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1.3.2 Picard-Lindelöf Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Generalized Existence and Uniqueness* . . . . . . . . . . . . . . . . . . . 35

1.4 Autonomous dynamics and Logistic growth . . . . . . . . . . . . . . . . . . . . . 36
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Second order equations 45
2.1 Method 1: Characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.1 Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Complex roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.1.3 Repeated roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Method 2: Undetermined coefficients . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Method 3: Variation of parameters . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4 Method 4: Reduction of order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5 Nonlinear into second order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.5.1 Riccati . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Systems of ODEs 71
3.1 Homogeneous linear systems with constant coefficients . . . . . . . . . . . . . . 73

3.1.1 Complex eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.3 Repeated eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

1



2 CONTENTS

3.2 Nonhomogeneous linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.1 Diagonalization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2.2 Using method of undetermined coefficients . . . . . . . . . . . . . . . . . 107
3.2.3 Integrating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.2.4 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3.1 Real eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.3.2 Complex eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.3 Repeated eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3.4 Differential inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.5 Systems of ODEs and Quadratic forms . . . . . . . . . . . . . . . . . . . 120

4 Autonomous systems 123

5 Locally linear systems 131
5.0.1 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.1 Simulation code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Liapunov’s Second Method 155
6.0.1 Example-presenting the method . . . . . . . . . . . . . . . . . . . . . . . 155
6.0.2 Method formal steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.0.3 Finding the Lyapunov function . . . . . . . . . . . . . . . . . . . . . . . 157
6.0.4 General result: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.0.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.0.6 Applied examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7 Laplace transform 165
7.1 Laplace transform for 1D ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 Laplace transform for systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2.1 Method formal steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.3 Properties of Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 Appendix 179
8.1 Inverse of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.1.1 Formal steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1.2 Example of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.1.3 Reasoning behind the method . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2 Exponential of matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.1 Identities and formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2.2 Local lipschitz constant of exponential matrix* . . . . . . . . . . . . . . . 184
8.2.3 Liouville’s Formula* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



Chapter 1

First order

1.1 First order odes basic concepts

We first study order one ODEs:
y′ = f(x, y).

For nice enough functions f we have existence and uniqueness. Here are some examples:

• For any continuous function, f , that depends only on t gives a solution y.

– For f(t, y) = t we get y′ = t ⇒ y(t) = t2

2
+ c, where c is some constant from

integrating.
– For f(t, y) = cos(t) we get y′ = cos(t)⇒ y(t) = sin(t) + c.

• For linear y′ = f(t, y) = ay we obtain the solution y(t) = cea·t (integrating factors).

• For y′ = f(t, y) = t2

1−y2 , |y| 6= 1 we obtain −t3 + 3y − y3 = c (separable equations).

• For y′ = f(t, y) = −2t+y2

2ty
we obtain t2 + ty2 = c (exact equations).

1.1.1 Direction fields: Vector field interpretation

A useful tool will be the vector field interpretation of y′ = f(t, y), for continuous f . A solution
curve γ(t) := (t, y(t)) has slope γ′(t0) = (1, y′(t0)) = (1, f(t0, y(t0))) at the point (t0, y(t0)). Also,
recall that the vector γ′(t) is tangent to the curve γ. So if we plot the vector γ′(t)= (1, f(t, y(t)))
we obtain qualitative behaviour of the solution. For example, for f(t, y) = t we have the
following linear vector field (1, f(t, y)) = (1, t) depicted in Figure 1.1.1:

Figure 1.1.1: the horizontal axis is t and the vertical is y(t).

Every solution curve corresponds to a distinct function of the form yc(t) = t2

2
+ c and

3



4 CHAPTER 1. FIRST ORDER

the red curve is for y0(t) = t2

2
(i.e when c = 0). The arrows are pointing in the direction (1, t).

The power of this method is that for ODEs for which we do not have an explicit solution we are
still able to plot the vector field to determine behaviour of the solution function. For example,
for the competing species equations (9.4, ex.1)

dx

dt
= x(1− x− y)

dy

dt
=
y

4
(3− 4y − 2x)

we don’t have an exact solution but we do have a vector field diagram that we will
keep returning to (see Figure 1.1.2):

Figure 1.1.2: the horizontal axis is x(t) and the vertical is y(t).

Method formal steps

1. First draw the curves (x, y(x)) where f(x, y) = 0 (called the equilibrium solutions or
critical points).

2. These will separate the regions where f(x, y) > 0 and f(x, y) < 0 and in turn where
arrows point up and down respectively. Evaluate f at a point to decide what sign it has.

3. Next draw the curves where f(x, y) = c for fixed constant c.

Examples

• Consider the equation y′ = f(x, y) = y(x− y). We illustrate the above formal steps to
obtain the diagram depicted in Figure 1.1.3

1. We have that y(x− y) = 0⇒ the curves are the y = 0 (x-axis) and the line x = y.

2. We have y(x− y) > 0 when y > 0 and x > y or y < 0 and x < y. Therefore, the
arrows are pointing up: below the x = y line in y > 0 and above x = y in y < 0.

3. So we observe that if the initial condition satisfies y0(x0 − y0) > 0 and y0 > 0 then
y(x)→ +∞ and similarly for the other sign.



1.2. METHODS FOR FIRST ORDER 5

Figure 1.1.3: Direction field of y′ = y(x− y).

4. En route to studying the competing species we will need the logistic equation (2.5):

dy

dt
= r
(

1− y

K

)
y,

where r > 0 is called the intrinsic growth rate and K is the saturation level.

(a) First we find the equilibrium solutions: r
(
1− y

K

)
y = 0⇒ y = K or y = 0. So

the equilibrium solutions are {ϕ1(t), ϕ2(t)} = {0, K}.
(b) We have

(
1− y

K

)
y > 0 when K > y and y > 0 or K < y and y < 0.

Figure 1.1.4: Direction field for the logistic equation.

(c) So we observe that if initially y0 > 0 then y → K (i.e. will limit to the saturation
level.)

1.2 Methods for first order
Given a specific first-order differential equation to be solved, we can attack it by means of the
following steps:

1. Is it separable? If so, separate the variables and integrate.
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2. Is it linear? That is, can it be written in the form:

dy

dt
+ P (t)y = Q(t)?

If so, multiply by the integrating factor µ(t) = exp
{∫
P (s)ds

}
.

3. Is it exact? That is, can the equation be written in the form:

M(t, y)dt+N(t, y)dy = 0

with My = Nt?

4. If the equation is not exact, do we have either My−Nx
N

or My−Nx
M

being a function of only
x, y respectively? If so then it can be made exact.

5. If the equation as it stands is not separable, linear, or exact, is there a plausible substitution
that will make it so?

Figure 1.2.1: Summarizing diagram of all the methods

1.2.1 Method 1: Separable equations

An equation is called separable if we can factor f(t, y) = f1(t) · f2(y) for some functions f1 and
f2 that only depend on t and y respectively. Assuming f2(y) is not 0 we obtain:

y′ = f1(x) · f2(y)⇔M(t) +N(y)y′ = 0

where M(t) := −f1(t), N(y) := 1
f2(y)

.

Method formal steps

1. Separate variables to either side

M(t) +N(y)
dy

dt
= 0⇒ N(y)dy = −M(t)dt

2. Integrate both sides ∫
N(y)dy = −

∫
M(t)dt.
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Example-presenting the method

Let P (t) be the number of dollars in a savings account at time t and suppose that the interest
is compounded continuously at an annual interest rate r(t), that varies in time. Then, after
∆t units of time, we expect, provided the interest rate does not change too much over a small
period of time, that we have obtained ∆t

1
of the total amount of annual interest, r(0), which

updates the amount in the savings account at time ∆t to be:

P (∆t) = (∆t · r(0))P (0).

In particular, through similar reasoning we see that for any time t we have

P (t+ ∆t)− P (t) = (t+ ∆t) · r(t)P (t)− t · r(t)P (t) = (∆t)r(t)P (t)

provided r(t) does not change too much over the time period [t, t+ ∆t]. In short, we obtain
∆P = r(t)P (t)∆t or in continuously updated time:

dP

dt
= r(t)P (t).

Example:

Assume that r(t) = t2 and P (0) = $ 103.

1. We separate
dP

dt
= r(t)P ⇒ 1

P
dP = r(t)dt

2. We integrate

∫
1

P
dP =

∫
t2dt⇒

ln |P | = t3

3
+ c

for some constant c. Since P ≥ 0 we obtain

P = $ exp

{
t3

3
+ c

}
.

3. Plugging in the initial condition we get

P (t) = $ 103 · exp
{
t3

3

}
.

General result:

If M,N are continuous, we can obtain an implicit solution by a clever use of chain-rule (§2.1).
First lets recall the definition of an implicit solution as well as the implicit function theorem. An
implicit equation is of the form f(t, y(t)) = 0 for some function f , and y(t) is the implicit
solution. There is an existence result for such equations called the Implicit function theorem
which we state here in a simple form:



8 CHAPTER 1. FIRST ORDER

Theorem 1.2.1. If f : R2 → R is continuously differentiable (i.e. both f and its derivatives are
continuous) and ∂x2f(x1, x2) 6= 0, then there exists function y : R→ R s.t.

f(t, y(t)) = 0.

Separable equation

The equations M(t) +N(y)y′ = 0 with y(t0) = y0, where M and N are continuous, have
implicit solutions of the form ∫ t

t0

M(s)ds+

∫ y

y0

N(x)dx = 0.

Proof.

1. Let functions HM , HN be antiderivatives of M,N respectively (i.e. H ′M(t) = M(t),
H ′N(y) = N(y)). Then we can rewrite our ODE as

H ′M(t) +H ′N(y)
dy

dt
= 0.

2. For the second term we note that by chain rule we have d
dt

(HN(y)) = H ′N(y)dy
dt

and so we
can rewrite the equation as:

0 = H ′M(t) +H ′N(y)
dy

dt
=

d

dt
(HM(t) +HN(y)).

3. This implies that HM (t) +HN (y) = c for some constant c. Therefore, by the fundamental
theorem of calculus we have∫ t

t0

M(s)ds+

∫ y

y0

N(x)dx = HM(t)−HM(t0) +HN(y)−HN(y0) = 0

where the last equation follows by using y(t0) = y0 to give c = HM(t0) +HN(y0).

Examples

• It can even tackle non-linear equations:

dy

dt
=
t− 5

y2
, y(0) = 1.

We first separate and integrate ∫
y2dy =

∫
(t− 5)dt.

This gives
y3

3
=
t2

2
− 5t+ c
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and using that y(0) = 1 we obtain

y(t) =

(
3t2

2
− 15t+ 1

)1/3

.

• Restricted solution:
y′ =

2x− 3

y
, y(0) = 2

We separate and integrate to get∫
y dy =

∫
(2x− 3)dx ⇒ y2

2
= x2 − 3x+ c.

Using the initial condition we obtain

y =
√

2(x2 − 3x+ 2) =
√

2(x− 1)(x− 2)

and since the square root is only defined for positive numbers, we require

x > 2 or x < 1.

• Asymptotic solution:

dy

dt
= t(1 + b · y), y(0) = 0

for b 6= 0. We separate and integrate

1

b
ln |1 + b · y| = t2

2
+ c

using the initial condition we obtain c = 0 which tells us that

1

b
ln |1 + b · y| = t2

2
≥ 0

which tells us that |1 + b · y| ≥ 1 > 0 and so 1 + b · y does not change sign. Observe that
by the initial condition we have 1 + b · y ≥ 1 and so we obtain

1

b
ln (1 + b · y) =

t2

2
+ c

and after solving for y we obtain

y =
1

b

(
exp

{
b

(
t2

2
+ c

)}
− 1

)
.

So the asymptotic behaviour, as t→ ±∞, depends on b:

y → +∞ if b > 0

y → −1

b
if b < 0 .

• An example with implicit solution:

dy

dt
=

t2 + 1

cos(y) + ey
, y(0) = π.
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We separate and integrate ∫
(cos(y) + ey)dy =

∫ (
t2 + 1

)
dt

⇒ sin(y) + ey =
t3

3
+ t+ c.

Using y(0) = π we get

sin(y) + ey =
t3

3
+ t+ eπ.

This equation cannot be directly solved in terms of y. One only has an implicit solution
that is obtained numerically.

Applied example

• Let X(t) denote the national product, K(t) the capital stock and L(t) the number of
workers in a country at time t. We assume the following relations:

X = AK1−αLα, K ′ = sX, L = L0e
λt,

where A, s, L0, λ are positive constants and 0 < α < 1 is called elasticity. The first
equation is the Cobb-Douglas production model. The second equation says that aggregate
investment is proportional to output. The third equation says that the labour forces grows
exponentially. Using these three we obtain the equation

K ′ = sX = ceαλtK1−α,

where c := AsLα0 . We also let K0 denote the initial capital stock (the stock at time t = 0).
We first separate variables and integrate:∫

Kα−1dK =

∫
ceαλtdt.

This gives:
Kα

α
= c

eαλt

αλ
+ C.

We find the constant C by plugging in the initial condition, so we get C :=
Kα

0

α
− sALα0

αλ

and in turn

K =

[
Kα

0 +
sALα0
λ

(eαλt − 1)

]1/α

.

Next we study the asymptotic behaviour of the ratio K
L
(also called the capital-labor ratio)

as t→ +∞:
K

L
=

1

L0eλt

[
Kα

0 +
sALα0
λ

(eαλt − 1)

]1/α

.

For simplicity we will first compute the asymptotic behaviour of(
K

L

)α
=

1

Lα0 e
λαt

[
Kα

0 +
sALα0
λ

(eαλt − 1)

]
.
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We note that the only surviving term as t tends to +∞ is the following:(
K

L

)α
≈ 1

Lα0 e
λαt

sALα0
λ

eαλt =
sA

λ
.

Therefore, the capital-labor ratio converges to

lim
t→∞

K

L
=

(
sA

λ

)1/α

.

This means that in the long term the national product per worker will be approximately
constant

X

L
=
AK1−αLα

L
= A

(
K

L

)1−α

≈ A

(
sA

λ

) 1−α
α

= A

(
sA

λ

) 1
α
−1

.

1.2.2 Method 2: Linear and Integrating factor

An equation is called linear if it is of the form:

y′ + p(t)y = g(t)

for continuous functions p, g where p is assumed to not change signs.

Method formal steps

1. Starting from y′ + p(t)y = g(t), we multiply both sides by a function µ(t) that we will
determine later:

µ(t) · y′ + µ(t)p(t) · y = µ(t)g(t).

2. If we had µ′ = µ(t)p(t) then observe that we can use the product rule:

µ · y′ + µ′ · y = µg(t) ⇒ d

dt
(µy) = µg(t).

3. Therefore,

y(t) =
1

µ(t)

∫ t

0

µ(s)g(s)ds+ c.

4. To find the desired function µ(t) we use the imposed condition, µ′(t) = µ(t)p(t), to get:

µ(t) = exp

{∫ t

0

p(s)ds

}
.

Note that we ignore the constant of integration in step 4 since we just want to find
some function satisfying µ′(t) = µ(t)p(t) and not all such functions.

For linear equations we can also draw a direction field to obtain qualitative behaviour
when an exact solution is not possible. The idea is to draw the curves along which dy

dt
= 0 and

then study the regions where dy
dt
> 0 and dy

dt
< 0.
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1. As explained above we first draw the curves along which

dy

dt
= f(t, y) = 0 ⇒ p(t)y = g(t) ⇒ y =

g(t)

p(t)

provided that p(t) is not 0.

2. Then we identify the regions where

p(t)y − g(t) > 0, p(t)y − g(t) < 0 Rightarrow y >
g(t)

p(t)
, y <

g(t)

p(t)

respectively, provided that p(t) > 0 (the inequalities are reversed otherwise).

Example-presenting the method

A rock contains two radioactive isotopes R1, R2 with R1 decaying into R2 with rate 5e−10t kg/sec.
So if y(t) is the total mass of R2, we obtain:

dy

dt
= rate of creation of R2 - rate of decay of R2

= 5e−10t − ky(t),

where k > 0 is the decay constant for R2. Also assume that y(0) = 40 kg. Lets start by drawing
the direction field to guess the solution:

1. The tangent is zero along the curve (equilibrium solution) so setting dy
dt

= 0 and solving
for y gives:

y(t) =
5e−10t

k

2. From this we see that 5e−10t − ky(t) = dy
dt
> 0 when 5

k
e−10t > y. Similarly we see that

dy
dt
< 0 when 5

k
e−10t < y.
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Figure 1.2.2: The black line is the equilibrium solution

3. So we observe that if t > 0, the solution y → 0 as t→ +∞.

Next we find the explicit solution:

1. We first multiply by the function µ(t), which we will determine specifically in the next
step,

µ(t)
dy

dt
+ µ(t)ky(t) = µ(t)5e−10t.

2. We require µ′(t) = µ(t)k, which can be easily solved to give:

µ(t) = ekt.

3. Then by product rule we have

d

dt
(ekty(t)) = 5e(k−10)t ⇒ y(t) = 5e−10t + e−ktc = 5e−10t + 35e−kt

where we used the initial condition y(0) = 40 kg to determine that c = 35.

4. Therefore, we indeed obtain that y → 0 as t→ +∞.

General result

We can obtain a solution by a clever use of product-rule (§2.1).
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Integrating factor

The y′ + p(t)y = g(t) have solutions of the form

y(t) =
1

µ(t)

∫ t

0

µ(s)g(s)ds+ c,

where µ(t) = exp
{∫ t

0
p(s)ds

}
, provided that g and p are continuous.

Proof.
µ(t) · (y′ + p(t)y) = µ(t) · g(t)⇒ µ(t) · y′ + µ(t)p(t) · y = µ(t)g(t).

