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1 Inverse of a matrix
Given a 2× 2 matrix A we will sometimes have to compute its inverse. To do this efficiently we
provide an algorithm which gives the formula for the inverse of A. We recall that if v =

(
v1
v2

)
then v⊥ =

(
v2
−v1

)
is its perpendicular vector.

1.1 Formal steps

1. We are given a 2× 2 matrix A which takes the form

A = [ξ η]

where ξ and η are vectors in R2. We compute ξ⊥ and η⊥.

2. Next we compute ξ · η⊥.

3. Finally, we form the inverse matrix

A−1 =
1

ξ · η⊥

[
(η⊥)T

−(ξ⊥)T

]
.

1.2 Example of the method

1. Consider the matrix
A =

(
3 5

2 −7

)
for which ξ =

(
3
2

)
and η =

(
5
−7

)
. We compute that ξ⊥ =

(
2
−3

)
and η⊥ =

(−7
−5

)
.

2. ξ · η⊥ = −31.

3. Finally we obtain that

A−1 =
−1
31

(−7 −5
−2 3

)
.

We can check that this is correct by multipling A−1 and A to obtain I2.
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1.3 Reasoning behind the method

This algorithm comes from the following reasoning. If we have a matrix A and we want to find
its inverse A−1 then we require that(

1 0

0 1

)
= A−1A =

(
αT

βT

)
(ξ η) =

(
α · ξ α · η
β · ξ β · η

)
.

Comparing both sides we see that we must have α · η = 0 as well as β · ξ = 0. The easiest way
to achieve this is to choose α = ηT and β = ξT. This, however, ignores that we need α · ξ = 1
and β · η = 1. Fortunately, with the choices α = η⊥ and β = ξ⊥ we have

α · ξ = η⊥ · ξ = ξ1η2 − ξ2η1

as well as
β · η = ξ⊥ · η = ξ2η1 − ξ1η2

which differ by a factor of −1. If we now choose β = −ξ⊥ (essentially multiplying both sides of
the last computation by −1) then we have α · ξ = β · η. Thus, the matrix B defined by

B =

(
(η⊥)T

−(ξ)T

)

satisfies

BA =

(
ξ · η⊥ 0

0 ξ · η⊥

)
= ξ · η⊥

(
1 0

0 1

)
.

Dividing both sides by ξ · η⊥ we get that( 1

ξ · η⊥
B
)
A =

(
1 0

0 1

)
which gives us the inverse matrix.

2 Exponential of matrix

2.1 Identities and formulas

Proposition 2.1. We let etA denote the unique1 matrix which solves

X′(t) = AX(t), X(0) = In.

I claim that, in this case, etA satisfies:

1. e0 = In

2. The unique solution to the problem X′(t) = AX(t), X(0) = X0 is etAX0.

3. AetA = etAA

4. The exponential of matrix is invertible and we have that (etA)−1 = e−tA

5. If AB = BA then et(A+B) = etAetB

6. (etA)T = etA
T

1This is due to the uniqueness theorem for linear matrix ODEs.
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7. If T is an invertible matrix then etT−1AT = T−1etAT.

8. If A2 = A then etA = In + (et − 1)A.

9. Formulas of etA for n = 2:

(a) If the eigenvalues are distinct then

exp{tA} := eλ1t
1

λ1 − λ2
(A− λ2I2)− eλ2t

1

λ1 − λ2
(A− λ1I2).

(b) If λ = λ1 = λ2 then
exp{tA} := eλtI2 + eλtt(A− λI2).

(c) If λ1 = a+ ib, λ2 = a− ib then

exp{tA} := eat

b
{b cos(bt)I2 + sin(bt)(A− aI2)}.

Proof.

1. By definition we have
e0 = e0A = X(0) = In.

2. Let Y(t) = etAX0. Then,

Y′(t) =
(
etAX0

)′
= AetAX0 = AY(t)

and
Y(0) = e0X0 = InX0 = X0.

By uniqueness of solutions of linear matrix IVPs we have that Y is the only solution to
this matrix IVP.

