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0.1 Liapunov’s Second Method

Consider the autonomous system:

dx

dt
= F (x, y) and

dx

dt
= G(x, y).

We will obtain a criterion for concluding asymptotic stability and even determining the basin of
attraction.

0.1.1 Example-presenting the method

We return to the damping-free pendulum

θ

L sin θ

mg
θ

m

L

Figure 0.1.1: oscillating pendulum

whose angle θ satisfies the equation

d2θ

d2t
+
mg

L
sin(θ) = 0.

This is a nonhomogeneous second order equation, but we can also view it as a system of equations
by letting x := θ and y := dθ

dt
:

dx

dt
= y,

dy

dt
= − g

L
sin(x).

1. Consider the total energy of the system:
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E(x, y) = Potential + Kinetic
= U(x, y) +K(x, y)

:= mgL(1− cos(x)) + 1

2
mL2y2.

2. Since the system is damping-free, the energy is conserved and so we should have:

dV

dt
= 0.

Lets prove this:

dV

dt
=

d

dt
[mgL(1− cos(x)) + 1

2
mL2y2]

= mgLsin(x)
dx

dt
+mL2y

dy

dt

using the equations

= mgLsin(x)y +mL2y(− g
L
sin(x))

= 0.

3. Therefore, we obtain an implicit solution:

mgL(1− cos(x)) + 1

2
mL2y2 = constant.

4. Next we consider the case where there is damping i.e. θ satisfies the equation:

d2θ

d2t
+ γ

dθ

dt
+ ω2sin(θ) = 0

and so the system is:
dx

dt
= y,

dy

dt
= −γy − g

L
sin(x).

5. By computing the time derivative of the total energy we obtain:

dV

dt
= −mL2γy2 = −mL2γ(θ̇)2 ≤ 0.

6. Physically this means that the energy will be decreasing over time as the damping
force keeps slowing down the pendulum. Therefore, we expect that the system will be
asymptotically stable towards the origin, where both the angle and the velocity are zero.

0.1.2 Method formal steps

For the autonomous system:

dx

dt
= F (x, y) and

dx

dt
= G(x, y)

let (x0, y0) denote a critical point. We will need the following definitions:
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Definition 0.1.1. A point (x0, y0) is Lyapunov-stable if a solution that starts close to it, then it
will stay close to that critical point for all future time. Given any desired ε > 0 we can find
δ > 0 s.t. if we start δ−close

‖x(0)− (x0, y0)‖ ≤ δ,

then we stay ε−close:
‖x(t)− (x0, y0)‖ ≤ ε,∀t > 0.

A point (x0, y0) is asymptotically stable if a solution that starts close to it converges to that
critical point:

‖x(t)− (x0, y0)‖ → 0.

1. Find the "total energy" V of the autonomous system by solving:

dV (x(t), y(t))

ddt
= Vx

dx

dt
+ Vy

dy

dt
= VxF (x(t), y(t)) + VyG(x(t), y(t)).

2. If dV (x(t),y(t))
ddt

= 0, then use to find the implicit solutions:

constant = V (x(t), y(t)).

3. If V satisfies the following conditions:

• V (x0, y0) = 0,
• V (x, y) > 0 for all other (x, y) 6= (x0, y0) in a disk around (x0, y0),

• and it is nondecreasing in time dV
dt
≤ 0 for all other (x, y) 6= (x0, y0) in a disk around

(x0, y0),
then

(x0, y0) is a Lyapunov-stable critical point.

• If it is even a strictly non-decreasing function in time dV
dt
< 0 for all other (x, y) 6=

(x0, y0) in a disk around (x0, y0),
then

(x0, y0) is a stable critical point.

4. If instead we have

• V (x0, y0) = 0,
• V (p) > 0 for at least one point p 6= (x0, y0) in a disk around (x0, y0),

• and strictly decreasing energy dV
dt
> 0 for all other (x, y) 6= (x0, y0),

then
(x0, y0) is an asymptotically unstable critical point.