We note that if we pick µ(t) so that µ′(t) = µ(t)p(t), we can then rewrite

µ · y′ + µ′ · y = µ(t)g(t)⇒ d

dt
(µy) = µ(t)g(t).

Therefore,

y(t) =
1

µ(t)

∫ t

0

µ(s)g(s)ds+ c.

To determine µ(t) we use µ′(t) = µ(t)p(t)

dµ(t)

dt
= µ(t)p(t)

⇒ 1

µ(t)

dµ(t)

dt
= p(t)

we integrate both sides ∫ t

0

1

µ(s)
dµ(s) =

∫ t

0

p(s)ds

⇒ ln |µ(t)| − ln |µ(0)| =
∫ t

0

p(s)ds+ c′

⇒ ln

( |µ(t)|
|µ(0)|

)
=

∫ t

0

p(s)ds+ c′

⇒ |µ(t)|
|µ(0)| = exp

{∫ t

0

p(s)ds+ c′
}

⇒ |µ(t)| = |µ(0)|exp
{∫ t

0

p(s)ds+ c′
}

where, for simplicity, we set µ(0) = 1 as well as c′ = 0. Observe that since the exponential
function is non-negative then the sign of µ(t) is determined by µ(0) (by continuity). Since we
chose µ(0) > 0 then we obtain

µ(t) = exp

{∫ t

0

p(s)ds

}
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Examples

• Consider the equation
y′ − 2y = t2e2t.

First we look at the equilibrium solution:

1. We have equilibrium solution y′ = 0⇒ y = −1
2
t2e2t.

2. We have positive/growing region y′ > 0⇒ t2e2t > −2y

Figure 1.2.3: The black line is the equilibrium solution

Next we obtain the solutions (notice that there is no initial condition so we anticipate
that we will have many solutions): 1st: we multiply by µ(t)

µy′ − 2µy = µt2e2t.

2nd: We solve (and choose the constant of integration to be 0)

µ′(t) = −2µ(t)⇒ µ = exp{−2t}.

3rd: We obtain
d

dt
(e−2ty) = e−2tt2e2t = t2

we integrate both sides to get

y(t) = e2t

(
t3

3
+ c

)
.

• Consider equation (§2.1 )

y′ +
1

2
y =

1

2
et/3.

We start with the 1st step of multiplying by µ(t) of our choice

µ(t)y′ + µ(t)
1

2
y = µ(t)

1

2
et/3.
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2nd step: We observe that to make use of product rule we need

µ′(t) =
1

2
µ(t)

⇒ ln |µ(t)| = 1

2
t+ c′

⇒µ(t) = et/2

by setting c′ = 0 and assuming µ(t) ≥ 0 to simplify.
3rd step: by product rule we obtain

d

dt
(µ(t) · y) = µ(t)

1

2
et/3 =

1

2
e

5t
6

⇒y(t) = e−t/2(
3

5
e

5t
6 + c)

⇒y(t) =
3

5
e
t
3 + ce−

t
2 .

Applied example

• Returning to the compounded interest example, suppose that we also have deposits and
withdrawals with rates d(t), w(t) respectively. Then the equation will be

P ′ = r(t)P + d(t)− w(t).

To see that this is the expected differential equation observe that at time t, for a small
amount of time ∆t, we expect

P (t+ ∆t) ≈ P (t)︸︷︷︸
amount at

time t

+ r(t)(∆t)P (t)︸ ︷︷ ︸
interest earned

at time t

+ d(t)∆t︸ ︷︷ ︸
deposit
amount

− w(t)∆t︸ ︷︷ ︸
withdrawal

amount

where we have assumed that the interest rate, the deposit rate, and withdrawal rate do
not change too much in the interval [t, t+ ∆t]. Notice that the presence of ∆t in d(t)∆t
and w(t)∆t is because d(t) and w(t) represent the rates for which we are depositing and
withdrawing at time t respectively. Subtracting P (t) and dividing by ∆t gives

∆P

∆t
≈ r(t)P (t) + d(t)− w(t)

and so letting ∆t tend to 0 leads to the differential equation.

1. We first multiply by unknown factor µ

µP ′ − µr(t)P = µ(d(t)− w(t)).

2. Then we obtain µ

µ′ = −µr(t)⇒ µ = exp

{
−
∫ t

0

r(s)ds

}
.

3. Therefore, by product rule we obtain
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d

dt
(Pµ) = exp

{
−
∫ t

0

r(s)ds

}
(d(t)− w(t))

⇒ P (t)exp

{
−
∫ t

0

r(s)ds

}
= P (0) +

∫ t

0

exp

{
−
∫ x

0

r(s)ds

}
(d(x)− w(x))dx

⇒ P (t) = exp

{∫ t

0

r(s)ds

}(
P (0) +

∫ t

0

exp

{
−
∫ x

0

r(s)ds

}
(d(x)− w(x))dx

)
4. This equation states that the present discounted value on the left, is the sum of

the initial assets P (0) plus the present discounted value of deposits minus withdrawals.

• When the price of a good is p, the total demand is D(p) = a− bp and the total supply
is S(p) = α + βp, where a, b, α, and β are positive constants. Observe that the slope
of the linear function respresenting D is negative while the slope of the linear function
representing S is positive. This matches the expectation that when price is increased
consumers are less interested in goods (making goods expensive prevents some from
purchasing the item) and that suppliers are more inclined to produce that product (it is
advantageous to sell items that generate more profit). When demand exceeds supply, price
rises (people are willing to pay more for scarce items), and when supply exceeds demand
it falls (common goods are easy to obtain, so consumers will simply look for lower prices).
We assume that the speed at which the price changes is proportional to the difference
between supply and demand. Specifically

p′ = λ(D(p)− S(p))

for λ > 0.

1. We multiple by µ to get

µp′ + µλ(b+ β)p = λµ(a− α).

2. We obtain µ
µ′ = λ(b+ β)µ⇒ µ = exp{λ(b+ β)t}.

3. Therefore, by product rule we obtain

d

dt
(µp) = λ(a− α)exp{λ(b+ β)t} ⇒ p(t) = c · exp{−λ(b+ β)t}+

(a− α)

(b+ β)
.

4. So as t → +∞ the price of this good converges to (a−α)
(b+β)

(This is the equilibrium
position for which demand is equal to supply. That is, the point for which the lines
intersect.).

1.2.3 Method 3: Exact equations

Suppose the function F (x, y) represents some physical quantity, such as temperature, in a region
of the xy-plane. Then the level curves of F, where F (x, y) = constant, could be interpreted as
isotherms on a weather map (i.e curves on a weather map representing constant temperatures).
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Figure 1.2.4: Level sets of constant temperature across the US.

Along one of these curves, γ(x) = (x, y(x)), of constant temperature we have, by Chain
rule and the fact that the temperature, F, is constant on these curves:

0 =
dF (γ(x))

dx
= Fx + Fy

dy

dx
.

Multiplying through by dx we obtain

0 = Fxdx+ Fydy.

Therefore, if we were not given the original function F but only an equation of the form:

M(x, y)dx+N(x, y)dy = 0,

we could set Fx := M(x, y), Fy := N(x, y) and then by integrating figure out the original F .

1. First ensure that there is such an F , by checking the exactness-condition:

∂M

∂y
=
∂N

∂x
.

This is because if there was such an F, then

∂M

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=
∂N

∂x
.

where ∂
∂x

and ∂
∂y

simply denote the partial derivatives with respect to the variables x and
y respectively (where we hold the other variable constant while taking the derivative).

2. Second, integrate M,N with respect to x, y respectively:

∫
M(x, y)dx =

∫
Fx(x, y)dx = F (x, y) + a(y)∫

N(x, y)dy =

∫
Fy(x, y)dy = F (x, y) + b(x)

for some unknown functions a, b (these play the role of constant of integration when you
integrate with respect to a single variable). So to obtain F it remains to determine either
a or b.

3. Equate the above two formulas for F (x, y):
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∫
M(x, y)dx+ a(y) = F (x, y) =

∫
N(x, y)dy + b(x).

4. Since to find F it suffices to determine a or b, pick the integral that is easier to evaluate.
Suppose that

∫
M(x, y)dx is easier to evaluate. To obtain a(y) we differentiate both

expression for F in y (for fixed x):

a′(y) = −
∫
My(x, y)dx+N(x, y)

and then integrate in y:

a(y) =

∫ [
−
∫
My(x, y)dx+N(x, y)

]
dy + c.

Observe that a is only a function of y since if we differentiate the expression we found for
a and use step 1 we find that

∂a

∂x
=

∫
∂

∂x

[
−
∫
My(x, y)dx+N(x, y)

]
dy

=

∫
[−My(x, y) +Nx(x, y)]dx

=

∫
0dx

= 0

Example-presenting the method

We measured the velocity field (u, v) of a two-dimensional incompressible flow and the curves
are given by ψ(x, y) = c for some yet unknown potential function ψ.

Figure 1.2.5: Velocity field of two dimensional flow.

For example suppose that v(x, y) := − y
x2+y2

, u(x, y) := x
x2+y2

then by incompressibility
our equation is:

udx− vdy = 0.

1. First we check the exactness condition:

−vx = −
(
− y

x2 + y2

)
x

= − 2xy

x2 + y2



20 CHAPTER 1. FIRST ORDER

uy = − 2xy

x2 + y2
.

2. Next we integrate u, v in y, x respectively:

ψ(x, y) =

∫
u(x, y)dx+ a(y) =

∫
x

x2 + y2
dx+ a(y) =

1

2
ln(x2 + y2) + a(y)

ψ(x, y) =

∫
− v(x, y)dy + b(x) =

1

2
ln(x2 + y2) + b(x)

3. Next to obtain a(y) we equate the two ψ-formulas to obtain

1

2
ln(x2 + y2) + a(y) =

1

2
ln(x2 + y2) + b(x)

⇒a(y) = b(x)

⇒a′(y) = 0

and so a(y) ≡ constant. Since a is constant then b is constant as well.

4. Therefore, the potential field is

ψ(x, y) =
1

2
ln(x2 + y2) + c.

5. Finally, we obtain the solution (x, y(x)) along which ψ(x, y(x)) = constant = C:

1

2
ln(x2 + y(x)2) = C − c⇒ y(x) = ±

√
exp{2(C − c)} − x2.

6. For example, if we knew that ψ(0, 1) = 0 then we would obtain c = 0. From this we see
that the solution of the level set, say for ψ = 60 = C, is

x2 + y2 = exp{2 · 60} ⇔ y(x) = ±
√
exp{2 · 60} − x2.

So the level curves are simply concentric circles.

General result:

Exact equation

If the equations M(x, y) +N(x, y)y′ = 0 satisfy

1. M,N,My, Nx are continuous

2. the exactness condition:
My(x, y) = Nx(x, y)

then there exists a function, ψ, such that

ψx = M and ψy = N.

Thus, along the solutions γ(x) := (x, y(x)) of the above equation we have:

dψ(x, y)

dx
= M(x, y)dx+N(x, y)dy = 0
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and in turn we obtain the implicit solution (x, yc(x)) for the following level set:

ψ(x, yc(x)) = c.

Examples

• Consider the equation

(1 + exy + xexy)dx+ (xex + 2)dy = 0.

First we check the exactness

∂M

∂y
= ex + xex =

∂N

∂x
.

Second we integrate N(x,y)

F (x, y) =

∫
N(x, y)dy + b(x) = (xex + 2)y + b(x).

Third, it remains to obtain b(x). We differentiate F in x

1 + exy + xexy = M = Fx = (xex + ex)y + b′(x)

⇒b(x) =

∫
[(1 + exy + xexy)− (xex + ex)y]dx+ c = x+ c.

Therefore,
F (x, y) = (xex + 2)y + x+ c.

So for a fixed level set F ≡ C + c we obtain the solution:

y(x) =
C − x
xex + 2

.

• Consider the equation

(6xy − y3)dx+ (4y + 3x2 − 3xy2)dy = 0

First we check exactness
∂M

∂y
= 6x− 3y2 =

∂N

∂x
.

Second, we integrate M(x, y)

F (x, y) =

∫
M(x, y)dx+ a(y) = 3x2y − y3x+ a(y).

Third we obtain a(y):

a′(y) = Fy − (3x2y − y3x)y

= 4y + 3x2 − 3xy2 − 3x2 + 3y2x
= 4y

⇒ a(y) = 2y2.
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Therefore,
F (x, y) = 3x2y − y3x+ 2y2 + c.

So for a fixed level set F ≡ C + c we obtain the implicit solution:

C = 3x2y − y3x+ 2y2.

Figure 1.2.6: Direction field for (6xy − y3)dx+ (4y + 3x2 − 3xy2)dy = 0.

Applied examples

A geometric problem occurring often in engineering is that of finding a family of curves
(orthogonal trajectories) that intersects a given family of curves orthogonally at each point. For
example, we may be given the lines of force of an electric field and want to find the equation for
the equipotential curves. Consider the level sets F (x, y) = k then their slope is given by

dy1

dx
= −Fx

Fy
.

Recall that two curves y1, y2 are perpendicular if their derivatives multiply to −1 (This definition
comes from the fact that two lines are perpendicular if their slopes multiply to be −1. Hence, if
we multiply the tangent vectors (slopes of tangent lines) then perpendicularity should be that
the derivatives vectors multiply to be −1.) and so:

dy2

dx
=
−1
dy1
dx

=
Fy
Fx
⇒ Fydx− Fxdy = 0

. Thus, by solving this equation we will obtain the implicit solution for the perpendicular curve.
Consider F (x, y) = xy, then xy = k are hyperbolas. We will show that x2 − y2 = k are the
curves perpendicular to them. First we check exactness for the equation

0 = Fydx− Fxdy = xdx− ydy
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we indeed have My = 0 = Nx. Second we evaluate F by integrating M

F (x, y) =

∫
Mdx+ a(y) =

x2

2
+ a(y).

Third we differentiate a(y)

a′(y) = −y ⇒ a(y) = −y
2

2
+ c.

Therefore, for F (x, y) = k we obtain

k =
x2

2
− y2

2
.

Figure 1.2.7: Hyperbolas perpendicular to each other

1.2.4 Method 4: Integrating factor and Exact

Some equations are close to being exact (they become exact after multiplying by an integrating
factor). For example, the equation

(2y − 6x)dx+ (3x− 4x2y−1)dy = 0

is not exact but if we multiply both sides by µ(x, y) = xy2 we obtain

xy2(2y − 6x)dx+ xy2(3x− 4x2y−1)dy = 0

an exact equation. You can check that F (x, y) = x2y3 − 2x3y2 + c solves the modified problem.

Method formal steps

1. If the equation is not exact, check whether

My −Nx

N
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is a function of only x or

Nx −Mx

M

is a function of only y.

2. Then in the first case the correct integrating factor is

µ(x) = exp

{∫
My −Nx

N
dx

}
and in the second case

µ(y) = exp

{∫
Nx −My

M
dy

}

Example-presenting the method

In the context of the above example on perpendicular trajectories, suppose that we want to
find the curves perpendicular to concentric circles. Then as explained above they satisfy the
equation:

2ydx− 2xdy = 0.

This equation is not exact because My = 2 6= −2 = Nx.

1. First we check the ratio
My −Nx

N
=

2 + 2

−2x
= −2

x

and so indeed this ratio only depends on x and it is continuous away from the origin.

2. We integrate to obtain µ

µ(x) = exp

{∫ −2

x
dx

}
= exp

{
ln
(
x−2
)}

= x−2.

3. Therefore, by multiplying by µ we obtain an exact equation:

2yx−2dx− 2x−1dy = 0.

4. Next we carry out the exact equation steps. First we obtain F

F (x, y) =

∫
Mdx+ a(y) = −2yx−1 + a(y).

5. Second we obtain the function a(y) by differentiating in y

−2x−1 + a′(y) = Fy = N(x, y) = −2x−1 ⇒ a(y) = c.

6. Therefore, we obtain F
F (x, y) = −2yx−1 + c

and note that for its level sets F (x, y) = k we have

y =
(c− k)

2
x = m · x.
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In other words, lines going through the origin are perpendicular to concentric circles (as
depicted in Figure 1.2.8).

Figure 1.2.8: Lines perpendicular to circles

General result:

Integrating factor ratios

The equations M(x, y) +N(x, y)y′ = 0 can be made exact if either

My −Nx

N

is continuous and depends only on x or

Nx −Mx

M

is continuous and depends only on y.

Proof. We are searching for a factor µ(x, y) that will satisfy the exact condition

∂

∂y
(µ(x, y)M(x, y)) =

∂

∂x
(µ(x, y)N(x, y))

⇒Mµy −Nµx = (Nx −My)µ.

This equation can be simplified if we assume that µ and My−Nx
N

are functions of only x:

0− µx(x) =
Nx −My

N
µ(x).

Therefore, we obtain

µ(x) = exp

{∫
My −Nx

N
dx

}
.
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Generalized integrating factor

Consider equation
M(x, y)dx+N(x, y)dy = 0.

If there are functions ω(x, y) and R(x, y) = R(ω(x, y)) s.t.

My −Nx

ωxN − ωyM
= R(ω),

then we can use the integrating factor:

µ(ω(x, y)) := exp

{∫
R(ω)dω

}
,

where we treat ω as a variable.

Proof.

By requiring exactness we obtain
(µ(ω)M)y = (µ(ω)N)x ⇒

µ′(ω)ωyM + µ(ω)My = µ′(ω)ωxN + µ(ω)Nx ⇒
dµ

µ
=

My −Nx

ωxN − ωyM
dω

= R(ω)dω.

As a result, we can solve

µ(ω) = exp

{∫
R(ω)dω

}
,

where we treat ω as a variable. Therefore, we obtain the desired exactness condition.

Examples

• Consider the equation

(2x2 + y)dx+ (x2y − x)dy = 0.

