Outline

(1) Repeated eigenvalues
(2) nonhomogeneous linear first ord

Figure: repeated eigenvalue

Repeated eigenvalues

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right] \mathrm{x}
$$

Repeated eigenvalues

1 We first find the eigenvalues:

$$
\lambda=\frac{\operatorname{Tr}(\mathbf{A})}{2} \pm \frac{1}{2} \sqrt{\operatorname{Tr}(\mathbf{A})^{2}-4 \operatorname{det}(\mathbf{A})}=2
$$

and so we have a repeated eigenvalue.
2 Second, we find the corresponding eigenvector:

$$
\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]\binom{\xi_{1}}{\xi_{2}}=\binom{0}{0} \Longrightarrow \boldsymbol{\xi}=\binom{\xi_{1}}{\xi_{2}}=\binom{1}{-1}
$$

(1) Assuming that $\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t$ fails because it implies $\xi=0$.

3 Assuming the solution is of the form $\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}$ and plugging into our ODE we obtain:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi} \Longrightarrow\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]\binom{\eta_{1}}{\eta_{2}}=\binom{1}{-1}
$$

Solving this system gives us:

$$
\eta_{1}+\eta_{2}=-1 \Longrightarrow \boldsymbol{\eta}=\binom{k}{-k-1}=k\binom{1}{-1}+\binom{0}{-1},
$$

where k is any real number. We can rewrite $\boldsymbol{\eta}$ as:

$$
\boldsymbol{\eta}=k \boldsymbol{\xi}+\binom{0}{-1}
$$

Therefore, the general solution is:

$$
\begin{aligned}
\mathbf{x} & =c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2} \\
& =c_{1} e^{2 t} \boldsymbol{\xi}+c_{2}\left(\boldsymbol{\xi} e^{2 t} \cdot t+\boldsymbol{\eta} e^{2 t}\right) \\
& =c_{1} e^{2 t} \boldsymbol{\xi}+c_{2}\left[\boldsymbol{\xi} e^{2 t} \cdot t+\left\{k \boldsymbol{\xi}+\binom{0}{-1}\right\} e^{2 t}\right] \\
& =e^{2 t}\left[\left(c_{1}+k c_{2}\right)\binom{1}{-1}+c_{2}\left\{\binom{1}{-1} t+\binom{0}{-1}\right\}\right]
\end{aligned}
$$

The vector $\xi_{1}=\binom{1}{-1}$ dominates the long term behaviour due to the extra term $\binom{1}{-1} t$ (provided we do not choose $c_{2}=0$). So we see that, essentially, all solutions are diverging away from the linear span of $\binom{1}{-1}$.

(1) We first find the repeated eigenvalue λ and its eigenvector $\boldsymbol{\xi}$. So the first term of the solution will be $\mathrm{x}_{1}:=\boldsymbol{\xi} e^{\lambda t}$.
(1) We first find the repeated eigenvalue λ and its eigenvector $\boldsymbol{\xi}$. So the first term of the solution will be $\mathbf{x}_{1}:=\xi e^{\lambda t}$.
(2) For the second term we make the ansatz

$$
\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}
$$

(1) We first find the repeated eigenvalue λ and its eigenvector $\boldsymbol{\xi}$. So the first term of the solution will be $\mathrm{x}_{1}:=\boldsymbol{\xi} e^{\lambda t}$.
(2) For the second term we make the ansatz

$$
\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}
$$

(3) Plugging this into our system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ we obtain the stystem:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi}
$$

(1) We first find the repeated eigenvalue λ and its eigenvector $\boldsymbol{\xi}$. So the first term of the solution will be $\mathrm{x}_{1}:=\boldsymbol{\xi} e^{\lambda t}$.
(2) For the second term we make the ansatz

$$
\mathbf{x}_{2}:=\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}
$$

(3) Plugging this into our system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$ we obtain the stystem:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi}
$$

(9) By determining η we obtain:

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1} \boldsymbol{\xi} e^{\lambda t}+c_{2}\left(\xi e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}\right) .
$$

In class example

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] \mathrm{x}-\binom{1}{2}
$$

Find η from

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi}
$$

Then

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1} \boldsymbol{\xi} e^{\lambda t}+c_{2}\left(\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}\right)
$$

In class example

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right] \mathrm{x}, \mathrm{x}=\binom{3}{2}
$$

Find η from

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{2}\right) \boldsymbol{\eta}=\boldsymbol{\xi} .
$$

Then

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}=c_{1} \boldsymbol{\xi} e^{\lambda t}+c_{2}\left(\boldsymbol{\xi} e^{\lambda t} \cdot t+\boldsymbol{\eta} e^{\lambda t}\right)
$$

Consider nonhomogeneous linear first order systems:

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)
$$

where $\mathbf{g}(t)$ is a vector of continuous functions and \mathbf{A} is a diagonalizable $n \times n$ matrix with eigenvalues $\left\{\lambda_{i}\right\}_{i=1, \ldots, n}$. The latter assumption means that if \mathbf{T} has the eigenvectors of \mathbf{A} as columns, then $\mathbf{T}^{-1} \mathbf{A} \mathbf{T}=\mathbf{D}$ is a diagonal matrix.

Using diagonalization

Plugging in $\mathbf{x}=\mathbf{T y}$ for some yet unknown \mathbf{y} we obtain

$$
\begin{aligned}
\mathbf{T} \mathbf{y}^{\prime} & =\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)=\mathbf{A} \mathbf{y}+\mathbf{g}(t) \\
\Longrightarrow \mathbf{y}^{\prime} & =\mathbf{T}^{-1} \mathbf{A} \mathbf{T} \mathbf{y}+\mathbf{T}^{-1} \mathbf{g}(t)=\mathbf{D} \mathbf{y}+\mathbf{T}^{-1} \mathbf{g}(t)
\end{aligned}
$$

As a result, we decoupled the system. From this decoupled system we obtain the first order equations:

$$
y_{i}^{\prime}=\lambda_{i} y_{i}(t)+\left(\mathbf{T}^{-1} \mathbf{g}(t)\right)_{i} \quad \text { for } i=1, \ldots, n
$$

For $h_{i}(t):=\left(\mathbf{T}^{-1} \mathbf{g}(t)\right)_{i}$ we have (by the method of integrating factors)

$$
y_{i}(t)=e^{\lambda_{i} t}\left[\int_{0}^{t} e^{-\lambda_{i} s} h_{i}(s) d s+c_{i}\right] .
$$

Therefore, we found the solution $\mathbf{x}=\mathbf{T y}$.

The End

