The 3 different kinds of exam takers...

Figure 0.1: Oh I know this

1 Second order

second order and system: real Consider the equation

$$
\theta^{\prime \prime}-2 \theta^{\prime}-3 \theta=e^{-t}+3
$$

and its related system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right] \mathbf{x}+\binom{0}{e^{-t}+3}
$$

Proof. 1. First we solve the second order equation. The homogeneous part is

$$
x_{h}=c_{1} e^{3 t}+c_{2} e^{-t} .
$$

2. Then we apply our guess: $x_{n h}=a t^{s} e^{-t}$. Since -1 is a simple root, we have $s=1$ and so it remains to find a:

$$
a\left(-2 e^{-t}+t e^{-t}-2 e^{-t}+2 t e^{-t}-3 t e^{-t}\right)=e^{-t} \Rightarrow a=\frac{-1}{4}
$$

3. So the solution is:

$$
x_{g e n}=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{1}{4} t e^{-t}+1 .
$$

4. Next we solve the corresponding nonhomogeneous system. The eigenpairs are $\left(3,\binom{1}{3}\right),\left(-1,\binom{-1}{1}\right)$ and so the homogeneous part is:

$$
\mathbf{x}=c_{1} e^{3 t}\binom{1}{3}+c_{2} e^{-t}\binom{-1}{1}
$$

5. So the change of basis is matrix $\mathbf{T}=\left(\begin{array}{cc}1 & -1 \\ 3 & 1\end{array}\right)$ and we obtain:

$$
\mathbf{h}(t)=\left(\begin{array}{cc}
1 & -1 \\
3 & 1
\end{array}\right)^{-1}\binom{0}{e^{-t}}=\frac{1}{4}\binom{e^{-t}}{e^{-t}} .
$$

6. Thus, we obtain

$$
\begin{aligned}
y_{1}(t) & =e^{3 t} \int e^{-3 s}\left(\frac{e^{-s}}{4}\right) d s \\
& =\frac{e^{-t}}{-16}
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2}(t) & =e^{-t} \int e^{s}\left(\frac{e^{-s}}{4}\right) d s \\
& =\frac{e^{-t} t}{4} .
\end{aligned}
$$

7. Therefore, the nonhomogeneous part is

$$
\mathbf{x}_{n h, 1}=\mathbf{T} \mathbf{y}=\frac{e^{-t}}{4}\left(\begin{array}{cc}
1 & -1 \\
3 & 1
\end{array}\right)\binom{-\frac{1}{4}}{t}=\frac{e^{-t}}{4}\binom{-\frac{1}{4}}{\frac{-3}{4}}+\frac{e^{-t} t}{4}\binom{-1}{1}
$$

8. For the system $\mathbf{x}^{\prime}=A x+\binom{0}{3}$, we have

$$
\mathbf{x}_{n h, 2}=A^{-1}\binom{0}{-3}=\binom{1}{0}
$$

9. The general solution will be:

$$
\mathbf{x}_{\text {gen }}=c_{1} e^{3 t}\binom{1}{3}+c_{2} e^{-t}\binom{-1}{1}+\frac{-e^{-t}}{16}\binom{1}{3}+\frac{e^{-t} t}{4}\binom{-1}{1}+\binom{1}{0} .
$$

10. Indeed the $x=\theta$ component is of the form:

$$
\theta=x=c_{1} e^{3 t}+c_{2} e^{-t}-\frac{e^{-t} t}{4}+1
$$

which agrees with our second order solution.
second order and system: complex Consider the equation

$$
\theta^{\prime \prime}+2 \theta^{\prime}+2 \theta=3+e^{-t} \sin (t)
$$

and its related system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right] \mathbf{x}+\binom{0}{3+e^{-t} \sin (t)} .
$$