We first see that exactness is not satisfied

My = 1 6= 2xy − 1 = Nx.

First we check if the first ratio only depends on x:

My −Nx

N
=

1− 2xy + 1

x2y − x =
−2

x
.

Indeed it does, and so we can multiply by

µ(x) = exp

{∫ −2

x
dx

}
= x−2.



1.2. METHODS FOR FIRST ORDER 27

This gives us the exact equation

(2 + yx−2)dx+ (y − x−1)dy = 0.

Then we repeat the steps for exact equations. First we obtain F

F (x, y) =

∫
Mdx+ a(y) = 2x− yx−1 + a(y).

Then we need to obtain a(y):

−x−1 + a′(y) = Fy = N = y − x−1 ⇒ a(y) =
y2

2
+ c

and so F is
F (x, y) = 2x− yx−1 +

y2

2
+ c.

Therefore, for F ≡ C we obtain the implicit solution:

2x− yx−1 +
y2

2
= C − c.

• Consider the equation
2xy3 + y4 + (xy3 − 2y)y′ = 0.

1. You can check that this equation is not exact.
2. We will assume that the integrating factor µ is of the form µ = µ(ω(x, y)).
3. Then we obtain the following equation:

to have exactness we require
(µ(ω)M)y = (µ(ω)N)x ⇒

µ′(ω)ωyM + µ(ω)My = µ′(ω)ωxN + µ(ω)Nx ⇒
dµ

µ
=

My −Nx

ωxN − ωyM
dω.

In our case the last equation becomes
dµ

µ
=

6xy2 + 3y3

ωx(xy3 − 2y)− ωy(2xy3 + y4)
dω.

4. It is easy to notice identity y(6xy2 + 3y3) = 2(2xy3 + y4).Because of that, we will
take ωy = −3

y
, or ω = ω(y) = −3 ln y.

5. By substituting this result into equation above, we finally get
dµ

µ
=
−3

y
dy ⇒ µ =

1

y3
.

6. It is easy to check that x2 + xy + 2
y

= C is a solution.

• Consider the equation
dy +Mdx = 0,

with M := y
2x
−
√
πe−(xy)2

4x2
erfi(xy), where erfi(w) := 2√

π

∫ w
0
et

2
dt is the imaginary error

function.

1. Since My 6= 0 the equation is not exact.
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2. This equation satisfies
My

y − xM = R(xy) = xy.

3. Therefore, let the integrating factor be

µ(xy) = exp

{∫
R(ω)dω

}
= exp

{
(xy)2

}
.

1.2.5 Method 5: Substitution methods

If an equation is of the form y′ = f(t, y) with f being nonlinear, then one can try to figure out a
change of variables (t, y) 7→ z(t) that gives z′ = g(t, z) where now g is linear and thus the above
methods apply.

Homogeneous equations

A function f(t, y) is homogeneous of order α (or α−homogeneous) if it satisfies:

f(λt, λy) = λαf(t, y)

for all λ ∈ R. Equivalently, such functions are of the form:

f(t, y) = f
(
t · 1, t · y

t

)
= tα f

(
1,
y

t

)
︸ ︷︷ ︸
h( yt )

= tαh
(y
t

)
or

f(t, y) = yαf

(
t

y
, 1

)
= yα f

(
1(
y
t

) , 1)︸ ︷︷ ︸
g( yt )

= yαg
(y
t

)
.

For example, f(t, y) = tαe
y
t is homogeneous of order α. If an equation is of the form

M(t, y) +N(t, y)y′ = 0, for continuous functions M,N that are both α−homogeneous, we can
obtain a solution by a clever use of chain-rule (§2.1).

Homogeneous equations

The equations M(t, y) +N(t, y)y′ = 0 ,for α−homogeneous M,N , have implicit solutions
of the form ∫ z

z(0)

1

h(x)− xdx = ln |t|+ c,

where z(t) := y
t
and h

(
y
t

)
:= −M(t,y)

N(t,y)
.

Proof. 1. We rewrite the equation as

y′ = −M(t, y)

N(t, y)
=: f(t, y)

where we note that f(t, y)) is 0−homogeneous due to the ratio i.e. −M(t,y)
N(t,y)

=: h
(
y
t

)
.

2. Therefore we can rewrite the equation as
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y′ = h
(y
t

)
.

3. By change of variables z(t) := y(t)
t

we can rewrite the equation as

t
dz

dt
+ z = y′ = h

(y
t

)
= h(z).

By rearranging it we get

dz

dt
=
h(z)− z

t

⇒
∫ z

z0

1

h(x)− xdx =

∫ t

t0

1

t
dt+ c

where z(t0) = z0. Let Φ(z) := LHS =
∫ z
z0

1
h(x)−xdx then we obtain the implicit solution:

Φ(z) = ln |t|+ c.

Bernoulli equation

The non-linear equations of the form

dy

dx
+ P (x)y = Q(x)yn

are called Bernoulli equations. By substituting v = y1−n we obtain the linear equation:

dv

dx
+ (1− n)P (x)v = (1− n)Q(x)

which we can solve by means of an integrating factor.

Riccati Equation

The non-linear equations of the form

dy

dx
= A(x)y2 +B(x)y + C(x)

are called Riccati equations. By substituting y = f + 1
v
, where f is a particular solution of

the above, we obtain the linear equation:

dv

dx
+ (B + 2fA)v = −A.

1.2.6 Method 6: Linearize

Example-presenting the method

• (Energy balance equation (EBM)) The global mean temperature T can be modeled by
the [Wal15]

R
dT

dt
= Q(1− α)− σT 4,

where
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– T (K,kelvins)is the average temperature in the Earth’s photosphere (upper atmo-
sphere,where the energy balance occurs in this model) (1kelvin= 1C);

– t(years)is time;

– R (W −yr/m2K) is the averaged heat capacity of the Earth/atmosphere system(heat
capacity is the amount of heat required to raise the temperature of an object or
substance 1 kelvin(=1 C));

– Q (W/m2) is the annual global mean incoming solar radiation (or insulation) per
square meter of the Earth’s surface;

– α (dimensionless) is planetary albedo(reflectivity),and

– σ(W/m2K4) is a constant of proportionality, the Stefan-Boltzmann constant.

• Let TS be the equilibrium surface temperature

TS := (
(1− α)Q

σ
)1/4 = 288K.

We will make the assumption that T is close to TS over time.

• By Taylor expanding the non-linear term we obtain

T 4 = T 4
S + 4T 3

S(T − TS) +O(|(T − TS)|).

• Substituting in the equation we obtain

R
dY

dt
= Q(1− α)− σT 4

S − (σ · 4T 3
S)Y,

where Y := T − TS. This a linear ode that can solved by integrating factor.

1.2.7 Summary

Given a specific first-order differential equation to be solved, we can attack it by means of the
following steps:

1. Is it separable? If so, separate the variables and integrate.

2. Is it linear? That is, can it be written in the form:

dy

dt
+ P (t)y = Q(t)?

If so, multiply by the integrating factor µ(t) = exp
{∫
P (s)ds

}
.

3. Is it exact? That is,when the equation is written in the form:

M(t, y) +N(t, y)dy = 0

with My = Nt.

4. If the equation is not exact, do we have either My−Nt
N

or My−Nt
M

being a function of only
t, y respectively? If so then it can be made exact.

5. If the equation as it stands is not separable, linear, or exact, is there a plausible substitution
that will make it so? For instance, is it homogeneous?
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Figure 1.2.9: Summarizing diagram of all the methods

1.3 Existence and Uniqueness

If the first order equation y′ = f(t, y) satisfies that f, fy are continuous as functions of
(t, y) for |t| < a, |y| < b, then there is some interval t ∈ [0, h] in which there exists a unique
solution y = ϕ(t).

1.3.1 Method Formal steps: Picard’s method

Observe that by integrating both sides we obtain by fundamental theorem of calculus:

y(t)− y0 =

∫ t

t0

f(s, y(s))ds,

where y0 = y(t0). We will approximate the solution y as follows

1. Let ϕ0(t) be an initial guess to the solution eg. ϕ0(t) ≡ y0, then we define the next step
as:

ϕ1(t) := y0 +

∫ t

t0

f(s, ϕ0(s))ds.

2. Similarly, given ϕn we define

ϕn+1(t) := y0 +

∫ t

t0

f(s, ϕn(s))ds.

Example-Presenting the method

Consider the initial value problem:
y′ = y, y(0) = 1

1. Let ϕ0 ≡ 1 then

ϕ1(t) := 1 +

∫ t

0

f(s, ϕ0(s))ds = 1 +

∫ t

0

1ds = 1 + t.
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2. We repeat

ϕ2(t) := 1 +

∫ t

0

f(s, ϕ1(s))ds = 1 +

∫ t

0

(1 + s)ds = 1 + t+
t2

2
.

3. Assume that ϕn(t) := 1 + t+ ...+ tn

n!
then

ϕn+1(t) := 1 +

∫ t

0

f(s, ϕn(s))ds = 1 +

∫ t

0

n∑
k=0

tk

k!
ds = 1 + t+ ...+

tn+1

(n+ 1)!
.

4. Therefore, as expected we obtained the approximation to y(t) = et, which is indeed
the solution of the above initial value problem.

1.3.2 Picard-Lindelöf Theorem

In this section we will prove the Picard-Lindelöf Theorem. To do this we will first reformulate
the differential equation into an "integral equation”. The reason we do this is because integral
are more lenient with respect to regularity (think of how shabby a Riemann integrable function
can look) while derivatives are not. This reformulation is the goal of the following lemma:

Integral equation reformulation

Suppose f(x, t) is a continuous function on a domain (a, b)× (c, d). Then if x is a solution
to

x′(t) = f(x(t), t), for t ∈ (c, d) such that x(t0) = x0

whose derivative is continuous and for t0 ∈ (c, d), then x satisfies

x(t) = x0 +

∫ t

t0

f(x(s), s)ds

for all t ∈ (c, d). Conversely, suppose x is a continuous function that satisfies

x(t) = x0 +

∫ t

t0

f(x(s), s)ds

for all t ∈ (c, d) then x is differentiable withcontinuous derivative and x solves

x′(t) = f(x(t), t), for t ∈ (c, d) such that x(t0) = x0.

Proof. First suppose that x solves

x′(t) = f(x(t), t), for t ∈ (c, d) such that x(t0) = x0.

and has a continuos derivative. Since x is continuous then f(x(t), t) is a continuous function of t.
Integrating both sides from t0 to any t ∈ (c, d) gives, by the Fundamental Theorem of Calculus,

x(t)− x0 = x(t)− x(t0) =

∫ t

t0

x(s)ds =

∫ t

t0

f(x(s), s)ds.

Since t was arbitrary we conclude that for all t ∈ (c, d) we have

x(t) = x0 +

∫ t

t0

f(x(s), s)ds.
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Conversely, suppose x is a continuous function that satisfies

x(t) = x0 +

∫ t

t0

f(x(s), s)ds.

Observe that since x is continuous then f(x(s), s) is continuous. By the Fundamental Theorem
of Calculus we conclude that the map

t 7→
∫ t

t0

f(x(s), s)ds

is differentiable for all t. Since constant functions are differentiable we conclude that

x(t) = x0 +

∫ t

t0

f(x(s), s)ds

is differentiable for all t. By the Fundamental Theorem of Calculus we have

x′(t) = f(x(t), t)

for all t ∈ (c, d). Since f(x(t, t)) is continuous then x′(t) is continuous. So x solves the ODE
and has continuous derivative. In particular, notice that x(t0) = x0.

Now we have exchanged the goal of demonstrating existence and uniqueness of an
IVP for demonstrating existence and uniqueness of an integral equation. Notice that this
reformulation has x appear on both sides of the desired equation. This allows us to use "fixed
point methods” to achieve our goal. We recall, for convenience, the Banach Fixed Point Theorem
which is proven in the appendix of analysis results:

Banach Fixed Point Theorem

Suppose X is a non-empty and complete metric space. Suppose also, that f : X → X
satisfies

d(f(x), f(y)) ≤ kd(x, y)

for all x, y ∈ X and where 0 ≤ k < 1. Then there exists a unique point z ∈ X such that
f(z) = z.

We are now ready to prove the existence and uniqueness theorem.

Picard-Lindelöf Theorem

Suppose f : [a, b]× [c, d]→ R satisfies, for each fixed t ∈ [c, d] and for any x1, x2 ∈ [a, b]

|f(x1, t)− f(x2, t)| ≤M |x1 − x2|

where M ≥ 0 and does not depend on t. Then, if t0 ∈ (c, d) and x0 ∈ (a, b), there exists
ε > 0 and a continuous function x such that

x(t) = x0 +

∫ t

t0

f(x(s), s)ds

for t ∈ [t0 − ε, t0 + ε].
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Proof. Observe that for any x, y ∈ (a, b) we have, for t ≥ t0∣∣∣∣(x0 +

∫ t

t0

f(x, s)ds

)
−
(
x0 +

∫ t

t0

f(y, s)ds

)∣∣∣∣ =

∣∣∣∣∫ t

t0

(
f(x, s)− f(y, s)

)
ds

∣∣∣∣
≤
∫ t

t0

|f(x, s)− f(y, s)|ds

≤M(t− t0)|x− y|
= M |t− t0||x− y|

A similar computation holds for t < t0 with the same conclusion. Thus, for all t we have∣∣∣∣(x0 +

∫ t

t0

f(x, s)ds

)
−
(
x0 +

∫ t

t0

f(y, s)ds

)∣∣∣∣ ≤M |t− t0||x− y|

and in particular if we restrict the consideration of the above inequality to t ∈ [t0− 1
2M
, t0 + 1

2M
]

then we can further conclude that∣∣∣∣(x0 +

∫ t

t0

f(x, s)ds

)
−
(
x0 +

∫ t

t0

f(y, s)ds

)∣∣∣∣ ≤ 1

2
|x− y|

for t ∈ [t0 − 1
2M
, t0 + 1

2M
]. This constraint shows that the dependence of x0 +

∫ t
t0
f(x, s)ds on x

is that of a contraction. Next observe that for t ∈ [t0 − 1
2M
, t0 + 1

2M
] we have∣∣∣∣(x0 +

∫ t

t0

f(x, s)ds

)
− x0

∣∣∣∣ =

∣∣∣∣∫ t

t0

f(x, s)ds

∣∣∣∣ ≤ ‖f‖C([a,b]×[c,d])|t− t0|.

Thus, if we choose t ∈
[
t0 − min{x0−a,b−x0}

‖f‖C([a,b]×[c,d])
, t0 + min{x0−a,b−x0}

‖f‖C([a,b]×[c,d])

]
then we may conclude that

a ≤ x0 +

∫ t

t0

f(x, s)ds ≤ b.

Thus, in this constraint the output of x0 +
∫ t
t0
f(x, s)ds is in between a and b. We restrict our

attention to t ∈ [t0 − 1
2M
, t0 + 1

2M
] ∩
[
t0 − min{x0−a,b−x0}

‖f‖C([a,b]×[c,d])
, t0 + min{x0−a,b−x0}

‖f‖C([a,b]×[c,d])

]
= I so that both of

the above described conditions are true. Now we define F : C(I; [a, b])→ C(I; [a, b]) by

F(x) = x0 +

∫ t

t0

f(x(s), s)ds.

We verify that F is well defined and that F is a contraction. Let x ∈ C(I; [a, b]). Then x is
bounded and so

F(x) = x0 +

∫ t

t0

f(x(s), s)ds.

is a continuous function. In particular, since x is a function that maps to [a, b] the above
expression makes sense and is defined for all t ∈ I. By construction, since t ∈ I and x(I) ⊂ [a, b]
then a previous computation shows that

a ≤ x0 +

∫ t

t0

f(x(s), s)ds ≤ b.

for all t ∈ I. The previous computation still holds since f(x(s), s) ≤ ‖f‖C([a,b]×[c,d]) for all s ∈ I
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remains true. Thus, F(x) ∈ C(I; [a, b]). Next we show that F is a contraction. By mimicking a
previous computation we have, since t ∈ I and x(I), y(I) ⊂ [a, b] for x, y ∈ C(I; [a, b]), that for
all t ∈ I ∣∣∣∣(x0 +

∫ t

t0

f(x(s), s)ds

)
−
(
x0 +

∫ t

t0

f(y(s), s)ds

)∣∣∣∣ ≤M

∫ t

t0

|x(s)− y(s)|ds

≤M |t− t0|‖x− y‖C(I;[a,b])

≤ 1

2
‖x− y‖C(I;[a,b])

where the last inequality follows from the choice t ∈ I. From this we conclude that

|(F(x))(t)− (F(y))(t)| ≤ 1

2
‖x− y‖C(I;[a,b])

for all t ∈ I. Hence,
‖F(x)−F(y)‖C(I;[a,b]) ≤

1

2
‖x− y‖C(I;[a,b])

which shows that F is a contraction on C(I; [a, b]). By the Banach Fixed Point Theorem we
conclude that there is a fixed point x∗ ∈ C(I; [a, b]) satisfying

x∗(t) = x0 +

∫ t

t0

f(x∗(s), s)ds

for all t ∈ I.

1.3.3 Generalized Existence and Uniqueness*

We prove a general form of existence and uniqueness known as the Osgood’s existence and
uniqueness theorem:

Osgood’s existence and uniqueness

Suppose f(x, t) is continuous in both variables and satisfies, for each x ∈ [a, b],

|f(x, t1)− f(x, t2)| ≤ ω(|t1 − t2|)

where ω : [0,∞)→ [0,∞) satisfies ω−1({0}) = {0}, 1
ω
is Riemann integrable on [δ, 1] for

all δ > 0, and

lim
δ→0+

∫ 1

δ

1

ω(s)
ds = +∞.

Then there exists a unique y that satisfies

y′(x) = f(x, y(x))

for x ∈ [a, a+ ε) as well as y(a) = y0.

