Hamiltonian Systems and Modeling of Mechanical Systems
MAT244 Group Assignment

1 Spring-Mass System

A A Hamiltonian System has No Spiral Sources/Sinks

A system will have spiral sources/sinks if its eigenvalues evaluated at the critical points are complex
with non-zero real parts. We will show this does not occur for Hamiltonian systems.

Proof. We assume a general Hamiltonian system H with:

dy dp
Then by existence of H we have:
of _ 9y
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Assume f and g are C? s.t. the system is locally linear in a neighborhood of its critical points.
We take its Jacobian evaluated at the critical points to find the corresponding linear system:

Ty p) = [fy fp] ( Y=Y )
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Let fyq, 9po be the partial derivatives %, g—f) evaluated at arbitrary critical points (yo,po) and
compute the eigenvalues:
-
det(J — M) = uo fp_o A ‘ =X = (Fyg + 9p0)A + (fyo900 — fro9uo)
Gyo 9po

Applying (1), (fy,+9p,) X vanishes and we have X\ = £/ Fyg + Fp Gy, We evaluate the cases:

e For Fyg + FpoGy, = 0, the eigenvalue is 0 with multiplicity 2.

e For Fyg > F,, Gy, the eigenvalues are real, and diverse with opposite signs (the critical point

is a saddle point).
e For Fyg < FpyGy,, the eigenvalues are purely imaginary.

As there are no cases where the eigenvalues will be complex with non-zero real components, a
Hamiltonian system cannot have spiral sources or sinks.

O



B The Hamiltonian Nature of the Spring Force

The system is Hamiltonian if the forces acting on the system depend only on position; equivalently,
it obeys conservation of energy. More generally, it has a Hamiltonian if it obeys Equation (1).

If we let f(y,p) = £ and g(y,p) = —ky then we have %5 = —%% = 0 and thus the system is
Hamiltonian.

While the above is a sufficient condition for demonstrating that the system is Hamiltonian, we
also show the necessary condition that for a force F(y) to be conservative, there exists a potential

V(y) st. F(y) = 7‘1;;(7’), a function of position only. We first note that —ky depends only on ¥,

producing the following separable equation:
—dV(y)
dy

We solve to find V(y) = k3(y? + ¢), c € R. From the definition of the Hamiltonian, we have:

p2

H(y,p) = ot V(y) (2)

and take the following derivatives to find Hamilton’s equations:

dy dH p
dt  dp m 3)
dp_ A _ v @

dt ~  dy  dy
C Show the System’s Phase Plane Trajectories are Constant
Taking the ratio of (3) and (4), we have a separable equation:

dy__»
dp mky

Solving, we find. % + k%Q = ¢, as desired.

D Mass-Spring System ODE Plot

Below we plot the results of the previous section, with initial position 0 and the set of initial
momentum {0,0.5,1,1.5,2}, with initial points on a given curve indicated by circles and final
points indicated by boxes. All required constants have been set to 1:
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E Linearization of Spring-Mass System at Critical Points

There is only a single critical point in this system, and it occurs at the origin. The Jacobian is:

7(0,0) = {_Ok %}

The trace of this linearized system is 0 and its determinant is positive. The eigenvalues will
be purely imaginary, producing concentric circles around the origin; this agrees with our Matlab
direction field.

2 A Pendulum System With Damping

Please note that all Matlab plots have had all required constants set to 1 unless otherwise indicated.
Plots include direction fields and full trajectories for a set of random initial values of position and
momentum.

A Hamiltonian of Undamped System

The Hamiltonian H (6, p) of the undamped system can be obtained by reading off the value of V()
from the definition of the system, and plugging it into the definition of the Hamiltonian. Taking
V(0) to be —lmg - cos(f) where I,m,g > 0 € R, we have:
»?
H#,p)=——-1-m-g- 0 5
0.0) =2 ~1-m g cos(6) (5)
We obtain sketches by setting H = C; and solving for p, with C; a finite set of constant solutions
indexed over i. Those solutions which produce negative discriminants do not have real-valued
solutions. As we provide Matlab plots in the next subsection, we omit the hand sketch.

B Matlab Plot: Hamiltonian System

We plot several level curves of the above Hamiltonian:
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There are no spiral sinks or sources here, agreeing with previous results regarding behaviour of
systems which obey conservation laws.

C Linearized System Around Arbitrary Point

We first define the Hamiltonian equations given by the problem:

OH do p

Op _E_m'_F ©
OH dp . p
i —lmyg - sin(0) _bm12 =G (7)

We linearize the damped system by finding the Jacobian matrix:

Fy F,
J(&p) = [GQB GI;,:|



Then linearize the damped system by taking appropriate derivatives of equations 6 and 7:

0 1
damped = {—lmg - cos(0) %]
Finally we obtain the linearization of the undamped system by taking Jggmped and setting
b=0:

0 1
—lmg - cos(0) 0}

Jundamped = [

D Linearized Undamped System Around Critical Points

For the undamped system, we note that equation 6 vanishes when p = 0. Equation 7 vanishes at
nm, n € Z. The critical points occur at (p,0) = (0,n7), and the behavior depends on the parity of
n.

The eigenvalues of Jyndampea for even values of n are £i,/lg. These are purely imaginary, and
solutions in a neighborhood of these points will be concentric circles.

For odd values of n, the eigenvalues are +/Ig. These are real and distinct, producing a saddle
point.

E Matlab Plot: Linearized Undamped System

We plot the direction field and iterate through several values of initial position/momentum. The
results agree with our Hamiltonian plot.
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F Linearized Damped System Around Critical Points

Note that as p = 0 makes the damping term vanish, the critical points do not actually change:
they continue to occur at (p,d) = (0, n7). However, the Jacobian matrix now includes the damping
term, producing new phase trajectories.

Evaluating Jgamped for even values of n, we find the eigenvalues are given by:
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Assume [, m, g are positive, real, and fixed. The value of b then produces three cases for the
behaviour in a neighbourhood of the critical point:

e For b = 2lm+/gl, we have the repeated eigenvalue ﬁ with Det(Jgamped) < 0, a degenerate
sink

e For b < 2im+/gl, we have complex eigenvalues with a negative real part, producing a spiral
sink

e For b > 2lm+/gl, we have real and distinct eigenvalues which are always negative, producing
a stable sink

Evaluating Jggmpeq for odd values of n, we find that the eigenvalues are given by:

EE

In all cases, the discriminant of Equation 9 is strictly positive, and the eigenvalues will be real
and distinct: these critical points will be saddle points.

As the damping parameter b becomes smaller, the trajectories take longer to sink into one of
the basins of attraction. They may even drift for a very long time into basins "far away."
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G Matlab Plot: Linearized Damped System

We provide two plots of the direction field and iterate through several values of initial posi-
tion/momentum. The first plot has damping parameter b = 0.75:
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The second plot holds all initial values and elapsed time of the ODE solver constant, while

reducing b to 0.1:
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In the 2nd plot, we see that the trajectories will take longer to reach the spiral sink criti-
cal points, and that initial values sufficiently far from a sink may drift for a while before being
"captured" by the sink.

As the damping parameter goes to zero, solution curves will more closely approximate the
undamped system. These plots agrees with our stability analysis.
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