Proof. 1. First we solve the second order equation. The homogeneous part is

$$
x_{h}=c_{1} e^{(-1+i) t}+c_{2} e^{(-1-i) t}
$$

2. Then we apply our guess: $x_{n h}=t^{s} e^{-t}(a \cos (t)+b \sin (t))$. Since $-1+\mathrm{i}$ is a simple root, we have $s=1$ and so it remains to find a, b :

$$
\begin{aligned}
& 2\left(e^{-t}-e^{-t} t\right)(b \cos (t)-a \sin (t)) \\
& +e^{-t} t(-a \cos (t)-b \sin (t))+2 e^{-t} t(a \cos (t)+b \sin (t)) \\
& +\left(e^{-t} t-2 e^{-t}\right)(a \cos (t)+b \sin (t)) \\
& +2\left(e^{-t} t(b \cos (t)-a \sin (t))\right. \\
& \left.+e^{-t}(a \cos (t)+b \sin (t))-e^{-t} t(a \cos (t)+b \sin (t))\right) \\
& =e^{-t} \sin (t)
\end{aligned}
$$

Isolating the term $e^{-t} \sin (t)$ we obtain

$$
-2 a-b=1 \Rightarrow a=-\frac{1}{2} \text { and } b=0
$$

and so the nonhomogeneous part is

$$
x_{n h}=t e^{-t}\left(-\frac{1}{2} \cos (t)\right) .
$$

3. So the solution is:

$$
x_{g e n}=c_{1} e^{(-1+i) t}+c_{2} e^{(-1-i) t}+t e^{-t}\left(-\frac{1}{2} \cos (t)\right)+\frac{3}{2} .
$$

4. Next we solve the corresponding nonhomogeneous system. The eigenpairs are $(-1+$ $\left.i,\binom{-1-i}{2}\right),\left(-1+i,\binom{1-i}{-2}\right)$ and so the homogeneous part is:

$$
\mathbf{x}=c_{1} e^{(-1+i) t}\binom{-1-i}{2}+c_{2} e^{(-1-i) t}\binom{-1+i}{2}
$$

5. So the change of basis is matrix $\mathbf{T}=\left(\begin{array}{cc}-1-i & -1+i \\ 2\end{array}\right)$ and we obtain:

$$
\mathbf{h}(t)=\left(\begin{array}{cc}
-i-1 & i-1 \\
2 & 2
\end{array}\right)^{-1}\binom{0}{e^{-t} \sin (t)}=\frac{e^{-t} \sin (t)}{4}\binom{1+i}{1-i}
$$

6. Thus, we obtain

$$
\begin{aligned}
y_{1}(t) & =e^{(-1+i) t} \int e^{-(-1+i) s}\left(\frac{e^{-s} \sin (s)(1+i)}{4}\right) d s \\
& =\frac{e^{(-1+i) t}(1+i)}{4}\left(\frac{-i t}{2}-\frac{e^{-2 i t}}{4}\right) \\
& =\frac{e^{(-1+i) t}(-1-i)}{8}\left(i t+\frac{e^{-2 i t}}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2}(t) & =e^{(-1-i) t} \int e^{-(-1-i) s}\left(\frac{e^{-s} \sin (s)(1-i)}{4}\right) d s \\
& =\frac{e^{(-1-i) t}(1-i)}{8}\left(i t-\frac{e^{2 i t}}{2}\right) .
\end{aligned}
$$

7. Therefore, the nonhomogeneous part is

$$
\mathbf{x}_{n h, 1}=\mathbf{T} \mathbf{y}=\binom{\frac{i e^{(-1-i) t}}{4}\left(i t-\frac{e^{2 i t}}{2}\right)+\frac{e^{(-1+i) t}}{4}\left(i t+\frac{e^{-2 i t}}{2}\right)}{(1+i) \frac{e^{(-1+i) t}}{4}\left(-i t-\frac{e^{-2 i t}}{2}\right)+(1-i) \frac{e^{(-1-i) t}}{4}\left(i t-\frac{e^{2 i t}}{2}\right)}
$$

using the Euler formula we obtain

$$
\begin{aligned}
& =\binom{\frac{-e^{-t}}{4} t 2 \cos (t)+i \frac{i e^{-t}}{4} \sin (t)}{\frac{e^{-t}}{4}(2 t-1)(\sin (t)+\cos (t))} \\
& =\frac{e^{-t}}{4} t 2 \cos (t)\binom{-1}{1}+\frac{e^{-t}}{4} \sin (t)\binom{i}{-1}+\frac{e^{-t}}{4}(2 t \sin (t)-\cos (t))\binom{0}{1}
\end{aligned}
$$