Proof. Since f is continuous then by the Peano’s existence theorem we have that a solution, y,
exists for x ∈ [a, a+ ε) where ε > 0. We now demonstrate uniqueness. Suppose not. Then there
exist two solutions y1, y2 to this initial value problem. Since the solutions are distinct then there
is a point x∗ such that y1(x∗) 6= y2(x∗). In particular, we see that

A =
{
x ∈ [a, a+ ε)

∣∣ y1(x) 6= y2(x)
}
6= φ.



36 CHAPTER 1. FIRST ORDER

Observe that by continuity that A is also open. Choose any point in A and consider the largest
interval containing the chosen point. Suppose this interval has boundary points c and d. I
claim that we must have y1(c) = y2(c) and y1(d) = y2(d). Suppose not. If this fails for c then
notice that by continuity there will be a δ > 0 such that y1(x) 6= y2(x) for x ∈ (c− δ, c). This
contradicts how we found the endpoint c. A similar proof works for d. Observe also that we
either have y1(x) > y2(x) for all x ∈ (c, d) or y2(x) > y1(x) for all x ∈ (c, d). This is because
(c, d) ⊂ A and if both situations occurred in (c, d) then by the Intermediate Value Theorem
there would be a point in (c, d) ⊂ A where y1 and y2 agree. Assume, without loss of generality,
that y1(x) > y2(x) for all x ∈ (c, d). Then, for x ∈ (c, d) we have

y′1(x)− y′2(x) = f(x, y1(x))− f(x, y2(x)) ≤ |f1(x, y1(x))− f(x, y2(x))|
≤ ω(|y1(x)− y2(x)|) = ω(y1(x)− y2(x)).

Hence, for x ∈ (c, d)
(y1(x)− y2(x))′

ω(y1(x)− y2(x))
≤ 1.

By Preiss and Uher’s version of the change of variables theorem we have for each t > c and for
fixed t∗ > t that ∫ t∗

t

(y1(x)− y2(x))′

ω(y1(x)− y2(x))
dx =

∫ (y1−y2)(t∗)

(y1−y2)(t)

1

ω(s)
ds

where we choose t∗ so that (y1 − y2)(t∗) < 1 (this is possible since y1 − y2 is continuous and is 0
at t = c. Hence, ∫ (y1−y2)(t∗)

(y1−y2)(t)

1

ω(s)
ds ≤ t∗ − t.

Letting t tend to c gives

+∞ = lim
t→c+

∫ (y1−y2)(t∗)

(y1−y2)(t)

1

ω(s)
ds ≤ t∗ − c < +∞

which is a contradiction (note that we have used that (y1 − y2)(t) tends to 0 as t tends to c).
We conclude that the solution is unique.

Remarks

We remark that the Osgood condition can be weakened to requiring

|f(x, t1)− f(x, t2)| ≤ ω(|t1 − t2|)ϕ(x)

for each x ∈ [a, b] and any t1, t2 where ω satisfies the conditions stated in Osgood’s existence and
uniqueness theorem and ϕ ≥ 0 is Riemann integrable on [0, 1]. This strengthening of Osgood’s
theorem is referred to as the Montel-Tonelli uniqueness theorem.

1.4 Autonomous dynamics and Logistic growth

The equations of the form
dy

dt
= f(y)

are called autonomous. Such equations might not have explicit solutions, but it is possible to
draw qualitative solutions for them.
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Method formal steps

1. First we draw the curves ϕi(t) = (t, y(t)) where f(y) = 0 (called the equilibrium
solutions or critical points ).

2. These will separate the regions into y′ = f(y) > 0 and y′ = f(y) < 0.

3. We classify each ϕi as asymptotically stable if for y(t) starting close to ϕi (i.e.
|y0 − ϕi(0)| < ε)

lim
t→∞

y(t) = ϕi

irrespective of whether y0 < ϕi(0), y0 > ϕi(0) and asymptotically unstable if solutions
that start close to the ϕi(t) curve, move away from it.

Example-Presenting the method

En route to studying the competing species we will need the logistic equation (2.5): Let y(t) be
the population of a given species at time t then

dy

dt
= r
(

1− y

K

)
y,

where r > 0 is called the intrinsic growth rate and K is the saturation level. Since y is a physical
quantity, the y < 0 is ignored.

1. First we find the equilibrium solutions: r
(
1− y

K

)
y = 0⇒ y = K or y = 0. So the

equilibrium solutions are ϕ1(t) ≡ 0, ϕ2(t) ≡ K.

2. We have y′ = r(1− y
K

)y > 0 when K > y and y > 0 (y < 0 is ignored). Therefore, the
solutions started from below K will be growing upwards to y = K.

3. On the other hand, y′ = r(1− y
K

)y < 0 when K < y and y > 0. Therefore, the
solutions started from above K will be decaying downwards to y = K.

Figure 1.4.1: Direction field for logistic with K = 3.



38 CHAPTER 1. FIRST ORDER

4. So we observe that irrespective of the initial value the solution converges to the saturation
level: lim

t→∞
y = K. Therefore, ϕ2(t) ≡ K is the asymptotically stable solution.

5. On the other hand, we observe that if y is really small (i.e. close to ϕ1 = 0) but still
positive, the solutions still move away from ϕ1 and go towards ϕ2. Therefore, ϕ1 is the
asymptotically unstable solution.

6. Physically that the population dynamics will return to the saturation/capacity level K;
the most the ecosystem can withhold.

Examples

1. Consider the equation
y′ = (y − 1)(y − 2)(y − 3).

(a) First we identify the equilibrium solutions:

y′ = 0⇒ ϕ1(t) ≡ 1, ϕ2(t) ≡ 2, and ϕ3(t) ≡ 3.

(b) Second we identify the sign of y′ in each region:
• Above y > 3 we have y′ > 0 and so the solution will growth to infinity
• In y ∈ [2, 3] we have y′ < 0 and so the solution will decay downwards to ϕ2.
• In y ∈ [1, 2] we have y′ > 0 and so the solution will grow upwards to 2. Therefore,

in either case
y(t)→ ϕ2

and so ϕ2 is asymptotically stable.
• In y ∈ [0, 1] we have y′ < 0 and so the solution will decay downwards to minus

infinity.
• Therefore, ϕ1, ϕ3 will be asymptotically unstable.

Figure 1.4.2: Direction field for y′ = (y − 1)(y − 2)(y − 3).

2. Consider the equation
y′ = e−y − 1.
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(a) First we identify the equilibrium solution/-s:

y′ = 0⇒ ϕ(t) = 0.

(b) Second we identify the sign of y′ in each region:

• Above y > 0 we have y′ = e−y − 1 < 0 and so it will decay downwards to 0.
• Below y < 0 we have y′ = e−y−1 > 0 and so it will grow upwards to 0. Therefore,
ϕ is asymptotically stable.

Figure 1.4.3: Direction field for y′ = e−y − 1.

Applied examples

• We return to the price of good example from the integrating factor section. When the
price of a good is p, the total demand is D(p) = a - bp and the total supply is S(p) = α+βp,
where a, b, α, and β are positive constants. When demand exceeds supply, price rises, and
when supply exceeds demand it falls. The speed at which the price changes is proportional
to the difference between supply and demand. Specifically

p′ = λ(D(p)− S(p))

for λ > 0.

1. We obtained
p(t) = c · exp{−λ(b+ β)t}+

(a− α)

(b+ β)
.

2. So as t → +∞ the price of this good converges to (a−α)
(b+β)

. Now we will show that
ϕ = (a−α)

(b+β)
in fact an asymptotically stable solution.

3. We first obtain the equilibrium solutions

p′ = 0 =⇒ D(p) = S(p) =⇒ a− bp = α + βp =⇒ p =
(a− α)

(b+ β)
.
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4. Since D(p) = S(p), this is the price where supply will match demand. We have p′ > 0

when p < (a−α)
(b+β)

and so the price will grow upwards to the stable price.

5. We have p′ < 0 when p > (a−α)
(b+β)

and so the price will decay downards to the stable
price.



1.5. PROBLEMS 41

1.5 Problems

The questions labeled by (*) are trickier.

• Linear integrating factor (2.2)

– Find the general solution and use it to determine how solutions behave as t→ +∞
1. y′ + 3y = t+ e−2t

2. y′ + y = te−t + 1,
3. (*)1 y′ + 1

t
y = 3 cos(2t), t > 0

– Find the general solution and use it to determine the asymptotic behavior for different
values of a
1. y′ − 1

2
y = 2 cos(t), y(0) = a as t→ +∞,

2. (*) ty′ + (t+ 1)y = 2te−t, y(1) = a, 0 < t as t→ 0.
3. (*) A rock contains two radioactive isotopes R1, R2 with R1 decaying into R2

with rate 5e−20tkg/sec. So if y(t) is the total mass of R2, we obtain:

dy

dt
= rate of creation of R2 - rate of decay of R2

= 5e−20t − ky(t),

where k > 0 is the decay constant for R2. Also assume that y(0) = 40 kg.
– Suppose x : [a, b] → R is continuous on [a, b], differentiable on (a, b), and satisfies
x′(t) ≤ c(t)x(t) + b(t) on (a, b) where c, b : [a, b]→ R are continuous.
1. By using an integrating factor, µ, show that we can rewrite the inequality
x′(t) ≤ c(t)x(t) + b(t) as (

µ(t)x(t)
)′ ≤ µ(t)b(t).

2. By further rewriting the inequality conclude that the function

F (t) = µ(t)x(t)−
∫ t

a

µ(s)b(s)ds

is non-increasing on (a, b) and continuous on [a, b]. Conclude that F is non-
increasing on [a, b] and hence

F (t) ≤ F (a).

Conclude that

x(t) ≤ x(a)e
∫ t
ac(s)ds + e

∫ t
ac(s)ds

∫ t

a

e

[
−

∫ s
a c(s)ds

]
b(s)ds

for t ∈ [a, b].

• Separable (2.1):

– For each of the questions (1)− (5) you should:
(a) find the solution of the given initial value problem
(b) determine the interval in which the solution is defined:

1We follow the standard book practice of using a (*) to indicate a question is trickier.
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1. y′ = (1− 2x)y2, y(0) = −1/6,
2. y′ = (1− 2x)/y, y(1) = −2,
3. (*) dr

dθ
= r2

θ
, r(1) = 2,

4. (*) y′ = 2x/(1 + 2y), y(2) = 0,
5. (*) y′ = y2 + 1, y(0) = 0 (only the interval containing 0).

– For each of the following questions you should:
(a) find the solution of the given initial value problem
(b) determine the behaviour as t→ +∞:

1. (*) y′ = cos2(y), y(0) = 2,
2. (*) y′ = ty(4−y)

3
, y(0) = 1.

– (*) Homogeneous equations problem 2.2-(25).

• Homogeneous equations problem

1. dy
dx

= x2+xy+y2

x2

• Autonomous equations

1. Draw the phase lines and identify which solutions are asymptotically stable/unstable.
(a) dy

dt
= ay + by2, a > 0, b > 0, −∞ < y0 <∞ ,

(b) dy
dt

= y(y − 1)(y − 2), y0 ≥ 0,
(c) dy

dt
= ey − 1, −∞ < y0 <∞ .

2. (**) Suppose f : [c, d]→ R and suppose x : [a, b]→ R is a function which is continu-
ous on [a, b], differentiable on (a, b), x([a, b]) ⊂ [c, d], and x satisfies x′(t) = f(x(t))
for t ∈ [a, b]. Show that x is monotone on [a, b].
Hints:
(a) Suppose not. Then, without loss of generality, we can find points a ≤ t1 <

t2 < t3 ≤ b such that x(t1) < x(t2) but x(t3) < x(t2). Use this to argue that
there is a point t4 ∈ (t1, t3) such that x attains its maximum on [t1, t3] at t4.
Then construct t5 ∈ (t1, t4) and t6 ∈ (t4, t3) such that x′(t5) > 0, x′(t6) < 0,
x(t5) < x(t4) and x(t6) < x(t4).

(b) If x(t5) = x(t6) use the differential equation satisfied by x to conclude we are
done. Otherwise, without loss of generality, we may assume x(t5) < x(t6). Show
that the collection of t ∈ (t5, t4) such that x(t) = x(t6) is non-empty.

(c) Now suppose, for t ∈ (t5, t4), x′(t) < 0 whenever x(t) = x(t6) and consider the
set

A =
{
t ∈ (t5, t4)

∣∣ x(t) 6= x(t6)
}
.

Show that if t∗ ∈ A then there exists ε > 0 such that t∗ ± ε ∈ A. Finally show
that the set x−1(A) has the property that if s ∈ x−1(A) then s± δ ∈ x−1(A) for
δ > 0 small enough (you will need to use that x is continuous here).

(d) Conclude that A =
⋃∞
i=1(ai, bi). To see this for note that if a point is in A then

nearby points are in A. Thus, we may consider the maximal neighbourhood of a
point x ∈ A. Show that if Ax, Ay are maximal neighbourhoods of x and y then
either Ax = Ay or Ax ∩ Ay = φ. Since rationals are countable conclude that the
amount of intervals Ax is countable.

(e) Pick any maximal interval (ai, bi) from A. Observe that ai, bi /∈ A. Conclude,
by continuity, that there is δ > 0 such that x(ai) > x(t) if 0 < t − ai < δ and
x(t) > x(bi) if 0 < bi − t < δ. Conclude that there is a point c ∈ (ai, bi) such
that x(ai) = x(c) = x(bi) (they all equal x(t6)). This is a contradiction. Thus,
the assumption x′(t) < 0 whenever x(t) = x(t6) is wrong. Conclude that there
exists t7 ∈ (t5, t4) such that x(t7) = x(t6) and x′(t7) ≥ 0 and use the differential
equation to argue that we have a contradiction as in 2b.
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3. (**) In this exercise we construct an initial value problem for an autonomous differ-
ential equation which has no solution but the function f is continuous at the initial
condition.
(a) Suppose f : [c, d] → R is nowhere 0. Show that the differential equation

x′(t) = f(x(t)) has no constant solutions. That is, if C ∈ [c, d] is any constant,
then x ≡ C is not a solution to x′(t) = f(x(t)).2

(b) Suppose f : [c, d]→ R is continuous on [c, d] and differentiable on (c, d). Then:
i. if t, s ∈ (c, d) with t < s and f ′(t) < 0 and f ′(s) > 0 then there exists
r ∈ (t, s) such that f ′(r) = 0.

ii. if t, s ∈ (c, d) with t < s and p satisfies f ′(t) < p < f ′(s) then there exists
r ∈ (t, s) such that f ′(r) = p.
Hint: Apply the previous problem to g(x) = f(x)− xp.

(c) Suppose f : [c, d]→ R and x : [a, b]→ R satisfies x([a, b]) ⊂ [c, d], x is continu-
ous on [a, b] but differentiable on (a, b), x satisfies x′(t) = f(x(t)) for t ∈ (a, b).
Then if t, s ∈ (min {x(a), x(b)},max {x(a), x(b)}) with t < s, and p is such that
f(t) < p < f(s) then there exists r ∈ (t, s) such that f(r) = p.
Note: You will need to use 2 to conclude.

(d) Consider f : [−1, 1]→ R defined by

f(x) =

{
1 x 6= ± 1

n
for n ∈ N

1 + 1
n

x = ± 1
n

.

Show that the problem x′(t) = f(x(t)) with x(0) = 0 has no solutions using the
previous questions. Also, verify by directly integrating that this initial value
problem has no solutions.

2This is referred to as Darboux’s Theorem.
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Chapter 2

Second order equations

The general form of 2nd order equation is

y′′ = f(t, y, y′).

We call them linear non-homogeneous if the equation can be written in the form

y′′ + p(t)y′ + q(t)y = g(t)

and linear homogeneous if, in addition to being linear non-homogeneous, g(t) = 0

y′′ + p(t)y′ + q(t)y = 0.

The method of characteristic equations is for homogeneous equations and the methods of
undetermined coefficients and of variation of parameters for homogeneous equations.

2.1 Method 1: Characteristic equation

If the equation is linear homogeneous and further p(t), q(t) are constant, then the equation is
referred to as a constant-coefficients equation:

ay′′ + by′ + cy = 0

and we can apply the method of characteristic equations to solve such an equation. Note that a
is assumed to be non-zero since we are working with a second order equation.

Method formal steps

1. We assume that the solution is of the form y(t) = ert (this is called making an ansatz).
This gives

(ar2 + br + c)ert = 0 =⇒ ar2 + br + c = 0,

which equation is called the characteristic equation.

2. So to solve the above ODE, it suffices to find the two roots r1, r2.

3. Then the general solution is of the form:

y(t) = c1e
r1t + c2e

r2t.

45
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Example-presenting the method

Consider a mass m hanging at rest on the end of a vertical spring of length l, spring constant k
and damping constant γ (as depicted in Figure 2.1.1).

Figure 2.1.1: Spring mass

Let u(t) denote the displacement, in units of feet, from the equilibrium position. Note
that since u(t) represents the amount of displacement from the spring’s equilibrium position
(the position obtained when the downward force of gravity is matched by the will of the spring
to not allow the mass to stretch the spring further) then u(t) should increase downward. Then
by Newton’s Third Law one can obtain the equation

mu′′(t) + γu′(t) + ku(t) = F (t),

where F (t) is any external force, which for simplicity we will assume to be zero.

1. First we obtain the characteristic equation:

mr2 + γr + k = 0.

2. Suppose that m = 1lb, γ = 5lb/ft/s and k = 6lb/ft then we obtain the roots r1 = −2,
r2 = −3.

3. Therefore, the general solution will be

u(t) = c1e
−2t + c2e

−3t.

4. Further if u(0) = 0, u′(0) = 1 we obtain c1 = 1, c2 = −1:

u(t) = e−2t − e−3t.

