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Figure: Entire curves can
be sinks



We return to the damping-free pendulum system

dx

dt
= y ,

dy

dt
= −g

L
sin(x).

Consider the total energy of the system:

E (x , y) = Potential + Kinetic

= U(x , y) + K (x , y)

:= mgL(1− cos(x)) +
1

2
mL2y2.

But close to (π, 0) change to

dx

dt
= y ,

dy

dt
=

g

L
sin(x)

and Lyapunov function V = ysin(x)
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Stability criterion

We have
V̇ = Vx ẋ + Vy ẏ = ∇V · T = |∇V ||T |cos(θ).

So if V̇ ≤ 0 then cos(θ) ≤ 0⇔ θ ∈ [π2 , π].
Basin of attraction is the region bounded by the largest level set {V = c}
s.t. we still have V̇ < 0.
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Lyapunov criterion

If V satisfies V (x0, y0) = 0 and V (x , y) > 0 for all other (x , y) 6= (x0, y0)
in a disk around (x0, y0) then

If dV
dt ≤ 0 for (x , y) 6= (x0, y0) then (x0, y0) is Lyapunov-stable.

If dV
dt < 0 for (x , y) 6= (x0, y0) then (x0, y0) is asymptotically stable.

If V (x , y) > 0 for at least one point close to (x0, y0) and dV
dt > 0 for

(x , y) 6= (x0, y0) then (x0, y0) is unstable.
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Presenting the method

Consider the system:

x′ =

(
1 2
0 2

)
x,

for Lyapunov function V = 1
2x

2 − 2
3xy + 7

12y
2.
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Presenting the method

1 At the origin we indeed have V(0,0)=0.
2 Next we prove that V > 0. The goal is to complete the square. A

quick formula for any monomial is

x2 + bx + c = (x +
1

2
b)2 + c − b2

4
.

So if we have k > 0 we are done. Indeed

c − b2

4
= y2(

7

6
− 4

9
) > 0.

3 Next we check the sign of V̇ . We have

V̇ = Vx ẋ + Vy ẏ = x2 + y2 > 0.

4 So it says that the system is unstable. Indeed its eigenvalues are 1, 2
and so the origin is a source (i.e. the initial data matters because for
initial data it stays trapped in the origin).
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In class example

Consider the system:

x′ =

(
1 2
0 1

)
x,

for Lyapunov function V = 1
2x

2 − xy + 3
2y

2.
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In class example

Consider the system:

dx

dt
= −x + 2y + y4,

dx

dt
= −y + x4

for Lyapunov function V = 1
2x

2 + xy + 3
2y

2.
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In class example

Consider the system:

dx

dt
= −x + 2y + y4,

dx

dt
= 2y − 2x + x4

for Lyapunov function V = 4x2 − 3xy + 7
4y

2.
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limit cycle

Consider the system

d

dt

(
x

y

)
=

(
x + y − x(x2 + y2)

−x + y − y(x2 + y2)

)
.

1 First we find the critical points:

dx

dt
= 0,

dy

dt
= 0.

If we assume that x 6= 0, y 6= 0 we get the contradiction x2 + y2 = 0
which implies that the origin (x , y) = (0, 0) is the only critical point.

2 We linearize around the origin to obtain

d

dt

(
x

y

)
=

(
1 1
−1 1

)(
x

y

)
which has complex eigenvalues 1± i .

3 Since Re(λ) > 0 we have that locally the phase portrait is a spiral
source. But interestingly the behaviour changes globally. Here the
stable sink trajectory will be the unit circle centered at the origin.
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limit cycle

1 First we change to polar coordinates x = r cos(θ), y = r sin(θ) to
obtain the system:

r
dr

dt
= r2(1− r2) and

dθ

dt
= −1.

2 These equations are now decoupled and can be solved by separation
of variables:

r
dr

dt
= r2(1− r2)⇒∫

−1

r(1− r2)
dr =

∫
dt ⇒

1

2
ln(1− r2)− ln(r) = t + c ⇒

r =
1√

1 + c1e−2t
.

Similarly, for θ we obtain

θ = −t + c2.

We can also obtain a parametric solution for this system by taking the
ratio or simply substituting θ = −t in the r:

r =
1√

1 + ce2θ
.
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limit cycle

1 We observe a couple of things. First, as t → +∞, the radius r(t) of
the solution converges to 1 irrespective of the constants c1, c2

2 These constants encode the initial data and ,in particular, the initial
radius and angle because at time 0 we have

r(0) =
1√

1 + c1
and θ = c2.

3 So if we happen to start outside the unit circle r(0) > 1 (eg. for
c1 = −1/2) or inside the unit circle r(0) < 1 (eg. for c1 = 1), the
solution will converge to the unit circle regardless.
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The End
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