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1 Spring-Mass System

A A Hamiltonian System has No Spiral Sources/Sinks
A system will have spiral sources/sinks if its eigenvalues evaluated at the critical points are complex
with non-zero real parts. We will show this does not occur for Hamiltonian systems.

Proof. We assume a general Hamiltonian system H with:

dy

dt
= f(y, p),

dp

dt
= g(y, p)

Then by existence of H we have:

∂f

∂y
= −∂g

∂p
(1)

Assume f and g are C2 s.t. the system is locally linear in a neighborhood of its critical points.
We take its Jacobian evaluated at the critical points to find the corresponding linear system:

J(y, p) =

[
fy fp
gy gp

](
y − y0
p− p0

)
Let fy0, gp0 be the partial derivatives ∂f

∂y ,
∂g
∂p evaluated at arbitrary critical points (y0, p0) and

compute the eigenvalues:

det(J − λI) =

∣∣∣∣ fy0 − λ fp0
gy0 gp0 − Λ

∣∣∣∣ = λ2 − (fy0 + gp0)λ+ (fy0gp0 − fp0gy0)

Applying (1), (fy0 +gp0)λ vanishes and we have λ = ±
√
Fy

2
0 + Fp0Gy0. We evaluate the cases:

• For Fy20 + Fp0Gy0 = 0, the eigenvalue is 0 with multiplicity 2.

• For Fy20 > Fp0Gy0, the eigenvalues are real, and diverse with opposite signs (the critical point
is a saddle point).

• For Fy20 < Fp0Gy0, the eigenvalues are purely imaginary.

As there are no cases where the eigenvalues will be complex with non-zero real components, a
Hamiltonian system cannot have spiral sources or sinks.
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B The Hamiltonian Nature of the Spring Force
The system is Hamiltonian if the forces acting on the system depend only on position; equivalently,
it obeys conservation of energy. More generally, it has a Hamiltonian if it obeys Equation (1).

If we let f(y, p) = p
m and g(y, p) = −ky then we have ∂f

∂y = −∂g∂p = 0 and thus the system is
Hamiltonian.

While the above is a sufficient condition for demonstrating that the system is Hamiltonian, we
also show the necessary condition that for a force F (y) to be conservative, there exists a potential
V (y) s.t. F (y) = −dV (y)

dy , a function of position only. We first note that −ky depends only on y,
producing the following separable equation:

−dV (y)

dy
= −ky

We solve to find V (y) = k 1
2 (y2 + c), c ∈ R. From the definition of the Hamiltonian, we have:

H(y, p) =
p2

2m
+ V (y) (2)

and take the following derivatives to find Hamilton’s equations:

dy

dt
=
dH

dp
=

p

m
(3)

dp

dt
= −dH

dy
= −dV (y)

dy
= −ky (4)

C Show the System’s Phase Plane Trajectories are Constant
Taking the ratio of (3) and (4), we have a separable equation:

dy

dp
= − p

mky

Solving, we find. p2

2m + k y
2

2 = c, as desired.

D Mass-Spring System ODE Plot
Below we plot the results of the previous section, with initial position 0 and the set of initial
momentum {0, 0.5, 1, 1.5, 2}, with initial points on a given curve indicated by circles and final
points indicated by boxes. All required constants have been set to 1:
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E Linearization of Spring-Mass System at Critical Points
There is only a single critical point in this system, and it occurs at the origin. The Jacobian is:

J(0, 0) =

[
0 1

m
−k 0

]
The trace of this linearized system is 0 and its determinant is positive. The eigenvalues will

be purely imaginary, producing concentric circles around the origin; this agrees with our Matlab
direction field.

2 A Pendulum System With Damping
Please note that all Matlab plots have had all required constants set to 1 unless otherwise indicated.
Plots include direction fields and full trajectories for a set of random initial values of position and
momentum.