Examples

• Consider the IVP
4y′′ − y = 0, y(−2) = 1, y′(−2) = −1.
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1. We obtain the characteristic equation 4r2 − 1 = 0 ⇒ r = ±1
2
and so the general

solution will be
y(t) = c1e

t
2 + c2e

− t
2 .

2. Using the initial conditions we obtain:

1 = c1e
−1 + c2e and − 1 =

1

2
(c1e

−1 − c2e).

3. Solving these two equations gives: c1 = −1
2
e, c2 = 3

2
e−1 and so the solution for our

IVP is:
y(t) = −1

2
e1+ t

2 +
3

2
e−

t
2
−1.

4. Therefore, as t→ +∞ we obtain y → −∞.

• Consider the IVP
y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = β

1. The characteristic equation is r2 + 5r + 6 = 0 ⇒ r = −2,−3 and so the general
solution will be:

y(t) = c1e
−2t + c2e

−3t

2. Using the initial conditions we obtain:

2 = c1 + c2 and β = −2c1 − 3c2.

3. Solving these two equations gives: c1 = (6 + β), c2 = −(4 + β) and so the solution
for our IVP is:

y(t) = (6 + β)e−2t − (4 + β)e−3t.

4. Therefore, as t→ +∞ we obtain y → 0.

2.1.1 Wronskian

Now we will show that the general solution of linear homogeneous ode is always of the form:

y(t) = c1y1 + c2y2,

where the yi are solutions for the differential equation that satisfy a linear independence condition
that is called theWronskian. Then {y1, y2} will be called the fundamental solutions because
they can be used to generate all other solutions.

Method formal steps

Consider arbitrary initial conditions y(t0) = y0 and y′(t0) = y′0.

1. Assuming that y = c1y1 + c2y2 holds for some choice of c1, c2 then we certainly expect
that the follow equations will hold:

y0 = y(t0) = c1y1(t0) + c2y2(t0)

y′0 = y′(t0) = c1y
′
1(t0) + c2y

′
2(t0)

which can be rewritten in matrix form as:[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

](
c1

c2

)
=

(
y0

y′0

)
.
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This leads us to studying the matrix

Wmatrix =

[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

]
.

2. Then we compute the determinant of this matrix, referred to as the Wronskian,

W = det(Wmatrix) = y1(t0)y′2(t0)− y2(t0)y′1(t0).

3. If it is not zero, then the general solution will be of the form y = c1y1 + c2y2 (Although
we only found coefficients that allow c1y1 + c2y2 to match y when t = t0 it will turn out
that both functions agree for all t).

4. If it is zero then these y1, y2 will not generate all solutions (In this case it is possible to
choose y0 and y′0 to make the system have no solutions at t0. If we can’t solve it at t0
there is no hope for general t).

Example-presenting the method

Going back to the spring example, the characteristic equation is

mr2 + γr + k = 0.

Assume that it has two distinct real roots r1, r2 and so we can easily check that y1(t) =
er1t, y2(t) = er2t are both solutions for this ODE. Now by computing the Wronskian we will
check whether all possible solutions are of that form:

W
(
er1t, er2t, t

)
= e(r1+r2)t (r2 − r1)︸ ︷︷ ︸

distinct roots

6= 0.

Therefore, all solutions will be of the form: y = c1e
r1t + c2e

r2t for some choice of c1 and c2.

General results:

Generalized solution

Suppose that y1, y2 are solutions of

y′′ + p(t)y′ + q(t)y = 0.

Then the family of solutions
y = c1y1 + c2y2

for arbitrary c1, c2, includes all possible solutions if and only if there is a t∗ where the
Wronskian of y1(t∗), y2(t∗) is not zero.

Proof. Consider general solution ϕ(t) of the above ODE. We will show that there are constants
a, b s.t. ϕ(t) = ay1 +by2. Let t∗ be the time for whichW (y1, y2, t∗) 6= 0 and let K0 = ϕ(t∗), K1 =
ϕ′(t∗). Then [

y1(t∗) y2(t∗)

y′1(t∗) y′2(t∗)

](
a

b

)
=

(
K0

K1

)
has a solution

(
a
b

)
because the matrix is invertible. So if ζ(t) := ay1(t) + by2(t) we have

ζ(t∗) = K0, ζ
′(t∗) = K1. Therefore, the existence and uniqueness theorem for 2nd order ODEs

gives us ϕ(t) = ζ(t) = ay1(t) + by2(t) for all t.
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In fact if W (y1, y2, t∗) 6= 0 for one t∗ , then the Wronskian is actually never zero for all
t s.t. W (y1, y2, t) 6= 0. This is proved via Abel’s identity:

Proposition 2.1.1 (Abel’s identity). Let y1, y2 be solutions to

y′′ + p(t)y′ + q(t)y = 0

then for any t∗ we can write

W (y1, y2, t) = W (y1, y2, t∗)exp

{
−
∫ t

t∗

p(s)ds.

}
Proof. Next we prove Abel’s identity which will imply W (y1, y2, t∗) 6= 0⇒ W (y1, y2, t) 6= 0.
Differentiating the Wronskian we obtain

W ′ = y1y
′′
2 − y′′1y2.

Plugging in the ODE for y′′1 and y′′2 gives

W ′ = y1(−py′2 − q(t)y2)− (−py′1 − q(t)y1)y2

= −p(y1y
′
2 − y′1y2)

= −pW.

Therefore, we obtain the first order ODE W ′ = −p(t)W which is solved by

W (t) = W (t∗)exp

{
−
∫ t

t∗

p(s)ds

}
.

One application of this is in disproving that two functions y1, y2 are the fundamental
solutions for some second order linear non-homogeneous constant coefficient ODE. For example,
let y1 = 1− t, y2 = t3 then their Wronskian is

W (y1, y2, t) = t2(3− 2t)

and so W (y1, y2, 0) = 0 and W (y1, y2, 1) = 1. Therefore, these y1, y2 cannot be solutions to any
such ODE (If such an ODE existed then since the Wronskian is non-zero at t = 1 then by Abel’s
identity the Wronskian is nowhere zero. However, the Wronskian is 0 at t = 0).

Examples

• Consider the equation y′′ − 2y′ + y = 0 and functions y1 := et, y2 := tet

1. One can easily check that both y1, y2 solve the above ODE, so now we will check if
they are fundamental solutions.

2. The Wronskian is

W
(
et, tet, t

)
= et

(
et + tet

)
− te2t = e2t 6= 0

3. So indeed a general solution for the above ODE is y = aet + btet.

• Consider the ODE y′′ − y′ − 2y = 0 and functions y1 := e2t, y2 := −2e2t.

1. One can easily check that both solve the ODE.
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2. Their Wronskian is

W
(
e2t,−2e2t, t

)
= −2e4t −

(
−4e2te2t

)
= 0

and so they do not form a linearly independent set and in turn a fundamental solution.

2.1.2 Complex roots

In some cases the roots are complex (when b2− 4ac < 0). For example, suppose that there is no
damping in the above spring example (γ = 0), then the equation will be:

mu′′ + ku = 0.

Therefore, the roots will be r = ±
√
−k/m = ±i

√
k/m =: ±iω, where we define i :=

√
−1

called the imaginary unit as well as ω =
√

k
m
. The main result we will need is Euler’s formula

eiωt = cos (ωt) + i sin (ωt).

Here we can easily check that y1(t) = cos (ωt) and y2(t) = sin (ωt) are both solutions for this
ODE. Now by computing the Wronskian we will check whether all possible solutions are of that
form:

W (cos (ωt), sin (ωt), t) = ω cos2 (ωt) + ω sin2 (ωt) = ω 6= 0.

This is to be expected since we don’t imagine that the imaginary part of this solution (i.e sin (ωt))
interferes with the real part of this solution (i.e cos (ωt) and so they should be independent.
Therefore, all solutions will be of the form: y = c1 cos (ωt) + c2 sin (ωt) , where ci could be
complex constants. Physically this periodicity is expected because there is no external force or
damping to remove energy from the spring and so it can keep oscillating forever.

Examples

• Consider the equation y′′ + y = 0, y(π/3) = 2, y′(π/3) = −4

1. The roots are r2 + 1 = 0⇒ r = ±i and so the general solution is (with a1 = c1 + c2

and a2 = i(c1 − c2))

y(t) = c1e
it + c2e

−it = a1 cos (t) + a2 sin (t).

2. Using the initial conditions we obtain:

2 = a1
1

2
+ a2

√
3

2
and − 4 = −a1

√
3

2
+ a2

1

2
.

3. Solving these two equations gives: a1 = (1+2
√

3), a2 = −(2−
√

3) and so the solution
for our IVP is:

y(t) = (1 + 2
√

3) cos(t)− (2−
√

3) sin(t).
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Figure 2.1.2: Spring mass

4. So as t→∞ the system simply keeps oscillating steadily (depicted in Figure 2.1.2).
Physically this is because it is damping free γ = 0.

• Consider the equation y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2

1. The roots are r2 − 2r + 5 = 0⇒ r = 1± 2i and so the general solution is (with a1 =
c1 + c2 and a2 = i(c1 − c2))

y(t) = c1e
t(1+2i) + c2e

t(1−2i) = et(a1 cos (2t) + a2 sin (2t)).

2. Using the initial conditions we obtain:

0 = e
π
2 (a1 · (−1) + a2 · 0) and 2 = e

π
2 (a1 · (−1) + a2 · (−2)).

3. Solving these two equations gives: a1 = 0, a2 = −e−π/2 and so the solution for our
IVP is:

y(t) = −et−π/2 sin (2t).

Figure 2.1.3: Spring mass
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4. So as t→∞ the system simply keeps oscillating with increasing amplitude. Physically
this is because the damping is negeative γ = −2 < 0 and so instead of removing
energy, it adds.

2.1.3 Repeated roots

In some cases the roots are equal (when b2 − 4ac = 0). For example, suppose that γ2 ≈ 4km
(called critically damped), then the roots will be

r1 = r2 = − γ

2m
=: r.

This only gives one solution y1 = ert, but to find the general one we require a second
solution y2 that is linearly independent: W (y1, y2, t∗) 6= 0 for some t∗. It turns out (proved
below) that y2(t) := tert is such a function:

W (y1, y2, t) = ert
(
ert + rtert

)
− rerttert = e2rt 6= 0.

Example

• Consider the IVP
y′′ − 2y + 2 = 0, y(0) = 1, y′(0) = 2

1. The root of the characteristic equation is r = 1 and so the two solutions are
y1 = et, y2 = tet. Thus, the general solution will be of the form

y = aet + btet.

2. The initial conditions give 1 = a, 2 = a + b ⇒ a = 1, b = 1 and so the solution
satisfying these conditions is

y = et + tet.

3. This solution goes to infinity as t→ +∞.

• Consider the IVP
y′′ − 6y′ + 9y = 0, y(0) = 0, y′(0) = 2

1. The root is r = 3 and so the independent solutions are y1 = e3t, y2 = te3t. Thus, the
general solution will be

y = ae3t + bte3t.

2. The initial conditions give 0 = a, 2 = 3a + b ⇒ a = 0, b = 2 and so the solution
satisfying these conditions is

y = 2tet.

3. This solution goes to infinity as t→ +∞.

General result

Repeated root

If the ODE ay′′ + by′ + cy = 0 has a characteristic equation with repeated root r := −b
2a
,

then its general solution is of the form:

y = c1e
rt + c2te

rt.
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Proof. For y2 := g(t)y1 we will first find which ODE g(t) must satisfy in order that y2 is a
solution of our ODE.

a(g(t)y1)′′ + b(g(t)y1)′ + c = 0

⇒a
(
g′′(t)ert + 2g′(t)rert

)
+ bg′ert = 0

where we used that y1 satisfies the ODE ay′′ + by” + cy = 0

0 = a(g′′(t) + g′(t)(2ar + b)) = ag′′(t) + g′(t)

(
2a
−b
2a

+ b

)
= ag′′

⇒ag′′ = 0
⇒g = c1 + c2t.

We conclude that
y2(t) = (c1 + c2t)e

rt = c1e
rt + c2te

rt.

Since we are interested in finding an independent solution (so that we can find the general
solution) we may as well take c1 = 0 and c2 = 1 since for any a, b ∈ R we have

aert + b
(
c1e

rt + c2te
rt
)

= (a+ bc1)ert + bc2te
rt.

That is, any linear combination of the solutions ert and c1e
rt + c2te

rt can be generated by ert
and tert by a different set of coefficients. The opposite is also true. We conclude that the
candidates for fundamental solutions are ert and tert. As shown earlier, by means of a Wronskian
computation, these solutions are independent. Thus, the general solution is of the form

y = d1e
rt + d2te

rt

2.1.4 Stability

Consider nonhomogeneous equation of the form

y′′ + ay′ + by = c,

where a, b, c are constants. If we have a solution yh for the homogeneous problem, then we can
construct a solution for the nonhomogeneous problem:

y = yh +
c

b
.

The solution ys := c
b
is called globally stable when for all solutions y we have y → ys as

t→ +∞, which is equivalent to saying yh → 0 as t→ +∞.

Method formal steps

1. If the characteristic equation has two real distinct roots r1, r2 then the general solution is

yh = c1e
r1 + c2e

r2t

and so ys is stable iff r1, r2 < 0.

2. If the characteristic equation has two complex roots r1, r2 then
(
if we let β =

√
4b−a2

2
)
)

yh = e−
at
2 (c1 cos(βt) + c2 sin(βt))

and so ys is stable iff a > 0.
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3. If the characteristic equation has a double root r = r1 = r2 then

yh = ert(c1 + c2t)

and so ys is stable iff r < 0.

In fact, as we will prove below it suffices to check whether the coefficients a, b are
positive.

Example-Presenting the method

• [CW] In the price adjustment example (from the section on linear integrating factor and
autonomous dynamics), we assumed that the demand and supply are functions of the
price alone:

D(P ) = a− bP and S(P ) = α + βP.

However, buyers may also base their behavior on whether the price is increasing or
decreasing. For example, if the price of newer versions of a phone brand have been
increasing steadily or in an accelerating manner, they may decide to switch to another
brand. So the demand will also be a function of the derivative of the price P ′ (growth)
and the second derivative of the price P ′′ (steady or accelerating growth).
To keep things simple we will consider the following updated models:

D(P ) = a− bP +mP ′ + nP ′′ and S(P ) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m,n, u, w can be any sign. For now we will study it from the
buyers perspective and set u = w = 0. To obtain an ODE for it, we assume that the
market is cleared and thus D(P ) = S(P ).

a− bP +mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b+ β

n
P =

α− a
n

.

1. Once we obtain the solution yh of the homogeneous problem:

P ′′ +
m

n
P ′ − b+ β

n
P = 0

then for the above unhomogeneous ode the solution will simply be

y := yh +

(
−b+ β

n

)−1

(
α− a
n

) = yh +
a− α
b+ β

.

2. The characteristic equation is:

r2 +
m

n
r − b+ β

n
= 0.

Its roots are:

r1,2 = −m
2n
±
√(m

n

)2

+ 4
b+ β

n
.

(a) If
(
m
n

)2
+ 4 b+β

n
> 0 then we obtain two distinct real roots r1, r2 and the solution

will be
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P = c1exp

{(
−m

2n
− 1

2

√(m
n

)2

+ 4
b+ β

n

)
t

}

+ c2exp

{(
−m

2n
+

1

2

√(m
n

)2

+ 4
b+ β

n

)
t

}
+
a− α
b+ β

.

Since b+β
n
< 0⇔ n < 0, then if n < 0 and m < 0 then both roots are negative

and thus as t→ +∞ we obtain:

P = c1e
r1t + c1e

r2t +
a− α
b+ β

t→+∞−−−−→ a− α
b+ β

.

Intuitively this means that when the demand D(P ) depends negatively on P ′′
(n < 0), the buyer will be averse to accelerating prices and so demand will not
rise but simply converge to the equilibrium price a−α

b+β
.

For example, suppose a = 42, b = 1, α = −6, β = 1,m = −4, n = −1, then our
ODE will be:

P ′′ + 4P ′ + 2P = 48

and the equilibrium will be a−α
b+β

= 24. Solving this ODE with P (0) = 1, P ′(0) = 0
gives us:

Figure 2.1.4: The solution stabilizes around the equilibrium price α−a
b+β

= 24

This agrees with the result below, namely the coefficients m
n
,− b+β

n
are both

positive and so the ys is globally stable.
(b) If

(
m
n

)2
+ 4 b+β

n
< 0 then we obtain two distinct complex roots r1, r2 and the

solution will be (with a1 = c1 + c2 and a2 = i(c1 − c2))

P = c1e
− m

2n
texp

{
− i

2

√∣∣∣∣(mn )2

+ 4
b+ β

n

∣∣∣∣)t
}

+ c2e
− m

2n
texp

{
i

2

√∣∣∣∣(mn )2

+ 4
b+ β

n

∣∣∣∣)t
}

+
α− a
b+ β

= e−
m
2n
t

[
a1 cos

(
t

2

√∣∣∣∣(mn )2

+ 4
b+ β

n

∣∣∣∣
)

+ a2 sin

(
t

2

√∣∣∣∣(mn )2

+ 4
b+ β

n

∣∣∣∣
)]

+
a− α
b+ β

.
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So this solution will diverge or go to zero depending on whether m
n
> 0 or m

n
< 0

respectively. For example, suppose a = 40, b = 2,m = −2, α = −5, β = 3, n = −1
then our ODE will be:

P ′′ + 2P ′ + 5P = 45

and for m = 2
P ′′ − 2P ′ + 5P = 45.

The corresponding solutions will be

P (t) = e−t[a1 cos(2t) + a2 sin(2t)] + 9

and
P (t) = et[a1 cos(2t) + a2 sin(2t)] + 9.