3. Let Y(t) = AetA. Observe that

Y′(t) = A
(
etA
)′
= A

(
AetA

)
= AY(t)

and
Y(0) = Ae0 = AIn = A.

By 2 we must have
AetA = Y(t) = etAA

for all t.

4. Let F(t) = etAe−tA for t ∈ R. Observe that

F ′(t) = (etA)′e−tA + etA(e−tA)′ = AetAe−tA − etAAe−tA = AetAe−tA −AetAe−tA = 0.

where I have used 3. Thus, F is constant. In particular, we have, by evaluating at t = 0

F(0) = e0e0 = InIn = In.

By reversing the roles of etA and e−tA we obtain the desired conclusion.

5. For this proof we let X(t) = etA, Y(t) = etB, and Z(t) = et(A+B). Define G(t) =
Z(t)−X(t)Y(t). Differentiating we obtain

G ′(t) = Z′(t)−X′(t)Y(t)−X(t)Y′(t)
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= (A+B)Z(t)−AX(t)Y(t)−X(t)BY(t).

Note that if we can show that X(t)B = BX(t) then we get

= (A+B)Z(t)−AX(t)Y(t)−X(t)BY(t)

= (A+B)Z(t)−AX(t)Y(t)−BX(t)Y(t)

= (A+B)Z(t)− (A+B)X(t)Y(t)

= (A+B)(Z(t)−X(t)Y(t))

= (A+B)G(t).

We also have
G(0) = Z(0)−X(0)Y(0) = In − InIn = In − In = 0.

By 2 we have
G(t) = et(A+B)0 = 0.

Thus,
et(A+B) − etAetB = Z(t)−X(t)Y(t) = 0

as we wanted. Now we show that X(t)B = BX(t). Observe that

(BX(t))′ = BX′(t) = BAX(t) = ABX(t) = A(BX(t))

and
BX(0) = BIn = B.

By 2 we must have
BX(t) = X(t)B

for all t ∈ R.
6. Observe that by 3 we have

(etA)′ = AetA = etAA.

By transposing the previous equation we have

((etA)T)′ = AT(etA)T.

Observe also that (e0A)T = ITn = In. Hence, by definition we have

etA
T
= (etA)T.

7. Observe that

(T−1etAT)′ = T−1(etA)′T = T−1AetAT = (T−1AT)(T−1etAT )

and T−1eoAT = T−1InT = T−1T = In. Thus, by definition we have

etT
−1AT = T−1etAT.

8. We have that
(etA)′ = AetA

and so
(AetA)′ = A(etA)′ = A2etA = AetA.

Also Ae0A = A so by 2 we have
AetA = etA.

Observe that
(In −A)A = A−A2 = 0.
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This means that

((In −A)etA)′ = (In −A)(etA)′ = (In −A)AetA = 0.

We conclude that (In −A)etA is constant and equal to In −A at t = 0. Thus,

etA = AetA + (In −A)etA = etA+ (In −A) = In + (et − 1)A.

9. (a)
(b)
(c)

We observe that identity 7 allows for easier computation of the matrix exponential
when the matrix A is diagonalizable. To see this, observe that in this case we can find an
invertible matrix T and a diagonal matrix D such that T−1AT = D. Identity 7 gives

etD = et·T
−1AT = T−1etAT

which means
etA = TetDT−1.

Note that solving the vector ODE x′ = Dx is much simpler since D is a diagonal matrix.

2.2 Liouville’s Formula

Proposition 2.2. Suppose A : R→Mn×n(R) is a matrix-valued function. Then

d

dt
(det(A(t))) =

n∑
i=1

det(Ai(t))

where

Ai(t) =


A1,1(t) A1,2(t) · · · A1,n(t)
A2,1(t) A2,2(t) · · · A2,n(t)

...
... . . . ...

A′i,1(t) A′i,2(t) · · · A′i,n(t)
...

... . . . ...
An,1(t) An,2(t) · · · An,n(t)


for i = 1, . . . , n.