0.1.3 Finding the Lyapunov function

So clearly finding such a scalar function is the first serious obstacle. Here are some ideas and
heuristics on guessing such a function:

Physical systems For physical systems the energy/Hamiltonian is a good guess. For example,
if there is no new energy input, then the energy function will decay over time or remain constant.



4 CONTENTS

Lur’e type systems Consider the system:

dx

dt
= −y − h1(x) and

dy

dt
= h2(x),

h1 is differentiable and h2 integrable. We will obtain a Lyapunov function for this type of
system.By taking t-derivative of the first equation and using the second one we obtain

d2x

d2t
= −h2(x)− h′1(x)

dx

dt
multiplying by dx

dt
we obtain

d2x

d2t

dx

dt
= −h2(x)

dx

dt
− h′1(x)(

dx

dt
)2 ⇒

d

dt

((dx
dt
)2

2
+

∫ x

0

h2(s)ds
)
= −h′1(x)(

dx

dt
)2.

Thus, if we have h′1(x) > 0 in a neighbourhood of x0, then the function

V (x) :=
(dx
dt
)2

2
+

∫ x

0

h2(s)ds

has a strictly negative derivative. Moreover, if
∫ x
0
h2(x)

Cost functions Distance and cost functions with respect to the critical point (x0, y0) are
also good guesses because close to the critical point the derivatives dx

dt
, dy
dt

are decaying to zero
and so we might indeed have:

Vx
dx

dt
+ Vy

dy

dt
≤ 0.

Linear systems When the system is linear i.e. ẋ = Ax then a candidate Lyapunov function
is

V (x) =

∫ ∞

0

∥∥eAtx∥∥dt = xT
(∫ ∞

0

e(A
T+A)tdt

)
.

This is indeed a Lyapunov function for exponentially stable systems (see more details in the
converse theorems 0.1.3)

Polynomial systems When f1, f2 are polynomials of highest degree m, then there are many
algorithms for generating the corresponding Lyapunov functions of the form

V (x, y) =
m+1∑
j,k

cj,kx
jyk,

by optimizing over the coefficients (see [giesl2015review] for the sum-of-squares (SOS) theory).
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0.1.4 General result:

Lyapunov’s second method

Theorem 0.1.2. Consider system

dx

dt
= f1(x, y) and

dy

dt
= f2(x, y),

and (x0, y0) a particular isolated equilibrium point. If we can find a continuously differen-
tiable function V : U(x0,y0) → R around some neighbourhood U(x0,y0) of the critical point
(x0, y0) with the following properties:

1. V (x0, y0) = 0,

2. V (x, y) > 0 for (x, y) ∈ U(x0,y0) \ {(x0, y0)},

3. and dV
dt

:= dV
dx
f1 +

dV
dy
f2 ≤ 0 in punctured neighbourhood U(x0,y0) \ {(x0, y0)}

then the critical point (x0, y0) is stable. In fact if we replace the last condition by strict
inequality:

dV

dx
f1 +

dV

dy
f2 < 0

then critical point (x0, y0) is asymptotically stable.

Converse theorems: existence of Lyapunov function

Theorem 0.1.3. Suppose that the linearization around an equilibrium point is

d

dt

(
x

y

)
=
(
a b
c d

)(x
y

)
,

s.t. det(A) = ad− bc > 0 and a+ d < 0. Then the function

V (x, y) = Ax2 +Bxy + Cy2,

is a Lyapunov function for this system with V̇ < 0 if

A = −c
2 + d2 + det(A)

2Tr(A)det(A)

B =
bd+ ac

Tr(A)det(A)

C = −a
2 + b2 + det(A)

2Tr(A)det(A)

because then V̇ (x, y) = −x2 − y2 and the matrix(
A B
B C

)
is positive definite.
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0.1.5 Examples

• Consider the system
dx

dt
= y and

dy

dt
= −x− y.

1. First we find that the equilibrium point is only the origin (0, 0).
2. We take the Euclidean distance function as a guess:

V (x, y) =
1

2
(x2 + y2).