(a) The solution stabilizes around
the equilibrium price a−α

b+β = 9
(b) The solution oscillates with

increasing amplitude.

As expected from the result below the first ODE has globally stable solution due
to the positivity of the coefficients whereas the second ODE does not.
Intuitively, when m = −2 < 0, the demand D(P ) will depend negatively on
growing price P ′ and so the price will have to drop to market equilibrium. When
m = 2 > 0, the buyer will not stop even if the price is growing eg. for vital goods
such as bread, and so the price is free to keep growing. But why is it oscillating?
This is because the condition (m

n
)2 + 4 b+β

n
< 0 forces that n < 0 and so the buyer

will always be averse to accelerating growth in the price, which in turn causes
the downturns in price.

(c) If (m
n

)2 + 4 b+β
n

= 0 then we obtain one double root r = r1 = r2 and the solution
will be

P = c1e
− m

2n
t + c2te

− m
2n
t +

a− α
b+ β

.

Similarly, depending on the sign of m, the solutions will either diverge (m > 0)
or converge to market equilibrium price (m < 0).
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General solution for non-homogeneous and Stability for second order

Stability criterion for second order nonhomogeneous ODEs

Consider non-homogeneous equation

y′′ + ay′ + by = f(t).

Then the solution is of the form y = yh + ys, where yh solves the homogeneous problem
and ys is any solution of the nonhomogeneous problem. We have that

lim
t→∞

y = ys iff a > 0, b > 0.

In other words, ys is globally stable iff a > 0, b > 0 iff the real parts of the roots of the
characteristic equation are both negative.

Proof. As with constant f(t), we again obtain that the generalized solution is of the form

y = c1y1 + c2y2 + ys =: yh + ys.

So by studying when yh → 0, we can identify when ys is the globally stable solution.

1. If the characteristic equation has two real distinct roots r1, r2 then

yh = c1e
r1t+ c2e

r2t

and so ys is stable iff r1, r2 < 0. The roots are

r1 =
−a+

√
a2 − 4b

2
, r2 =

−a−
√
a2 − 4b

2
.

We have r1 < 0⇔ a > 0, b > 0 and r2 < 0⇔ a > 0. So to have both conditions we must
require a > 0 and b > 0.

2. If the characteristic equation has two complex roots r1, r2 then
(
for β =

√
4b−a2

2

)
yh = e−

at
2 (c1 cos(βt) + c2 sin(βt))

and so ys is stable iff a > 0. The condition b > 0 follows from a2 < 4b.

3. If the characteristic equation has a double root r = r1 = r2 then

yh = ert(c1 + c2t)

and so ys is stable iff r = −a
2
< 0⇒ a > 0. The condition b > 0 follows from a2 = 4b.

Examples

• Solve the IVP and determine long term behaviour

y′′ + y = 9, y(π/3) = 2, y′(π/3) = −4

1. As showed in the complex roots section the solution to the homogeneous problem is:

yh(t) =
(
1 + 2

√
3
)

cos(t)−
(
2−
√

3
)

sin(t).
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2. So the solution to our problem is:

y = yh + 9.

3. However, yh will keep oscillating steadily around the constant solution 9.

• Solve the IVP and determine long term behaviour

y′′ + 5y′ + 6y = 3, y(0) = 2, y′(0) = 1

1. The solution to the homogeneous problem is:

yh(t) = 7e−2t − 5e−3t.

2. So the solution to our problem is:

y = yh +
3

6
= yh +

1

2
.

3. Therefore, y will converge to the constant solution ys ≡ 1
2
.

2.2 Method 2: Undetermined coefficients

We will now consider non-homogeneous equations with constant coefficients of the form

ay′′ + by′ + cy = f(t).

By managing to find a particular solution ynh, then we can generate every other one. Let v be
any another solution, then

a(v − ynh)′′ + b(v − ynh)′ + c(v − ynh) = f(t)− f(t) = 0.

Therefore, by finding the fundamental set of solutions y1, y2 for the homogeneous problem we
have

v − ynh = c1y1 + c2y2 ⇒ v = ynh + c1y1 + c2y2.

So we managed to generate any solution starting from ynh, y1, y2. Here we will find ynh for f(t)
of the following possible forms:

f1(t) := Ctmer∗t, f2(t) := Ctmeα cos (βt), f3(t) := Ctmeαt sin (βt).

In fact once we obtain solutions yi, i = 1, 2, 3 for them, we also obtain solutions for their sums.
For example, consider the equation

ay′′ + by′ + cy = tmer∗t + sin (βt).

Observe that if y1, y2 solve

ay′′ + by′ + cy = tmer∗t

ay′′by′ + cy = sin (βt)

respectively then their sum, y1 + y2, solves

a(y1 + y2)′′ + b(y1 + y2)′ + c(y1 + y2) = tmer∗t + sin (βt).
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Method formal steps

1. If f = Ctmer∗t then we make the ansatz (assume the solution to be of the form)

ynh(t) = ts(a0 + a1t+ ...+ amt
m)er∗t.

Now the way we pick the exponent s, depends on whether or not r∗ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof 2.2below.

(a) If r∗ is not a root, then we set s := 0.
(b) If r∗ is a simple root, then we set s := 1.
(c) If r∗ is a double root, then we set s := 2.

2. If f = Ctmeα cos (βt) or ctmeαt sin (t) then we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)].

Now the way we pick the exponent s, depends on whether or not α + iβ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof below.

(a) If α + iβ is not a root, then we set s := 0.
(b) If α + iβ is a root, then we set s := 1.

Example-presenting the method

Resuming the spring example, let u(t) denote the displacement from the equilibrium position.
Then by Newton’s Third Law one can obtain the equation

mu′′(t) + γu′(t) + ku(t) = F (t),

where F (t) is any external force. Above we assumed that F (t) = 0, and now we will take it to
be any of the above mentioned functions. For example, consider the equation

y′′ + 3y′ + 2y = sin (t).

Here we are shaking the spring system periodically in time.

1. First we are in the second case and so we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)]

which simplifies because m = 0, α = 0 and β = 1:

ynh(t) = ts(a0 cos(t) + b0 sin(t)).

2. Next we pick s, depending on whether a + iβ = i is a root of our ODE’s characteristic
equation:

r2 + 3r + 2 = 0.

3. Its roots are r1 = −2, r2 = −1 and so we set s = 0 and have

ynh(t) = a0 cos (t) + b0 sin (t).

4. Plugging into our ODE we obtain

y′′ + 3y′ + 2y = −(a0 cos (t) + b0 sin (t)) + 3(−a0 sin (t) + b0 cos (t)) + 2(a0 cos (t) + b0 sin (t))
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= (a0 + 3b0) cos (t) + (−3a0 + b0) sin (t)

and so to have this be equal to sin (t) we require{
a0 + 3b0 = 0
−3a0 + b0 = 1 =⇒ a0 = −0.3, b0 = 0.1.

5. So the solution will be
ynh(t) = −0.3 cos (t) + 0.1 sin (t).

6. Therefore, the general solution will be:

y = ynh + c1e
−2t + c2e

−t.

7. But why is it periodic given that damping is involved (γ 6= 0)? The sinusoidal external
force keeps pumping energy into the system.

General result:

Method of Undetermined coefficients

Consider equations
ay′′ + by′ + cy = f(t),

where f(t) has the following possible forms:

f1(t) := Ctmer∗t, f2(t) := Ctmeα cos (βt), f3(t) := Ctmeαt sin (βt).

Then their corresponding solutions are of the form:

• If f = Ctmer∗t then we make the ansatz (assume the solution to be of the form)

ynh(t) = ts(a0 + a1t+ ...+ amt
m)er∗t.

Now the way we pick the exponent s, depends on whether or not r∗ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof
below.

1. If r∗ is not a root, then we set s := 0.
2. If r∗ is a simple root, then we set s := 1.
3. If r∗ is a double root, then we set s := 2.

• If f = ctmeα cos (βt) or ctmeαt sin (βt) then we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)].

Now the way we pick the exponent s, depends on whether or not α + iβ is a root of
the characteristic equation of our ODE. The reason for this can be seen in the proof
below.

1. If α + iβ is not a root, then we set s := 0.
2. If α + iβ is a root, then we set s := 1.

Proof. First we will work with

ay′′ + by′ + cy = Ctmer∗t.
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We assume the solution is of the form:

ynh(t) = (a0 + a1t+ ...+ ant
n)ert.

for some yet undetermined n. Then plugging it into our ODE we obtain:

ay′′nh + by′nh + cynh = an
(
ar2 + br + c

)
tnert +

(
ann(2ar + b) + an−1

(
ar2 + br + c

))
tn−1ert

+
[
ann(n− 1)a+ an−1(n− 1)(2ar + b) + an−2

(
ar2 + br + c

)]
tn−2ert

+ lower order terms

Case 1: If r is not a root of the characteristic equation ar2 + br + c, then the leading term tnert

remains and so to obtain tmert we must set n := m giving:

ynh(t) = (a0 + a1t+ ...+ ant
m)ert.

Case 2: If r is a simple root, then ar2 + br + cy = 0 and we are left with tn−1ert being the
leading order term and so we set n− 1 := m giving:

ynh(t) =
(
a0 + a1t+ ...+ ant

m+1
)
ert.

Moreover, since r is a root, then y0 := a0e
rt will solve the homogeneous equation ay′′+by′+cy = 0

and so we can ignore it (due to additivity of solutions of the homogeneous equation). Thus,

ynh(t) =
(
a1t+ ...+ ant

m+1
)
ert = t(a1 + ...+ ant

m)ert.

Case 3: If r is a double root, then ar2 + br + cy = 0, 2ar + b = 0 and we are left with tn−2ert

being the leading term and so we set n− 2 := m giving:

ynh = (a0 + a1t+ ...+ ant
m+2)ert.

Moreover, since r is a repeated root, then ert, tert are both solutions of the homogeneous equation
ay′′ + by′ + cy = 0 and so we can ignore. Thus,

ynh = (a2t
2 + ...+ ant

m+2)ert = t2(a2 + ...+ ant
m)ert.

Next we will work with

ay′′ + by′ + cy = Ctmeαt sin (βt) =
1

2i
Ctmeαt+iβt − 1

2i
Ctmeαt−iβt.

where we used that

sin (βt) =
eiβt − e−iβt

2i
.

Therefore, from the previous we make the guess

ynh = (a0 + a1t+ ...+ ant
n)e(α+iβ)t + (b0 + b1t+ ...+ bnt

n)e(α−iβ)t.

= eαt(c0 + c1t+ ...+ cnt
n) cos (βt) + (d0 + d1t+ ...+ dnt

n)eαt sin (βt).

So as above we check whether r∗ = α + iβ is a root and the same analysis shows the result.
Note that α + iβ cannot occur as a double root since the characteristic equation, ar2 + br + c,
has real coefficients. In fact, if α + iβ is a root then the other root must be α− iβ.

By representing cos (βt) as eiβt+e−iβt

2
and applying similar logic to the sin (βt) case we

complete the proof.
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Examples

• Consider the spring system governed by

y′′ + 2y′ − 3y = 3tet.

Find the solution and its asymptotic behaviour.

1. For this equation we have m = 1, r∗ = 1 and so our guess is:

y = ts(a0 + a1t)e
t.

2. To decide on the value of s, we have to check whether 1 is a root and what kind. The
characteristic equation is

r2 + 2r − 3 = 0 =⇒ r = −3, 1.

3. Therefore, we set s = 1 and our guess is:

ynh = t(a0 + a1t)e
t.

4. Next we determine ai by plugging them into the equation and equating to 3tet:

3tet = y′′ + 2y′ − 3y =
(
t(a0 + a1t)e

r∗t
)′′

+ 2
(
t(a0 + a1t)e

r∗t
)′ − 3

(
t(a0 + a1t)e

r∗t
)

=⇒2et(2a0 + 4a1t+ a1) = 3tet.

This implies the following equation

2(2a0 + 4a1t+ a1) = 3t

=⇒ a1 = 3/8 and 4a0 + 2a1 = 0

=⇒ a1 = 3/8 and a0 = − 3

16
.

Therefore, the general solution is

y = c1e
−3t + c2e

t + ynh = c1e
−3t + c2e

t + t

(
− 3

16
+

3

8
t

)
et.

5. Therefore, as t→ +∞, we have y(t)→ +∞. Physically this means that the mass
will get displaced towards the positive direction because of the external force 3tet.

• Consider the spring system governed by

y′′ + 2y′ − 3y = 2tet sin (t).

Determine what form the solution will take.

1. For this equation we have m = 1 and α = β = 1, so our ansatz will be

ynh = tset[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

2. To decide on s, we have to check whether 1+ i is a root for our characteristic equation:

r2 + 2r − 3 = 0 =⇒ r = −3, 1.
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3. So we put s = 0:

ynh = et[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

4. Therefore, the general solution is

y = c1e
−3t + c2e

t + ynh = c1e
−3t + c2e

t + et[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

2.3 Method 3: Variation of parameters

We will now consider non-homogeneous equations with coefficients of the form

ay′′ + by′ + cy = f(t),

where f(t) is any continuous function and a, b, c are also functions with a(t) 6= 0.

Method formal steps

1. First, we obtain two linearly independent solutions y1, y2 for the homogeneous problem

ay′′ + by′ + cy = 0.

2. Second, we make a guess
yg = v1(t)y1 + v2(t)y2

and plug it into our ODE. This will gives one equation for v1, v2.

3. Third; we have two unknowns, so we will need one more equation in order to solve for
both. So we impose another condition for v1, v2 to obtain another equation:

v′1y1 + v′2y2 = 0.

This equation is helpful because it simplifies the first equation (proved in detail below )

y′g = y′1v1 + y′2v2 + 0 ⇒ ay′′g + by′g + cyg = a(y′1v
′
1 + y′2v

′
2).

4. Therefore, we can obtain v1, v2 from the system{
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 = f

a

Example-presenting the method

Returning to the spring example, suppose that it is damping free γ = 0 and the exernal force is
f(t) = tan (t):

y′′ + y = tan (t).

1. First we find independent solutions for the homogeneous problem:

y′′ + y = 0.

2. One can easily check that cos (t), sin (t) are solutions for it and computing their Wronskian
gives:

W (cos (t), sin (t), t) = cos2 (t) + sin2 (t) = 1 6= 0.
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3. Therefore, we make a guess

yg = v1 cos (t) + v2 sin (t).

4. Using our system of equations {
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 = f

a

we obtain

{
v′1 cos (t) + v′2 sin (t) = 0

− cos (t)v′1 + cos (t)v′2 = tan (t)

=⇒
{

v′1 = − tan (t) sin (t)
v′2 = tan (t) cos (t) = sin (t)

Therefore, by integrating we obtain

v1 = −
∫

tan (t) sin (t)dt = −
∫

sin2 (t)

cos (t)
dt

=

∫ (
cos (t)− 1

cos (t)

)
dt

= sin (t)− ln

∣∣∣∣1 + sin (t)

cos (t)

∣∣∣∣+ c1

and

v2 =

∫
sin (t)dt = − cos (t) + c2

For simplicity we take c1 = c2 = 0 and we get:

yg =

(
sin (t)− ln

∣∣∣∣1 + sin (t)

cos (t)

∣∣∣∣) cos (t)− cos (t) sin (t)

= cos (t) ln

∣∣∣∣ cos (t)

1 + sin (t)

∣∣∣∣.
General result:

The equations y′′ + p(t)y′ + q(t)y = g(t) for continuous p, q, g have solutions of the form

Y = y1v1 + y2v2,

where y1, y2 are fundamental solutions for the homogeneous problem y′′+p(t)y′+ q(t)y = 0
and

v1 := −
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds and v2 :=

∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds.

Proof. We start by making the guess

yg := y1v1 + y2v2.
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We have
y′g = v′1y1 + v′2y2 + v1y

′
1 + v2y

′
2.

So we note that if we set
v′1y1 + v′2y2 = 0

then the second derivative will not contain any v′′1 , v′′2 terms:

y′g = 0 + v1y
′
1 + v2y

′
2

=⇒ y′′g = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 .

Therefore, the ODE for yg becomes

y′′g + py′g + qyg = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 + p(v1y

′
1 + v2y

′
2)

+ q(y1v1 + y2v2)

= v1(y′′1 + p(t)y′1 + q(t)y1) + v2(y′′2 + p(t)y′2 + q(t)y2)

+ v′1y
′
1 + v′2y

′
2

= 0 + v′1y
′
1 + v′2y

′
2

because y1, y2 are solutions to the homogeneous problem. Therefore, for yg to be a solution we
need

v′1y
′
1 + v′2y

′
2 = g(t).

Our second equation was
v′1y1 + v′2y2 = 0.

Together they give

v′1 =
−y2g

W (y1, y2, t)
and v′2 =

y1g

W (y1, y2, t)

v1 := C1 −
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds and v2 := C2 +

∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds.

Observe that the constants of integration can be ignored since including them leads to

v1(t)y1 + v2y2 =

(
−
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds

)
y1 +

(∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds

)
y2 + C1y1 + C2y2︸ ︷︷ ︸

solution to homogeneous

.

Examples

• Consider the equation
ty′′ − (1 + t)y′ + y = t2e2t

with given fundamental solutions y1 = 1 + t, y2 = et for the homogeneous problem
ty′′ − (1 + t)y′ + y = 0.

• We have the system {
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 = f

a

=⇒
{
v′1(1 + t) + v′2e

t = 0
v′1 + etv′2 = te2t

=⇒ v′1 = −e2t and v′2 = (1 + t)et
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=⇒ v1 = −1

2
e2t and v2 = tet.

Therefore, the solution for the nonhomogeneous problem will be

y = v1y1 + v2y2 =

(
−1

2
e2t

)
(1 + t) +

(
tet
)
et =

1

2
(t− 1)e2t.

