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Repeated eigenvalues
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Repeated eigenvalues

1 We first find the eigenvalues:

Tr(A)
2

A= + %\/Tr(A)z — 4det(A) = 2

and so we have a repeated eigenvalue.

2 Second, we find the corresponding eigenvector:

) -6) = (@) - ()

@ Assuming that x, := £e* - t fails because it implies £ = 0.
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3 Assuming the solution is of the form x, := £e* - t + net and
plugging into our ODE we obtain:

B U (AN®)

Solving this system gives us:

+m=—-1l=n= k =k ! + 0
R = T=\ k1) = "\1) "\ 1)

where k is any real number. We can rewrite 7 as:

0
e ()
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Therefore, the general solution is:

X = C1X1 + X2

= c1e®'e + (€€’ - t +me?t)

—adet o [g&f et {kg + <_°1> } eﬂ
o) <l ()
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The vector &1 = (') dominates the long term behaviour due to the extra

term (_11)t (provided we do not choose ¢; = 0). So we see that,
essentially, all solutions are diverging away from the linear span of ().
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© We first find the repeated eigenvalue A and its eigenvector £. So the
first term of the solution will be x; := £e’t.
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© We first find the repeated eigenvalue A and its eigenvector £. So the
first term of the solution will be x; := £e’t.

@ For the second term we make the ansatz

xp 1= €Mt 4 met.
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© We first find the repeated eigenvalue A and its eigenvector £. So the
first term of the solution will be x; := £e’t.

@ For the second term we make the ansatz

xp 1= €Mt 4 met.

© Plugging this into our system x’(t) = Ax(t) we obtain the stystem:

(A= AL)n=¢.
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© We first find the repeated eigenvalue A and its eigenvector £. So the
first term of the solution will be x; := £e’t.

@ For the second term we make the ansatz

xp 1= €Mt 4 met.

© Plugging this into our system x’(t) = Ax(t) we obtain the stystem:

(A= AL)n=¢.

© By determining 1 we obtain:

X = aX] + OxXp = e + (€t - t + nett).
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In class example

B30

(A-A2)n=¢&.

Find n from

Then
X = X1 + 0Xo = e’ + (£ - t 4 nett).
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In class example

Find n from
(A - ML)n=¢.

Then
X = X1 + 0Xo = e’ + (£ - t 4 nett).
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Consider nonhomogeneous linear first order systems:
x' = Ax +g(t),

where g(t) is a vector of continuous functions and A is a diagonalizable
n X n matrix with eigenvalues {\;};,=1 .. The latter assumption means
that if T has the eigenvectors of A as columns, then T IAT=Disa
diagonal matrix.
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Using diagonalization

Plugging in x = Ty for some yet unknown y we obtain

Ty =x = Ax+g(t) = ATy +g(t)
— y' = T 'ATy + T 'g(t) = Dy + T 'g(¢).
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As a result, we decoupled the system. From this decoupled system we
obtain the first order equations:

vyl = \yi(t) + (T_lg(t)),- fori=1,... n

For hi(t) := (T 'g(t)); we have (by the method of integrating factors)

t
y,-(t) = eNit |:/ e_)"'sh,-(s)ds + ¢
0

Therefore, we found the solution x = Ty.
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The End
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