3. Next we check each of the properties
– V (0, 0) = 0,
– V (x, y) > 0 for (x, y) 6= 0,
– and

dV

dt
= Vxf1 + Vyf2 = (x)y + (y)(−x− y) = −y2 < 0

for (x, y) in a punctured disk centered at the origin.
4. Therefore, V (x, y) is a Lyapunov function and so the point (x0, y0) is asymptotically

stable.

• Consider the linear harmonic oscillator

dx

dt
= y and

dy

dt
= −kx,

for k > 0, with V = Pot+Kin = 1
2
kx2 + 1

2
y2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.

– We indeed have V (0, 0) = 1
2
k0 + 1

2
0 = 0.

– We have V (x, y) = 1
2
kx2 + 1

2
y2 > 0 for (x, y) 6= (0, 0).

– Finally, we have
dV

dt
= Vxẋ+ Vyẏ = kxy − kxy = 0.

2. So the origin will be an asymptotically stable point (solutions that start close, remain
close).

3. Indeed from linearization around the origin we obtain:

JF =
(

0 1
−k 0

)
,

which has eigenvalues λ = ±i
√
k and so the phase portrait will be concentric circles

centered at the origin. This agrees with our Lyapunov behaviour because solutions
that start in a circle close to the origin, stay on that circle for all future time.

• Consider the linear harmonic oscillator with damping

dx

dt
= y and

dy

dt
= −kx− αy3(1 + x2),

for k > 0, with the same V = Pot+Kin = 1
2
kx2+ 1

2
y2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.
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– The first two conditions are the same.
– Finally, we have

dV

dt
= Vxẋ+ Vyẏ = kxy − kxy − αy4(1 + x2) = −αy4(1 + x2).

2. If α > 0 (i.e. the is positive damping removing energy from the system), then dV
dt
≤ 0

and so the origin will be an asymptotically stable point (solutions that start close,
remain close).

3. The linearization around the origin is:

JF =
(

0 1
−k 0

)
,

which again has eigenvalues λ = ±i
√
k and so the phase portrait will be concentric

circles centered at the origin.
4. For α > 0 the behaviour is more complicated and we will explain it later.

• Consider the system
dx

dt
= −x+ 4y and

dy

dt
= −x− y3,

with V = ax2 + by2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.

– We indeed have V (0, 0) = 0 and V (x, y) > 0 for (x, y) 6= (0, 0) if a, b > 0.
– We have

dV

dt
= Vxẋ+ Vyẏ

= 2ax(−x+ 4y) + 2by(−x− y3)
= −2ax2 + xy(8a− 2b)− 2by4,

to make this strictly negative we set a = 1, b = 4 to get
= −2x2 − 8y4 < 0.

2. So the origin will be a stable point (solutions converge to the origin).
3. Indeed from linearization we obtain:

JF =
(−1 4
−1 0

)
,

which has repeated eigenvalue λ = −1 and so the solution will converge to the origin
for any initial data.

• Consider the system:
x′ =

(
1 2
0 2

)
x,

for Lyapunov function V = 1
2
x2 − 2

3
xy + 7

12
y2.

1. At the origin we indeed have V(0,0)=0.
2. Next we prove that V > 0. The goal is to complete the square. A quick formula for

any monomial is

x2 + bx+ c = (x+
1

2
b)2 + c− b2

4
.
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So if we have k > 0 we are done. Indeed

c− b2

4
= y2(

7

6
− 4

9
) > 0.

3. Next we check the sign of V̇ . We have

V̇ = Vxẋ+ Vyẏ = x2 + y2 > 0.

4. So it says that the system is unstable. Indeed its eigenvalues are 1, 2 and so the origin
is a source (i.e. the initial data matters because for initial data it stays trapped in
the origin).

• Consider the system:
x′ =

(
1 2
0 1

)
x,

for Lyapunov function V = 1
2
x2 − xy + 3

2
y2.

1. As above in order to complete the square we find the sign of

c− b2

4
= y2(

1

2
− 1

4
) =

y2

4
.