• Consider the equation
x2y′′ − 3xy′ + 4y = x2 ln (x)

with given fundamental solutions y1 = x2, y2 = x2 ln (x) for the homogeneous problem
x2y′′ − 3xy′ + 4y = 0.
We have the system {

v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 = f

a

=⇒
{

v′1x
2 + v′2x

2 ln (x) = 0

2xv′1 + (2x ln (x) + x)v′2 = ln (x)

=⇒ v′1 = − ln2 (x)/x and v′2 = ln(x)/x

=⇒ v1 = − ln3(x)

3
and v2 =

ln2(x)

2
.

Therefore, the solution for the nonhomogeneous problem will be

y = v1y1 + v2y2 = − ln3(x)

3
x2 +

ln2(x)

2
x2 ln(x).

2.4 Method 4: Reduction of order
For homogeneous equations of the form

y′′ + p(t)y′ + q(t)y = 0 (2.4.1)

if we have one solution y1, we can obtain a second one by setting

y2 := v(t)y1

and identifying an ODE for v. Plugging in y2 into our ODE we obtain

y1v
′′ + (2y′1 + py1)v′ = 0

where we have used that y1 satisfies (2.4.1).

Example-presenting the method

Consider the equation

x2y′′ − 5xy′ + 9y = 0 =⇒ y′′ − 5x−1y′ + 9x−2 = 0.

1. One solution is y1 = x3. One would guess this solution by observing that this equation
preserves the "order” of monomials. That is y′′ decreases the power of x by 2 but in the
equation y′′ is multiplied by x2. The same phenomenon occurs for xy′. As a result, we
obtain a characteristic equation if we guess y = xr for an r to be determined.
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2. Assuming a second solution of the form y2 = v(x)x3 we obtain

0 = y1v
′′ + (2y′1 + py1)v′ = x3v′′ +

(
6x2 − 5x−1x3

)
v′ = x2(xv′′ + v′) ⇒ xv′′ + v′ = 0.

3. This gives us
v(x) = c ln (x).

So the general solution will be

y = ax3 + b ln (x)x3.

2.5 Nonlinear into second order

2.5.1 Riccati

The non-linear Riccati equation can always be reduced to a second order linear ordinary
differential equation (ODE): If y satisfies

y′ = q0(x) + q1(x)y + q2(x)y2

then, wherever q2 is never zero and differentiable,

v = yq2

satisfies a Riccati equation of the form

v′ = v2 +R(x)v + S(x),

where
S = q2q0 and R = q1 +

q′2
q2

because

v′ = (yq2)′ = y′q2 + yq′2
=
(
q0 + q1y + q2y

2
)
q2 + yq′2

= q0q2 +

(
q1 +

q′2
q2

)
q2y + (q2y)2

= q0q2 +

(
q1 +

q′2
q2

)
v + v2.

Substituting

v = −u
′

u
,

it follows that u satisfies the linear 2nd order ODE

u′′ +R(x)u′ − S(x)u = 0

since

u′′ = (uv)′ = u′v + uv′

= u′v + u
(
v2 +R(x)v + S(x)

)
= u′

(−u′
u

)
+ u

((−u′
u

)2

+R(x)

(−u′
u

)
+ S(x)

)
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= −(u′)2

u
+

(u′)2

u
−R(x)u′ + S(x)u

= −R(x)u′ + S(x)u

and hence
u′′ +Ru′ − Su = 0.

A solution of this equation will lead to a solution

y =
−u′
q2u

of the original Riccati equation.

2.6 Problems
• Real distinct roots

1. Find the solution, do a rough sketch, and describe its asymptotic behaviour
(a) y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1,

(b) y′′ + 3y′ = 0, y(0) = −2, y′(0) = 3.
2. Solve

y′′ − y′ − 2y = 0, y(0) = a, y′(0) = 2

and determine for which a, the solution goes to zero as t→ +∞.

• Wronskian

1. Consider the equation y′′ − y′ − 2y = 0

(a) Show that y1(t) := e−t, y2(t) := e2t form a set of fundamental solutions.
(b) Show that each of y3(t) := −2e2t, y4(t) := y1(t) + 2y2(t), and y5(t) := 2y1(t)−

2y3(t) are solutions to the above ode.
(c) Which of the following pairs give rise to a fundamental pair of solutions:

{y1, y3}, {y2, y3}, {y1, y4}, {y4, y5}

• Complex roots

1. Imagine a spring satisfying the following equations. Find the solution, do a rough
sketch, and describe its asymptotic behaviour (steady/growing/decaying oscillation).
Finally, explain the asymptotic behaviour based on the coefficients (see notes on
damping effect).
(a) y′′ + 4y = 0, y(0) = 0, y′(0) = 1,

(b) (*)y′′ + 2y′ + 2y = 0, y(π/4) = 2, y′(π/4) = −2.

• Repeated roots

1. Find the solution, do a rough sketch, and describe its asymptotic behaviour
(a) 9y′′ − 12y′ + 4y = 0, y(0) = 2, y′(0) = −1,
(b) y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.

2. Consider the problem

y′′ − y′ + y

4
= 0, y(0) = 2, y′(0) = b

Find the solution and determine for which b, the solution remains positive for all
t > 0.
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• Demand and Supply Problems
Let the demand and supply functions be, respectively,

D(P ) = 9− P + P ′ + 3P ′′ and S(P ) = −1 + 4P + 2P ′ + 5P ′′

with P (0) = 4, P ′(0) = 4.
1. Derive the price ODE (, and find the price solution.
2. Does it have a globally stable solution as t→ +∞? What does the stability result

tell you?

• Method of undetermined coefficients
Find the general form of the solution (with abstract coefficients) and use the stability
result to determine whether they will have a globally stable solution.

1. y′′ − 2y′ − 3y = 3e2t,

2. y′′ − y′ − 2y = −2t+ 4t2,

3. y′′ + 2y′ = 3 + 4 sin(2t)

• Find the solution of the given IVP:

y′′ + y′ − 2y = 2t, y(0) = 0, y′(0) = 1.

• Variation of parameters
Below you are given the fundamental solutions y1, y2 of the homogeneous problem. Use
them to find a solution of the nonhomogeneous one.

1. t2y′′ − 2y = 3t2 − 1 with y1 = t2, y2 = t−1,

2. t2y′′ − t(t+ 2)y′ + (t+ 2)y = 2t3 with y1 = t, y2 = tet.
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Chapter 3

Systems of ODEs

Consider system of equations:

x′1 = p11(t)x1 + . . .+ p1nxn + g1(t)
...

x′n = pn1(t)x1 + . . .+ pnnxn + gn(t)

where pij(t), gi(t) are continuous functions. The continuity ensures that we have
existence and uniqueness of solutions. Equivalently we can rewrite this system as

x′(t) = P(t)x(t) + g(t).

where P(t) denote the matrix where the entry in the ijth position is pij(t) and g(t) is the
n-vector with entries gk(t) for 1 ≤ k ≤ n. For the homogeneous problem (i.e. g ≡ 0) we can
see by linearity that if x1,x2 are both solutions to that system, then any linear combination
y = c1x1 + c2x2 is also a solution. In fact, as with second order ODEs, we will show that any
solution to the system is of that form if {xni}, for 1 ≤ i ≤ n are linearly independent solutions
to the system (that is, any solution can be expressed as a linear combination of the solutions
x1, . . . ,xn when they are linearly independent). Analogously to second order, a collection of
solutions x1, ...,xn is called linearly independent if there exists t∗ s.t.

det[X(t)] := det

x11(t∗) x12(t∗) · · · x1n(t∗)
...

... . . . ...
xn1(t∗) xn2(t∗) · · · xnn(t∗)

 6= 0,

where xi = ith row = (x1i, ..., xni).

General solution

Consider x1, . . . ,xn linearly independent solutions of the system x′(t) = P(t)x(t) where
P(t) is an n × n matrix and v(t) is any solution for the nonhomogeneous problem
x′(t) = P(t)x(t) + g(t). Then for any other solution y of the nonhomogeneous problem,
there exist unique constants {ci} s.t.

y = c1x1 + ...+ cnxn + v(t).

Proof. We will follow the same ideas as in the analogous second order result. We begin by
proving an auxiliary result about the homogeneous equation. Let ϕ be a solution for the above

71
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homogeneous problem and K := ϕ(t∗). Consider the system of equations given by

X(t∗)c :=

x1,1(t∗) x1,2(t∗) · · · x1,n(t∗)
...

... . . . ...
xn,1(t∗) xn,2(t∗) · · · xn,n(t∗)

c = K

for unknown vector c. Then, by linear independence of the solutions x1, . . . ,xn, the matrix,
X(t∗) is invertible and so we can solve for c by inverting X(t∗) and multiplying on the right
by K (i.e c = X−1(t∗)c). Let ζ(t) := X(t)c where c is the vector obtained from the above
discussion. Then we have that ζ(t∗) = K = ϕ(t∗). Therefore, by existence and uniqueness
ζ(t) = ϕ(t) for all t.

Next let y be a solution for the nonhomogeneous problem. Then y− v is a solution of
the homogeneous problem and thus, by the above discussion, ∃ a ∈ Rn s.t.

y = a · x + v.
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3.1 Homogeneous linear systems with constant coefficients

Consider the homogeneous system of n-ODEs

x′(t) = Ax(t),

where A is n× n matrix with constant real entries. As with second order we make the ansatz
x(t) = ξeλt where ξ is a fixed n-vector (to be chosen precisely later). Then, we observe that if
ξ is chosen so that Aξ = λξ (i.e ξ is an eigenvector of A) we get

Ax(t) = Aξeλt = λξeλt = ξ
d

dt

(
eλt
)

=
dx

dt
(t).

Such ξ, λ are called A′s eigenvector and eigenvalue respectively (as noted earlier). We will now
obtain the general solution. First we will assume that all eigenvalues {λi}ni=1 of A are real and
distinct from each other; in the other sections we study the other cases. Let {ξi}ni=1 be the
corresponding eigenvectors. Then the solutions {ξieλit}ni=1 are linearly independent:

det

ξ11e
λ1t · · · ξ1ne

λnt

... . . . ...
ξn1e

λ1t · · · ξnne
λnt

 = e(λ1+...+λn)t det

[
ξ11 · · · ξ1n
... . . . ...
ξn1 · · · ξnn

]
6= 0

where the last step follows because when all the eigenvalues of a matrix are distinct, then its
eigenvectors will be linearly independent. Thus, from the above result we obtained the general
solution.

Example —presenting the method

Consider two connected tanks A and B containing 1000L of well-mixed salt-water with x(t), y(t)
kilogram amounts of salt respectively. Let IP,OP denote the L/min-rate of salt-free water
entering and exiting the two tanks and P1, P2 the L/min-rate of saltwater getting exchanged
between the two tanks.

Figure 3.1.1: Tanks A and B containing salt

To keep the volume of water constant in the two tanks we set IP = OP = 1(L/min).
Let the rates P1 = 1(L/min) and P2 = 2(L/min) be constant in time. The concentration of
salt in each tank is x(t)

1000
kg/L, y(t)

1000
kg/L respectively. Therefore, for tank A the rate of change of
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the amount of salt:

dx

dt
= Input rate−Output rate = 2 · y(t)

1000
− 1 · x(t)

1000

and for tank B we must also subtract the draining of salt from pipe OP

dy

dt
= Input rate−Output rate = 1 · x(t)

1000
− 2 · y(t)

1000
− 1 · y(t)

1000
.

In matrix form our system is (
x′

y′

)
=

1

1000

[−1 2

1 −3

](
x

y

)
.

1. First we compute the eigenvalues

det

[−1− λ 2

1 −3− λ

]
= 0 ⇒ (−1− λ)(−3− λ)− 2 · 1 = 0

⇒ λ1 = −2 +
√

3, λ2 = −2−
√

3.

2. Second we find the corresponding eigenvectors. To find ξ1 :=
(
ξ1,1
ξ2,1

)
we solve the system

(up to multiples): [−1− λ1 2

1 −3− λ1

](
ξ1,1

ξ2,1

)
=

(
0

0

)
.

By solving the system directly we obtain the solution (up to multiples). For example, we
rewrite the above to get:{

(1−
√

3)ξ1,1 + 2ξ2,1 = 0

ξ1,1 + (−1−
√

3)ξ2,1 = 0
=⇒ ξ1 =

(
ξ1,1

ξ2,1

)
=

(
1 +
√

3

1

)
.

Similarly to obtain ξ2 we have to solve[
−1− (−2−

√
3) 2

1 −3− (−2−
√

3)

](
ξ1,2

ξ2,2

)
=

(
0

0

)
and we get

ξ2 =

(
1−
√

3

1

)
.

3. Therefore, by the discussion above the general solution will be

x(t) =

(
x(t)

y(t)

)
=

1

1000
c1·ξ1e

λ1t+
1

1000
c2·ξ2e

λ2t = c1·
(

1 +
√

3

1

)
e(−2+

√
3)t

1000
+c2·

(
1−
√

3

1

)
e(−2−

√
3)t

1000
.

4. Since 2 >
√

3, both the eigenvalues are negative and in turn the salt concentrations
x(t), y(t) will go to zero as t→ +∞. This is reasonable because through pipe IP we are
injecting salt-free water that over time transports the tanks’ salt out through pipe OP.

5. Next we study the stability. Since −2 +
√

3 > −2−
√

3, we get e(−2+
√

3)t > e(−2−
√

3)t and
so as t→ +∞ the first eigenvector

(
1+
√

3
1

)
will dominate.
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Figure 3.1.2: Solutions converge to line defined by vector ξ1 =
(

1+
√

3
1

)
and then to (0, 0).

In other words, for large t we will have

x(t) ≈ (1 +
√

3) · e(−2+
√

3)t > 1 · e(−2+
√

3)t ≈ y(t).

This is reasonable because P2 > P1 and so as t→ +∞ the salt concentration x(t) in tank
A will be greater than that of tank B.

Method formal steps

1. Starting with a matrix A we first compute its eigenvalues {λi} eg. for matrix A =

[
a b

c d

]
we have two eigenvalues:

det

[
a− λ b

c d− λ

]
= 0⇒ λ2 − (a+ d)λ+ ad− bc = 0

⇒ λ =
(a+ d)

2
± 1

2

√
(a+ d)2 − 4(ad− bc) =

Tr(A)

2
± 1

2

√
Tr(A)2 − 4det(A).

2. Second for each eigenvalue, we find the corresponding eigenvector. Continuing the example
from the previous step, we find the eigenvector ξ1 :=

(
ξ1,1
ξ2,1

)
by solving the system:[

a− λ1 b

c d− λ1

](
ξ1,1

ξ2,1

)
=

(
0

0

)
.

Here are the general formulas for eigenvectors for 2D systems:

• If c 6= 0 then

ξ1 =

(
λ1 − d
c

)
and ξ2 =

(
λ2 − d
c

)
.
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• If b 6= 0 then

ξ1 =

(
b

λ1 − a

)
and ξ2 =

(
b

λ2 − a

)
.

• If b = c = 0 then
ξ1 =

(
1

0

)
and ξ2 =

(
0

1

)
.

3. Then the general solution will be of the form

x(t) = c1ξ1e
λ1t + ...+ cnξne

λnt.

4. Finally we study the stability for 2D systems:

• If λ1 6= λ2 and both positive then (0,0) will be a nodal source and solutions will be
moving away from it (unstable).
• If λ1 6= λ2 and both negative then (0,0) will be a nodal sink and solutions will be

moving towards it (asymptotically stable).
• If λ1 6= λ2 and with opposite signs then (0,0) will be a saddle point and solutions
will be moving away from it along one eigenvector and towards it along the other
eigenvector (unstable).
• If one of the eigenvalues is zero eg. λ1 = 0 and λ2 < 0 then the line defined by ξ1

will be a nodal source (asymptotically stable).
• If one of the eigenvalues is zero eg. λ1 = 0 and λ2 > 0 then the line defined by ξ1

will be a nodal sink (asymptotically unstable).

Examples

• We will exhibit each of the above stability cases by studying the IVP problem

dx

dt
=

[
a 0

0 b

]
x

with x(0) =
(

2
2

)
.

1. First we find the eigenvalues. For diagonal matrices this is immediate: λ1 = a, λ2 = b.
2. Next we find the corresponding eigenvectors:[

a− λ1 0

0 b− λ1

](
ξ1,1

ξ2,1

)
=

(
0

0

)
=⇒ ξ2,1 = 0

therefore ξ1 =
(

1
0

)
. Similarly, we obtain ξ2 =

(
0
1

)
.

3. Therefore, the general solution is

x(t) = c1

(
1

0

)
eat + c2

(
0

1

)
ebt.

4. Finally, using the initial condition we obtain

x(t) = 2

(
1

0

)
eat + 2

(
0

1

)
ebt.

5. Next we study the stability. The origin is a special point for dynamics because if
x(t∗) = 0 then dx

dt
(t∗) = A ·

(
0
0

)
=
(

0
0

)
and so it is a critical point.
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(a) If a 6= b and both positive we obtain that the solutions diverge to infinity

Figure 3.1.3: a = 1, b = 3

(b) If a 6= b and both negative we obtain that they both converge to the source (0,0)

Figure 3.1.4: a = −1, b = −3

(c) If a 6= b with different signs we obtain that (0,0) is a saddle point: if a = −1, b = 3
then the solutions converge to the origin if they start on the linear span of ξ1

(x-axis) otherwise they diverge to infinity.



