Outline

(1) Real roots
(2) Complex
(3) Repeated eigenvalues

Figure:

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\begin{array}{cc}
-1 & 2 \\
4 & -3
\end{array}\right] \mathbf{x}+\binom{-1}{-1}
$$

The corresponding eigenvectors are $\boldsymbol{\xi}_{1}=\binom{1}{1}$ and $\boldsymbol{\xi}_{2}=\binom{-1}{2}$. So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{-1}{2} e^{-5 t}+\binom{1}{1}
$$

Solve and sketch:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \mathbf{x}+\binom{-1}{-3}
$$

For matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ here are the general formulas for its eigenvalues and eigenvectors:

$$
\lambda=\frac{\operatorname{Tr}(A)}{2} \pm \frac{1}{2} \sqrt{\operatorname{Tr}(A)^{2}-4 \operatorname{det}(A)}
$$

and if $c \neq 0$ (cf. for other cases see notes) then

$$
\boldsymbol{\xi}_{1}=\binom{\lambda_{1}-d}{c} \text { and } \boldsymbol{\xi}_{2}=\binom{\lambda_{2}-d}{c}
$$

The corresponding eigenvectors are $\boldsymbol{\xi}_{1}=\binom{1}{3}$ and $\boldsymbol{\xi}_{2}=\binom{1}{1}$. So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{3} e^{-t}+c_{2}\binom{1}{1} e^{t}+\binom{1}{3}
$$

Solve and sketch:

$$
\frac{\mathrm{dx}}{\mathrm{dt}}=\left[\begin{array}{cc}
4 & -3 \\
8 & -6
\end{array}\right] \mathbf{x} .
$$

For matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ here are the general formulas for its eigenvalues and eigenvectors:

$$
\lambda=\frac{\operatorname{Tr}(A)}{2} \pm \frac{1}{2} \sqrt{\operatorname{Tr}(A)^{2}-4 \operatorname{det}(A)}
$$

and if $c \neq 0$ (cf. for other cases see notes) then

$$
\boldsymbol{\xi}_{1}=\binom{\lambda_{1}-d}{c} \text { and } \boldsymbol{\xi}_{2}=\binom{\lambda_{2}-d}{c}
$$

The corresponding eigenvectors are $\boldsymbol{\xi}_{1}=\binom{1}{2}$ and $\boldsymbol{\xi}_{2}=\binom{3}{4}$. So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{2} e^{-2 t}+c_{2}\binom{3}{4}
$$

Consider the system

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
a & 1 \\
-1 & 0
\end{array}\right] \mathrm{x}
$$

$$
\begin{aligned}
x_{1}(t) & =\xi_{1} e^{(\lambda+i \mu) t} \\
& =(a+i b) e^{\lambda t}(\cos (\mu t)+i \sin (\mu t)) \\
& =e^{\lambda t}(a \cos (\mu t)-b \sin (\mu t))+i e^{\lambda t}(b \cos (\mu t)+a \sin (\mu t)) .
\end{aligned}
$$

similarly for x_{2}.

$$
x=c_{1} e^{\lambda t}(a \cos (\mu t)-b \sin (\mu t))+c_{2} e^{\lambda t}(b \cos (\mu t)+a \sin (\mu t))
$$

We first compute its eigenvalues: $\lambda^{2}-a \lambda+1=0 \Rightarrow \lambda=\frac{a \pm \sqrt{a^{2}-4}}{2}$. So to explore the complex case we assume that $a^{2}<4$. Let ξ_{1}, ξ_{2} be the corresponding eigenvectors: $\xi_{1}=\binom{\lambda_{1}}{-1}, \xi_{2}=\binom{\lambda_{2}}{-1}$

Solve and sketch:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-1 & -4 \\
1 & -1
\end{array}\right] \mathbf{x}, \mathbf{x}(0)=\binom{1}{1}
$$