8. For the system $\mathbf{x}^{\prime}=A x+\binom{0}{3}$, we have

$$
\mathbf{x}_{n h, 2}=A^{-1}\binom{0}{-3}=\binom{\frac{3}{2}}{0}
$$

9. The general solution will be:

$$
\begin{aligned}
\mathbf{x}_{g e n}= & c_{1} e^{(-1+i) t}\binom{i+1}{-2}+c_{2} e^{(-1-i) t}\binom{i-1}{-2} \\
& +\frac{e^{-t}}{4} t 2 \cos (t)\binom{-1}{1} \\
& +\frac{e^{-t}}{4} \sin (t)\binom{i}{-1}+\frac{e^{-t}}{4}(2 t \sin (t)-\cos (t))\binom{0}{1} \\
& +\binom{\frac{3}{2}}{0} .
\end{aligned}
$$

10. Indeed the $x=\theta$ component is of the form:

$$
\theta=x=c_{1} e^{(-1+i) t}+c_{2} e^{(-1-i) t}+t e^{-t}\left(-\frac{1}{2} \cos (t)\right)+\frac{3}{2}
$$

which agrees with our second order solution.

Repeated eigenvalues system and sketch Consider the equation

$$
\theta^{\prime \prime}-2 \theta^{\prime}+\theta=3+e^{-t}
$$

and its related system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right] \mathbf{x}+\binom{0}{3+e^{-t}}
$$

Proof. 1. First we solve the second order equation. The homogeneous part is

$$
x_{h}=c_{1} e^{t}+c_{2} e^{t} t
$$

2. Then we apply our guess: $x_{n h}=a t^{s} e^{-t}$. Since -1 is not a root, we have $s=0$ and so it remains to find a:

$$
a\left(e^{-t}+2 e^{-t}+e^{-t}\right)=e^{-t} \Rightarrow a=\frac{1}{4}
$$

3. So the solution is:

$$
x_{g e n}=c_{1} e^{3 t}+c_{2} e^{-t}+\frac{1}{4} e^{-t}+3 .
$$

4. Next we solve the corresponding nonhomogeneous system. The eigenpair is $\left(1,\binom{1}{1}\right)$ and $\eta=k\binom{1}{1}+\binom{0}{1}$ and so the homogeneous part is:

$$
\mathbf{x}=c_{1} e^{t}\binom{1}{1}+c_{2} e^{t}\left(t\binom{1}{1}+\binom{0}{1}\right) .
$$

5. So the fundamental matrix is

$$
\boldsymbol{\Psi}=\left(\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & (t+1) e^{t}
\end{array}\right)
$$

6. The system becomes

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1,1}(t) v_{1}^{\prime}+x_{1,2}(t) v_{2}^{\prime}=g_{1}(t) \\
x_{2,1}(t) v_{1}^{\prime}+x_{2,2}(t) v_{2}^{\prime}=g_{2}(t)
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{c}
e^{t} v_{1}^{\prime}+t e^{t} v_{2}^{\prime}=0 \\
e^{t} v_{1}^{\prime}+(t+1) e^{t} v_{2}^{\prime}=e^{-t} \Rightarrow
\end{array}\right. \\
& \left\{\begin{array}{c}
v_{1}^{\prime}=-t e^{-2 t} \\
v_{2}^{\prime}=e^{-2 t}
\end{array} \Rightarrow\right. \\
& \left\{\begin{array}{c}
v_{1}=\frac{1}{4} e^{-2 t}(2 t+1) \\
v_{2}=\frac{e^{-2 t}}{-2}
\end{array}\right.
\end{aligned}
$$

7. Therefore, the nonhomogeneous part is

$$
\mathbf{x}_{n h, 1}=\mathbf{\Psi} \mathbf{v}=\frac{e^{-t}}{4}\binom{1}{-1}
$$

8. For the system $\mathrm{x}^{\prime}=A x+\binom{0}{3}$, we have

$$
\mathbf{x}_{n h, 2}=A^{-1}\binom{0}{-3}=\binom{3}{0}
$$

9. The general solution will be:

$$
\mathbf{x}_{g e n}=c_{1} e^{t}\binom{1}{1}+c_{2} e^{t}\left(t\binom{1}{1}+\binom{0}{1}\right)+\frac{e^{-t}}{4}\binom{1}{-1}+\binom{3}{0} .
$$

10. Indeed the $x=\theta$ component is of the form:

$$
\theta=x=c_{1} e^{t}+c_{2} t e^{t}+\frac{e^{-t}}{4}+3
$$

which agrees with our second order solution.