A Hamiltonian of Undamped System
The Hamiltonian H(θ, p) of the undamped system can be obtained by reading off the value of V (θ)
from the definition of the system, and plugging it into the definition of the Hamiltonian. Taking
V (θ) to be −lmg · cos(θ) where l,m, g > 0 ∈ R, we have:

H(θ, p) =
p2

2m
− l ·m · g · cos(θ) (5)

We obtain sketches by setting H = Ci and solving for p, with Ci a finite set of constant solutions
indexed over i. Those solutions which produce negative discriminants do not have real-valued
solutions. As we provide Matlab plots in the next subsection, we omit the hand sketch.

B Matlab Plot: Hamiltonian System
We plot several level curves of the above Hamiltonian:

There are no spiral sinks or sources here, agreeing with previous results regarding behaviour of
systems which obey conservation laws.

C Linearized System Around Arbitrary Point
We first define the Hamiltonian equations given by the problem:

∂H
∂p

=
dθ

dt
=

p

m
:= F (6)

∂H
∂θ

=
dp

dt
= −lmg · sin(θ)− b p

ml2
:= G (7)

We linearize the damped system by finding the Jacobian matrix:

J(θ, p) =

[
Fθ Fp
Gθ Gp

]
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Then linearize the damped system by taking appropriate derivatives of equations 6 and 7:

Jdamped :=

[
0 1

m

−lmg · cos(θ) −b
ml2

]
Finally we obtain the linearization of the undamped system by taking Jdamped and setting

b = 0:

Jundamped :=

[
0 1

m
−lmg · cos(θ) 0

]

D Linearized Undamped System Around Critical Points
For the undamped system, we note that equation 6 vanishes when p = 0. Equation 7 vanishes at
nπ, n ∈ Z. The critical points occur at (p, θ) = (0, nπ), and the behavior depends on the parity of
n.

The eigenvalues of Jundamped for even values of n are ±i
√
lg. These are purely imaginary, and

solutions in a neighborhood of these points will be concentric circles.
For odd values of n, the eigenvalues are ±

√
lg. These are real and distinct, producing a saddle

point.

E Matlab Plot: Linearized Undamped System
We plot the direction field and iterate through several values of initial position/momentum. The
results agree with our Hamiltonian plot.

F Linearized Damped System Around Critical Points
Note that as p = 0 makes the damping term vanish, the critical points do not actually change:
they continue to occur at (p, θ) = (0, nπ). However, the Jacobian matrix now includes the damping
term, producing new phase trajectories.

Evaluating Jdamped for even values of n, we find the eigenvalues are given by:
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λ1even, λ2even =
1

2

 −b
ml2
±

√(
−b
ml2

)2

− 4lg

 (8)

Assume l,m, g are positive, real, and fixed. The value of b then produces three cases for the
behaviour in a neighbourhood of the critical point:

• For b = 2lm
√
gl, we have the repeated eigenvalue −b

2ml2 with Det(Jdamped) < 0, a degenerate
sink

• For b < 2lm
√
gl, we have complex eigenvalues with a negative real part, producing a spiral

sink

• For b > 2lm
√
gl, we have real and distinct eigenvalues which are always negative, producing

a stable sink

Evaluating Jdamped for odd values of n, we find that the eigenvalues are given by:

λ1odd, λ2odd =
1

2

 −b
ml2
±

√(
−b
ml2

)2

+ 4lg

 (9)

In all cases, the discriminant of Equation 9 is strictly positive, and the eigenvalues will be real
and distinct: these critical points will be saddle points.

As the damping parameter b becomes smaller, the trajectories take longer to sink into one of
the basins of attraction. They may even drift for a very long time into basins "far away."

G Matlab Plot: Linearized Damped System
We provide two plots of the direction field and iterate through several values of initial posi-
tion/momentum. The first plot has damping parameter b = 0.75:

The second plot holds all initial values and elapsed time of the ODE solver constant, while
reducing b to 0.1:
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In the 2nd plot, we see that the trajectories will take longer to reach the spiral sink criti-
cal points, and that initial values sufficiently far from a sink may drift for a while before being
"captured" by the sink.

As the damping parameter goes to zero, solution curves will more closely approximate the
undamped system. These plots agrees with our stability analysis.
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