We first compute its eigenvalues: $\lambda_{1}=-1+2 i, \lambda_{1}=-1-2 i$ Let ξ_{1}, ξ_{2} be the corresponding eigenvectors: $\xi_{1}=\binom{\lambda_{1}}{-1}=\binom{2 i}{1}, \xi_{2}=\binom{\lambda_{2}}{-1}=\binom{-2 i}{1}$

Solve and sketch for the

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right] \mathrm{x}
$$

different values of a that give different behaviour:

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
a & 1 \\
-1 & a
\end{array}\right] \mathbf{x}, \mathbf{x}(0)=\binom{1}{1}
$$

We first compute its eigenvalues: $\lambda=a-i, a+i$.
Let ξ_{1}, ξ_{2} be the corresponding eigenvectors: $\xi_{1}=\binom{\lambda_{1}}{-1}=\binom{i}{1}, \xi_{2}=\binom{\lambda_{2}}{-1}=\binom{-i}{1}$.

Repeated eigenvalues

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right] \mathrm{x}
$$

Repeated eigenvalues

(1) We first find the eigenvalues:

$$
\lambda=\frac{\operatorname{Tr}(\mathbf{A})}{2} \pm \frac{1}{2} \sqrt{\operatorname{Tr}(\mathbf{A})^{2}-4 \operatorname{det}(\mathbf{A})}=2
$$

and so we have a repeated eigenvalue.
(2) Second, we find the corresponding eigenvector:

$$
\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \boldsymbol{\xi}=\binom{\xi_{1}}{\xi_{2}}=\binom{1}{-1}
$$

(1) Assuming the solution is of the form $\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}$ and plugging into our ODE we obtain:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi} \Longrightarrow\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]\binom{\eta_{1}}{\eta_{2}}=\binom{1}{-1}
$$

Solving this system gives us:

$$
\eta_{1}+\eta_{2}=-1 \Longrightarrow \boldsymbol{\eta}=\binom{k}{-k-1}=k\binom{1}{-1}+\binom{0}{-1},
$$

where k is any real number. We can rewrite $\boldsymbol{\eta}$ as:

$$
\boldsymbol{\eta}=k \boldsymbol{\xi}+\binom{0}{-1}
$$

Therefore, the general solution is:

$$
\begin{aligned}
\mathbf{x} & =c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2} \\
& =c_{1} e^{2 t} \boldsymbol{\xi}+c_{2}\left(\boldsymbol{\xi} e^{2 t} \cdot t+\boldsymbol{\eta} e^{2 t}\right) \\
& =c_{1} e^{2 t} \boldsymbol{\xi}+c_{2}\left[\boldsymbol{\xi} e^{2 t} \cdot t+\left\{k \boldsymbol{\xi}+\binom{0}{-1}\right\} e^{2 t}\right] \\
& =e^{2 t}\left[\left(c_{1}+k c_{2}\right)\binom{1}{-1}+c_{2}\left\{\binom{1}{-1} t+\binom{0}{-1}\right\}\right] .
\end{aligned}
$$

The vector $\xi_{1}=\binom{1}{-1}$ dominates the long term behaviour due to the extra term $\binom{1}{-1} t$ (provided we do not choose $c_{2}=0$). So we see that, essentially, all solutions are diverging away from the linear span of $\binom{1}{-1}$.

We first find the repeated eigenvalue λ and its eigenvector $\boldsymbol{\xi}$. So the first term of the solution will be $\mathbf{x}_{1}:=\boldsymbol{\xi} e^{\lambda t}$.

For the second term we make the ansatz

$$
\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}
$$

Plugging this into our system $\mathbf{x}^{\prime}(t)=\mathbf{A x}(t)$ we obtain the stystem:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi}
$$

By determining $\boldsymbol{\eta}$ we obtain:

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1} \boldsymbol{\xi} e^{\lambda t}+c_{2}\left(\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}\right) .
$$

The End