2. Next we find the sign of V̇ :

V̇ = Vxẋ+ Vyẏ

= (x− y)(x+ 2y) + (−x+ 3y)y

= x2 + xy(2− 1− 1) + y2 = x2 + y2 > 0.

3. So it says that the origin is unstable. Indeed the eigenvalues are 1,1 and so the origin
is a source (i.e. for zero initial data it gets trapped whereas for nonzero initial data
it moves to infinity and so the initial data is relevant).

• Consider the system:
dx

dt
= −x+ 2y + y4,

dx

dt
= −y + x4

for Lyapunov function V = 1
2
x2 + xy + 3

2
y2.

1. First we check the sign of V. In completing the square we find the sign of

c− b4

2
= y2

1

4
> 0.

2. Next we check the sign of V̇ :

V̇ = Vxẋ+ Vyẏ = −x2 − y2 − (x+ y)y4 − (
3x

2
− 2y)x4.

For (x, y) close to zero we have x4 << x2, y4 << y2 and so we indeed have V̇ < 0.

3. This agrees with the linearization since the eigenvalues will be the repeated −1, which
makes the origin a source.
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• Consider the system:

dx

dt
= −x+ 2y + y4,

dx

dt
= 2y − 2x+ x4

for Lyapunov function V = 4x2 − 3xy + 7
4
y2 = 4(x2 − 3

4
xy + 7

16
y2).

1. First we check the sign of V. In completing the square we find the sign of

c− b4

2
= y2(

7

16
− 9

4 ∗ 16
) > 0.

2. Next we check the sign of V̇ :

V̇ = Vxẋ+ Vyẏ = x2 + y2 − (8x− 3y)y4 − (−3x+ 7

2
y)x4.

For (x, y) close to zero we have x4 << x2, y4 << y2 and so we indeed have V̇ > 0.
3. This agrees with the linearization since the eigenvalues will be the repeated −1, 2,

which makes the origin an unstable saddle.

0.1.6 Applied examples

Walras’s law and the ttonnement mechanism

Here, we consider the question of stability of a pure exchange, competitive equilibrium with an
adjustment mechanism known as t^atonnement and directly inspired by the work of LonWalras
(1874), one of the founding fathers of mathematical economics.
The basic idea behind the t^atonnement mechanism is the same assumed in the rudimentary
price adjustment mechanism models, namely that prices of commodities rise and fall in response
to discrepancies between demand and supply (the so-called ’law of demand and supply’).
In the present case, demand is determined by individual economic agents maximising a utility
function subject to a budget constraint, given a certain initial distribution of stocks of com-
modities. The model can be described schematically as follows.

dp

dt
= f(p) =

(
f1(p)

f2(p)

)
,

where f1, f2 : R2 → R are continuous functions with all their derivatives continuous as well.

1. A price point p0 is called an equilibrium if

fi(p0) ≤ 0, pi ≥ 0,and pj > 0for some j
or fi(p0) < 0,p0 = 0.

The first case makes economic sense (i.e. at least one price is nonzero) and so by equilibrium
point we will mean the first case.

2. (Hypothesis H)The hypothesis that agents maximise utility is that the functions fi(p) are
homogeneous of degree zero, namely fi(λp) = λ0fi(p) = fi(p) for any λ > 0.

3. (Walras’s law)Consider that the budget constraint for each individual k takes the form

2∑
i=1

pif
k
i (p) = p1f

k
1 (p) + p2f

k
2 (p) = 0,
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where fki denotes the excess demand by the kth economic agent for the ith commodity,
i.e., the difference between the agent’s demand for, and the agent’s initial endowment of,
that commodity. In general for m commodities by summing over all N economic agents
we have:

N∑
k=1

m∑
i=1

pif
k
i (p) =

∑
i

pmi=1fi(p) = 0.

This law states that, in view of the budget constraints, for any set of semipositive prices p
(not necessarily equilibrium prices), the value of aggregate excess demand, evaluated at
those prices, must be zero.

The Jacobian matrix for f is

Df(p0) =

(
df1(p0)
dp1

df1(p0)
dp2

df2(p0)
dp1

df2(p0)
dp2

)
.
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