2 Autonomous systems and Linearization

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=x+y^{2}, \frac{\mathrm{~d} y}{\mathrm{dt}}=x+y .
$$

- nullcline,
- linearize and global chart,
- Lyapunov.

Proof. 1. First we find the critical points:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{dt}}=0 \text { and } \frac{\mathrm{d} y}{\mathrm{dt}}=0 \Rightarrow \\
& x=-y \text { and } y(y-1)=0 \Rightarrow(x, y)=(0,0),(-1,1) .
\end{aligned}
$$

2. We linearize around the origin:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left.\left(\begin{array}{cc}
1 & 2 y \\
1 & 1
\end{array}\right)\right|_{(0,0)} \mathbf{x} \\
& =\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \mathbf{x}
\end{aligned}
$$

3. The eigenpair is $\left(1,\binom{0}{1}\right)$ and $\eta=k\binom{0}{1}+\binom{1}{0}$ and so the solution is:

$$
\mathbf{x}=c_{1} e^{t}\binom{0}{1}+c_{2} e^{t}\left(t\binom{0}{1}+\binom{1}{0}\right) .
$$

4. The Lyapunov function is $V(x, y)=\frac{3}{4} x^{2}-\frac{1}{2} x y+\frac{1}{2} y^{2}$.
5. We linearize around the $(-1,1)$:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left.\left(\begin{array}{cc}
1 & 2 y \\
1 & 1
\end{array}\right)\right|_{(-1,1)}\left(\mathbf{x}-\binom{-1}{1}\right) \\
& =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \mathbf{x}+\binom{-1}{0}
\end{aligned}
$$

6. The eigenpairs are $\left(1+\sqrt{2},\binom{\sqrt{2}}{1}\right),\left(1-\sqrt{2},\binom{-\sqrt{2}}{1}\right)$ and so the solution is:

$$
\mathbf{x}=c_{1} e^{(1+\sqrt{2}) t}\binom{\sqrt{2}}{1}+c_{2} e^{(1-\sqrt{2}) t}\binom{-\sqrt{2}}{1}+\binom{-1}{1}
$$

7. The Lyapunov function is $V(x, y)=\frac{3}{4} x^{2}-\frac{1}{2} x y+\frac{1}{2} y^{2}$.

Nullcline and linearize Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=1-x y, \frac{\mathrm{~d} y}{\mathrm{dt}}=x-y^{3} .
$$

1. First we find the critical points:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{dt}}=0 \text { and } \frac{\mathrm{d} y}{\mathrm{dt}}=0 \Rightarrow \\
& 1=x y \text { and } x=y^{3} \Rightarrow(x, y)=(-1,-1),(1,1)
\end{aligned}
$$

2. We linearize around the critical point $(-1,-1)$:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left.\left(\begin{array}{cc}
-y & -x \\
1 & 3 y^{2}
\end{array}\right)\right|_{(-1,-1)}\left(\mathbf{x}-\binom{-1}{-1}\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right) \mathbf{x}+\binom{2}{4}
\end{aligned}
$$

3. For solutions of the form $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{v}$ we have

$$
\mathbf{x}_{n h}=\mathbf{A}^{-1}(-\mathbf{v})=\binom{-1}{-1}
$$

4. The eigenpair is $\left(2+\sqrt{2},\binom{-1+\sqrt{2}}{1},\left(2-\sqrt{2},\binom{-1-\sqrt{2}}{1}\right)\right.$ and so the general solution is:

$$
\mathbf{x}=c_{1} e^{(2+\sqrt{2}) t}\binom{-1+\sqrt{2}}{1}+c_{2} e^{(2-\sqrt{2}) t}\binom{-1-\sqrt{2}}{1}+\binom{-1}{-1}
$$