Proof. We proceed by induction. For n = 1, since A(t) will be a 1× 1 matrix then det(A(t)) =
A1,1(t) and so

d

dt
(det(A(t))) = A′1,1(t) =

1∑
i=1

det(Ai(t))

where the last equality follows from the fact that there is only one row to take the derivative of
and

det(A1(t)) = det(A′1,1(t)) = A′1,1(t).

Now we presume this formula holds for n− 1, n ≥ 2 and we show it holds for n. Observe that

det(A(t)) =
n∑
i=1

(−1)1+iA1,i(t) det(Ã1,i(t))
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where Ã1,i(t) denotes the matrix, of size (n− 1)× (n− 1) obtained from A(t) which has row 1
and column i removed. Differentiating and using the induction hypothesis we obtain

d

dt
(det(A(t))) =

n∑
i=1

(−1)1+iA′1,i(t) det( ˜A1,i(t)) +
n∑
i=1

(−1)1+iA1,i(t)
d

dt
(det(Ã1,i(t)))

=
n∑
i=1

(−1)1+iA′1,i(t) det( ˜A1,i(t)) +
n∑
i=1

(−1)1+iA1,i(t)
n−1∑
j=1

det(Ã
j

1,i(t))

= det(A1(t)) +
n∑
i=1

(−1)1+iA1,i(t)
n−1∑
j=1

det(Ã
j

1,i(t))

= det(A1(t)) +
n−1∑
j=1

n∑
i=1

(−1)1+iA1,i(t) det(Ã
j

1,i(t))

= det(A1(t)) +
n−1∑
j=1

det(Aj+1(t))

= det(A1(t)) +
n∑
j=2

det(Aj(t))

=
n∑
j=1

det(Aj(t))

Proposition 2.3. Let X(t) denote the matrix of fundamental solutions to the problem

x′(t) = Ax(t)

where x(t) is an n-vector. Then

det(X(t)) = det(X(0))et·tr(A).

As a consequence we have
det(etA) = et·tr(A).

Proof. We first notice that by proposition 2.2 we have

d

dt
(X(t)) =

n∑
i=1

det(Xi(t)).

Observe that

Xi(t) =


X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...

X ′i,1(t) X ′i,2(t) · · · X ′i,n(t)
...

... . . . ...
Xn,1(t) Xn,2(t) · · · Xn,n(t)



=


X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...∑n

j=1Ai,jXj,1(t)
∑n

j=1Ai,jXj,2(t) · · ·
∑n

j=1Ai,jXj,n(t)
...

... . . . ...
Xn,1(t) Xn,2(t) · · · Xn,n(t)

.
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Recall that subtracting multiples of one row from another does not change the value of the
determinant. So subtracting Ai,1 times row 1 of X(t) from row i and then subtracting A2,i times
row 2 of X(t) from row i and so on does not change the value of the determinant but leads us to

det(Xi(t)) = det


X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...

Ai,iXi,1(t) Ai,iXi,2(t) · · · Ai,iXi,n(t)
...

... . . . ...
Xn,1(t) Xn,2(t) · · · Xn,n(t)

 = Ai,i det(X(t)).

The above conclusions are true for each i = 1, . . . , n. We conclude that

d

dt
(det(X(t))) =

n∑
i=1

Ai,i det(X(t)) = tr(A) det(X(t)).

We conclude that
det(X(t)) = Cet·tr(A).

Evaluating at t = 0 gives
C = det(X(0)).

To obtain the second identity notice that the first identity can be written as

det(X(t)(X(0))−1) = et·tr(A)

and notice that X(t)(X(0))−1 solves

X′(t) = AX(t), X(0) = In.

2.3 Remarks

The construction of the matrix exponential given in section 2 is not the standard development.
Generally, one defines this matrix through the use of infinite series of matrices. It is then a
theorem that the matrix exponential solves the matrix ODE X′ = AX with X(0) = In. The
construction given in section 2 is probably not new though the authors of these notes have no
citations for this technique. It is, perhaps, worth noting that many of the standard identities
involving the exponential matrix can be obtained from 2.1 and 2.2 by simply setting t = 1.
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