b)determine the interval in which the solution is defined:

1. $y^{\prime}=(1-2 x) y^{2}, y(0)=-1 / 6$,
2. $y^{\prime}=(1-2 x) / y, y(1)=-2$,
3. $\left(^{*}\right) \frac{d r}{d \theta}=r^{2} / \theta, r(1)=2$,
4. $\left({ }^{*}\right) y^{\prime}=2 x /(1+2 y), y(2)=0$,
5. $\left(^{*}\right) y^{\prime}=y^{2}+1, y(0)=0$ (only the interval containing 0).

- a)Find the solution of the given initial value problem and b)determine the behaviour as $t \rightarrow+\infty$:

1. $y^{\prime}=\cos ^{2}(y), y(0)=2$,
2. $\left(^{*}\right) y^{\prime}=t \frac{y(4-y)}{3}, y(0)=1$.

- (*) Homogeneous equations problem 2.2-(25): Consider the equation

$$
\frac{d y}{d x}=\frac{y-4 x}{x-y} .
$$

1. Rewrite it as

$$
\frac{d y}{d x}=\frac{(y / x)-4}{1-(y / x)}
$$

and set $\nu(x):=y / x$ to get

$$
\nu+x \frac{d \nu}{d x}=\frac{\nu-4}{1-\nu} \Rightarrow x \frac{d \nu}{d x}=\frac{\nu^{2}-4}{1-\nu}
$$

2. This is a separable equation. Solve to find an implicit solution for ν and then plug in y to get:

$$
|y+2 x|^{3}|y-2 x|=c .
$$

- $\left(^{*}\right)$ In the capital-labor ratio example assume instead that the labour grows polynomially in time ie. $L=b(t+a)^{p}$ for positive constants b, a, p. The differential equation we get is:

$$
K^{\prime}=s X=c(t+a)^{p \alpha} K^{1-\alpha},
$$

where where $c:=A s b^{\alpha}$. Solve the equation and obtain the limit of the capital-labor ratio $\frac{K}{L}$ as $t \rightarrow+\infty$. What does that mean for the output per worker ratio X / L ?