5. We linearize around the critical point $(1,1)$:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left.\left(\begin{array}{cc}
-y & -x \\
1 & 3 y^{2}
\end{array}\right)\right|_{(1,1)}\left(\mathbf{x}-\binom{1}{1}\right) \\
& =\left(\begin{array}{cc}
-1 & -1 \\
1 & 3
\end{array}\right) \mathbf{x}+\binom{2}{-4}
\end{aligned}
$$

6. The eigenpair is $\left(1+\sqrt{3},\binom{-2+\sqrt{3}}{1},\left(1-\sqrt{3},\binom{-2-\sqrt{3}}{1}\right)\right.$ and so the general solution is:

$$
\mathbf{x}=c_{1} e^{(1+\sqrt{3}) t}\binom{-2+\sqrt{3}}{1}+c_{2} e^{(1-\sqrt{3}) t}\binom{-2-\sqrt{3}}{1}+\binom{1}{1}
$$

3 Laplace transform

repeated and forcing Consider the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right] \mathbf{x}+\binom{0}{e^{-(t-1)}\left(1-f_{\text {step }}(t, 1)\right)}
$$

1. First we take the Laplace transform forcing term:

$$
\mathcal{L}\left\{\binom{0}{e^{-(t-1)}\left(1-f_{\text {step }}(t, 1)\right)}\right\}=\binom{0}{\frac{e^{-s}}{s+1}} .
$$

2. Therefore,

$$
\begin{aligned}
\mathcal{L}\{\mathbf{x}\} & =(s \mathbf{I}-\mathbf{A})^{-1}\binom{0}{\frac{e^{-s}}{s+1}} \\
& =\frac{1}{(s-1)^{2}}\left(\begin{array}{cc}
s-2 & 1 \\
-1 & s
\end{array}\right)\binom{0}{1} \frac{e^{-s}}{s+1} \\
& =\frac{1}{(s-1)^{2}}\binom{-1}{s} \frac{e^{-s}}{s+1} .
\end{aligned}
$$

Using the cover-up method we compute the partial fraction for the first component:

$$
-e^{-s}\left(\frac{1}{2(s-1)^{2}}-\frac{1}{4(s-1)}+\frac{1}{4(s+1)}\right)
$$

and for the second component

$$
-e^{-s}\left(\frac{1}{2(s-1)^{2}}+\frac{1}{4(s-1)}-\frac{1}{4(s+1)}\right)
$$

Next we invert the first component:

$$
\begin{aligned}
x & =\mathcal{L}^{-1}\left\{-e^{-s}\left(\frac{1}{2(s-1)^{2}}-\frac{1}{4(s-1)}+\frac{1}{4(s+1)}\right)\right\} \\
& =-\frac{e^{t-1}(t-1)}{2} f_{\text {heavy }}(t, 1)+\frac{e^{t-1}}{4} f_{\text {heavy }}(t, 1)-\frac{e^{1-t}}{4} f_{\text {heavy }}(t, 1)
\end{aligned}
$$

and the second component

$$
y=-\frac{e^{t-1}(t-1)}{2} f_{\text {heavy }}(t, 1)-\frac{e^{t-1}}{4} f_{\text {heavy }}(t, 1)+\frac{e^{1-t}}{4} f_{\text {heavy }}(t, 1) .
$$

3. So in vector notation we have the general solution:

$$
\begin{aligned}
\mathbf{x}_{\text {gen }}= & c_{1} e^{-t}\binom{3}{1}+c_{2} e^{-t}\left(t\binom{3}{1}+\binom{0}{1}\right) \\
& -\frac{e^{t-1}(t-1)}{2} f_{\text {heavy }}(t, 1)\binom{1}{1} \\
& +\left[\frac{e^{t-1}}{4} f_{\text {heavy }}(t, 1)-\frac{e^{1-t}}{4} f_{\text {heavy }}(t, 1)\right]\binom{1}{-1} .
\end{aligned}
$$