78 CHAPTER 3. SYSTEMS OF ODES

(a) a = −1, b = 3 (b) a = 1, b = −3

(d) If a = 0 and b < 0 then the linear span of ξ1 (x-axis) will attract all the solutions:

Figure 3.1.6: a = 0, b = −3

(e) If a = 0 and b > 0 then the linear span of ξ1 (x-axis) will repel all the solutions:
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Figure 3.1.7: a = 0, b = 3

Applied examples

• Richardson Arms race model: Consider countries A,B with x(t), y(t) amount of
weaponry respectively. The model for the rate of change of weaponry is:

dx

dt
= −a · x+ b · y + e1

dy

dt
= c · x− d · y + e2

The constants a, b, c, d are nonnegative. The constants b, c represent the fear magnitude eg.
when y(t) goes up then country A will increase its rate of weapon production by b · y(t).
The constants a, d represent the fatigue factor because some countries decide on a lower
rate of production given the amount of weapons they currently possess. For simplicity the
constant e1 represents the distrust country A has for country B and the reverse for e2.
But they can represent other factors not accounted for such as revenge, degradation of
weapons, etc. So if we have no interaction i.e. a = b = 0 but positive amount of distrust
e1 > 0 then we still have a steady rate of weapon production x′(t) = e1 > 0.
For simplicity e1 = −1, e2 = −1 consider the following matrix system

dx

dt
=

[−1 2

4 −3

]
x +

(−1

−1

)
.

1. A constant solution for this nonhomogeneous problem is v(t) =
(

1
1

)
, which we obtained

by setting dx
dt

=
(

0
0

)
and solving for x. Therefore, as explained above the general

solution will be:
x = c1ξ1e

λ1t + c2ξ2e
λ2t +

(
1

1

)
.
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2. The eigenvalues for this matrix are the solutions to

0 = λ2 − Tr(A)λ+ det(A) = λ2 + 4λ− 5

⇒ λ1 = 1, λ2 = −5.

3. The corresponding eigenvectors are ξ1 =
(

1
1

)
and ξ2 =

(−1
2

)
. So the general solution

is
x(t) = c1

(
1

1

)
et + c2

(−1

2

)
e−5t +

(
1

1

)
.

4. Therefore,
(

1
1

)
becomes a saddle point. That is, if a solution starts from

(
1
1

)
in a

direction parallel to
(−1

2

)
(i.e. choose c1 = 0), then the solution will converge to

the constant
(

1
1

)
at an exponential rate (like e−5t). For example, this happens if

x(0) =
( 1

2
2

)
. However for c1 6= 0 the solution will diverge to infinity like et in the

direction
(

1
1

)
away from the starting point

(
1
1

)
.

Figure 3.1.8: The
(

1
1

)
is a saddle point

5. This is reasonable because if the amount of distrust is negative e1 = −1, e2 = −1 < 0
(i.e. positive trust), then for appropriate initial conditions the solutions will converge
to peaceful coexistence (x(t), y(t))→ (1, 1).

6. To make sense of the special role c1 = 0 plays we have to study the critical level
sets. We have x′(t) ≥ 0 and y′(t) ≥ 0 when −x + 2y − 1 ≥ 0 and 4x − 3y − 1 ≥ 0
respectively; call these lines as L1, L2. The first inequality happens when we are
above L1 and the second when we are below L2. This is the region enclosed between
the lines on the right. So in the direction of ξ1 both countries are increasing their
rate without stop . On the other hand, in the direction of ξ2, which is above or below
both lines, the rates will have opposite signs (In this case, one country is increasing
their amount of weaponry while the other is decreasing it. The effect of one country
decreasing their stock of weaponry interferes with the other countries desire to have
more weapons. This is because the country that was originally increasing its stock of
weapons will see the other country deplete its stock and so will have less incentive to
create more.).
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Figure 3.1.9: The lines L1, L2 separate into regions of stability and instability.

As a reference the general solution for

dx

dt
=

[−a b

c −d

]
x +

(
1

1

)
. (3.1.1)

is

x(t) = c1

(
1

λ1+a
b

)
eλ1t + c2

(
1

λ2+a
b

)
eλ2t +

( e1d+e2b
ad−bc
e1a+e2c
ad−bc

)
. (3.1.2)
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• Consider the parallel circuit displayed in Figure 3.1.10 capacitance C (eg. battery),
resistance R (eg. light bulb) and inductance L (eg. coil used for storing energy). Note
that there is no voltage source.

Figure 3.1.10: Parallel LRC circuit.

Let V be the voltage drop and I the current passing through the circuit. Here is a quick
summary of the laws governing such systems:

– Ohm’s law(OL): For the resistance we have V = R · I.
– For the capacitance we have I3 = C · dV3

dt
.

– Faraday’s law and Lenz’s law(FLL): For the inductance we have V4 = L · dI2
dt
.

– Kirchhoff’s current law(KCL): −I3 = I = I1 − I2 ; this is the conservation of
energy law for circuits.

– Kirchhoff’s Voltage law(KV L): The sum of voltages in a loop is zero. Thus, in
the upper loop V3 = V1 and in the lower loop V2 + V4 + V1 = 0.

We can express all these relations in a system of odes that will describe the above circuit
system. We have

CV ′1
(KV L)

= CV ′3 = I3
(KCL)

= −I (KCL)
= −I1 + I2

(OL)
= − V1

R1

+ I2
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where we first applied Kirchhoff’s voltage law and then current law. We also have

LI ′2
(FLL)

= V4
(KV L)

= −V1 − V2
(OL)
= −V1 −R2I2.

Therefore, we have a system for I2, V1:

CV ′1 = I2 −
V1

R1

LI ′2 = −R2I2 − V1.

We rewrite this in matrix form:(
V ′1
I ′2

)
=

[− 1
CR1

1
C

−1
L

−R2

L

](
V1

I2

)
.

Suppose, for example, R1 = 3
5
, R2 = 1, L = 1, C = 1

3
then(

V ′1
I ′2

)
=

[−5 3

−1 −1

](
V1

I2

)
.

1. First we find the eigenvalues. λ1 = −4, λ2 = −2.

2. Second we find the eigenvectors. By solving the system or using the formulas we
obtain

ξ1 =

(
3

1

)
and ξ2 =

(
1

1

)
.

3. Therefore, the general solution is(
V1

I2

)
= c1

(
3

1

)
e−4t + c2

(
1

1

)
e−2t.

4. Therefore the current and voltage will go to zero as t → +∞. This is reasonable
because there is no voltage source and so eventually electricity will dissipate by
passing through the light bulbs.

3.1.1 Complex eigenvalues

Consider the system
x′(t) = Ax(t),

where now matrix A will have at least one pair of complex eigenvalues.

Example - Presenting the method

Consider the following parallel circuit with capacitance C (eg. battery), resistance R (eg. light
bulb) and inductance L (eg. coil used for storing energy).
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Figure 3.1.11: Parallel LRC circuit.

Let V be the voltage drop and I the current passing through the circuit. We also
define the counterclockwise orientation as the positive one. Here is a quick summary of the laws
governing such systems:

• Ohm’s law(OL): V = R · I.

• C · dV
dt

= I.

• Faraday’s law and Lenz’s law(FLL): L · dI
dt

= V.

• Kirchhoff’s current law(KCL): I = I2 + I3 ; this is the conservation of energy law for
circuits.

• Kirchhoff’s Voltage law(KV L): sum of voltages in a loop is zero. Thus, V1 = V3 and
V3 + V2 + V4 = 0.

We can express all these relations in a system of odes that will describe the circuit
system depicted in Figure 3.1.11. We have

CV ′1
(KV L)

= CV ′3 = −I3 = −I1 + I2 = −V2

R
+ I2 = − V1

R1

+ I2
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where we first applied Kirchhoff’s voltage and current law and then Ohm’s law. Note that we
used C(−V3)′ = I3 because V3 is in the clockwise direction. We also have LI ′2 = V4 = −V2−V1 =
−R2I2 − V1. Therefore, we have a system for I2, V1:

CV ′ = I − V

R1

LI ′ = −V +R2I.

We rewrite this in matrix form:(
V ′

I ′

)
=

[− 1
CR1

− 1
C

1
L

R2

L

](
V

I

)
.

Let R1 = R2 = 4, L = 8, C = 1
2
then(

V ′

I ′

)
=

[
−1

2
2

−1
8
−1

2

](
V

I

)
.

1. First we find the eigenvalues. λ1 = −1+i
2
, λ2 = −1−i

2
.

2. Second we find the eigenvectors. By solving the system or using the formulas we obtain

ξ1 =

(−4i

1

)
and ξ2 =

(
4i

1

)
.

3. Therefore, the general solution is

(
I

V

)
= c1

(−4i

1

)
e(−1+i

2
)t + c2

(
4i

1

)
e(−1−i

2
)t.

To obtain a real valued general solution it suffices to take real and imaginary parts of one
of the basis elements:(−1+i

2

1

)
e(−1+i

2
)t = e−t/2

(−4ieit/2

eit/2

)
)

= e−t/2
(−4i(cos(t/2) + isin(t/2)

(cos(t/2) + isin(t/2)

)
)

= e−t/2(

(
4sin(t/2)

cos(t/2)

)
+ i

(−4cos(t/2)

sin(t/2)

)
).

So we take

u(t) = e−t/2(

(
4sin(t/2)

cos(t/2)

)
and v(t) = e−t/2

(−4cos(t/2)

sin(t/2)

)
.

Indeed by computing their wronskian we get

W (u, v) =

[
e−t/24sin(t/2) −e−t/24cos(t/2)
e−t/2cos(t/2) e−t/2sin(t/2)

]
= 4e−t/2(cos2(t/2) + sin2(t/2)) = 4e−t/2 6= 0.

4. Since there is no voltage source, as expected the solutions will converge to the origin.
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Figure 3.1.12: Phase portrait for (V, I).

5. To understand the periodicity we will describe the circuit’s analogy with a mass spring.

(a) When the spring is compressed we are storing energy in the form of atomic-bond
energy or potential energy (i.e. the spring tries to regain its original position).

(b) Then that energy is released into kinetic energy.
(c) When the spring mass returns, it compress the springs and so the cycle begins again.

In a circuit, a charged capacitor (battery) is analogous to a compressed spring and an
inductor is analogous to the inertia mass.

(a) The charged capacitor releases the electrical energy into the circuit which the inductor
converts into magnetic field energy (analogous to kinetic energy).

(b) When the capacitor is fully discharged, the magnetic field energy creates a counter
current (by Faraday’s law), which then charges the capacitor in the opposite direction.

(c) The oppositely charged capacitor starts releasing a current in the opposite direction
and so the cycle starts again.

Method formal steps

1. Let λ1 = −a+ ib, λ2 = −a− ib be the complex eigenvalues and ξ1 =
(
r1eiθ1

r2eiθ2

)
, ξ2 =

(
%1eiϕ1

%2eiϕ2

)
the corresponding eigenvectors. Then the solution is

x = e−at(c1ξ1e
ibt + c2ξ2e

−ibt).

2. To obtain a real-valued solution (not all) it suffices to pick one of the terms above, say
e−atξ1e

ibt. Then its real and imaginary parts will also be solutions:

e−atξ1e
ibt = e−at

(
r1e

i(θ1+b)

r2ei(θ2+b)

)
= e−at

(
r1cos(θ1 + b)

r2cos(θ2 + b)

)
+ ie−at

(
r1sin(θ1 + b)

r2sin(θ2 + b)

)
=: u+ iv.



3.1. HOMOGENEOUS LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS 87

3. Sometimes we can even obtain a general solution. By computing the wronskian we obtain:

W [u, v] = e−atr1r2(cos(θ1 + b)sin(θ2 + b)− cos(θ2 + b)sin(θ1 + b)).

So as we see depending on the choice of θ1, θ2, the solutions u,v might be linearly
independent or dependent.

4. Stability results. We note that the crucial role of stability is played by the factor e−at.

• If a > 0, then the solutions will converge to the node sink (0, 0) and the spiral will
be inward.
• If a < 0, then the solutions will diverge away from the node source (0, 0) and the

spiral will be outward.
• If a = 0, then the solutions will be concentric circles centered at (0, 0).

3.1.2 Examples

• Consider the system

x′ =
[
a 1
−1 0

]
x.

1. We first compute its eigenvalues: λ2 − aλ+ 1 = 0⇒ λ = a±
√
a2−4
2

. So to explore the
complex case we assume that a2 < 4.

2. Let ξ1, ξ2 be the corresponding eigenvectors: ξ1 =
(
λ1
−1

)
, ξ2 =

(
λ2
−1

)
– Assume α = −1 < 0, then λ = −2±i

√
3

2
and so the general solution will be

x = e−t(c1ξ1e
i
√

3
2
t + c2ξ2e

−i
√
3
2
t).

Figure 3.1.13: The solutions are converging towards the node sink (0,0).



88 CHAPTER 3. SYSTEMS OF ODES

– Assume α = 1 > 0, then the general solution will be

x = et(c1ξ1e
i
√
3
2
t + c2ξ2e

−i
√
3

2
t).

Figure 3.1.14: The solutions are spiraling outward from the node source (0, 0).

– Assume α = 0, then the general solution will be

x = c1ξ1e
i
√
3

2
t + c2ξ2e

−i
√
3

2
t.
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Figure 3.1.15: The solutions are concentric circles centered at (0, 0).

3.1.3 Repeated eigenvalues

Consider the system
x′(t) = Ax(t),

where now matrix A will have at least two duplicated eigenvalues.

Example-presenting the method

Consider the following LRC circuit.
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Figure 3.1.16: Parallel LRC circuit.

We have CV ′1 = −I = −I1 − I2 = −V2
R
− I2 and LI ′2 = V3 = V2 = V1. Therefore, the

matrix system is: (
V ′

I ′

)
=

[
− 1
CR

− 1
C

1
L

0

](
V

I

)
.

1. The eigenvalues are λ = − 1
2CR
± 1

2

√
( 1
CR

)2 − 4 1
CL

and so if ( 1
CR

)2−4 1
CL

= 0⇔ L = 4R2C,
we get a repeated eigenvalue λ1 = λ2 = − 1

2CR
. So assume R = C = 1 and L = 4, then the

system is (
V ′

I ′

)
=
[−1 −1

1
4

0

](V
I

)
.

2. Then the eigenvalue is λ = −1
2

and the eigenvector is ξ =
(−2

1

)
. So we obtain the first

term of the solution x1 := ξeλt.

3. Similarly to second order odes with repeated roots, we make the ansatz

x = c1x1 + c2x2 = c1ξe
λt + c2(ξeλt · t+ ηeλt),

where η is a yet undetermined vector.
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4. Plugging in x2 := ξeλt · t+ ηeλt into our system x′(t) = Ax we obtain:

λξeλtt+ (ξ + λη)eλt = A(ξeλtt+ ηeλt).

5. Equating the coefficients of eλtt and eλt we get

λξ = Aξ
ξ + λη = Aη.

6. The first equation is always true by virtue of ξ being an eigenvector. We will use the
second system to determine η. In other words, we must solve the system

(A− λI)η = ξ.

7. In our case we have[−1 −1
1
4
−0

]
+

1

2
I)

(
η1

η2

)
=

(−2

1

)
⇒
[
−1

2
−1

1
4

1
2

](
η1

η2

)
=

(−2

1

)

8. By solving the system we obtain
η2 = 2− η1

2
.

Therefore, for any η1 = k we obtain

η =

(
k

2− k
2

)
=

(
0

2

)
+ k

(
1

−1
2

)
.

9. Returning above the ansatz solution will be:

x = c1

(−2

1

)
e−t/2 + c2

[(−2

1

)
e−t/2 · t+

{(
0

2

)
+ k

(
1

−1
2

)}
e−t/2

]
= a1

(−2

1

)
e−t/2 + c2

[(−2

1

)
e−t/2 · t+

(
0

2

)
e−t/2

]
,

where a1 := c1 − k/2.

10. Therefore, the (Voltage,Current) pair presents no periodicity and it simply goes to (0, 0).
However, for as t → +∞ the term

(−2
1

)
e−t/2 · t will dominate and so the solutions will

converge to the linear span of
(−2

1

)
and then along that line to the node sink (0, 0).
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Figure 3.1.17: The linear span of
(−2

1

)
is a node and the origin will be the node sink.

Method formal steps

1. We first find the repeated eigenvalue λ and its eigenvector ξ. So the first term of the
solution will be x1 := ξeλt.

2. For the second term we make the ansatz

x2 := ξeλt · t+ ηeλt.

3. Plugging this into our system x′(t) = Ax(t) we obtain the stystem:

(A− λI2)η = ξ.

4. By determining η we obtain:

x = c1x1 + c2x2 = c1ξe
λt + c2(ξeλt · t+ ηeλt).

Examples

• Consider system

x′ =

[
1 −1

1 3

]
x

1. We first find the eigenvalues:

λ =
Tr(A)

2
± 1

2

√
Tr(A)2 − 4 det(A) = 2

and so we have a repeated eigenvalue.
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2. Second, we find the corresponding eigenvector:[
1− λ −1

1 3− λ

](
ξ1

ξ2

)
=

(
0

0

)
=⇒ ξ =

(
ξ1

ξ2

)
=

(
1

−1

)
.

3. Assuming the solution is of the form x2 := ξeλt · t+ ηeλt and plugging into our ODE
we obtain:

(A− λI2)η = ξ =⇒
[
1− λ −1

1 3− λ

](
η1

η2

)
=

(
1

−1

)
.

Solving this system gives us:

η1 + η2 = −1 =⇒ η =

(
k

−k − 1

)
= k

(
1

−1

)
+

(
0

−1

)
,

where k is any real number. We can rewrite η as:

η = kξ +

(
0

−1

)
4. Therefore, the general solution is:

x = c1x1 + c2x2

= c1e
2tξ + c2(ξe2t · t+ ηe2t)

= c1e
2tξ + c2

[
ξe2t · t+

{
kξ +

(
0

−1

)}
e2t

]
= e2t

[
(c1 + kc2)

(
1

−1

)
+ c2

{(
1

−1

)
t+

(
0

−1

)}]
.

5. The vector ξ1 =
(

1
−1

)
dominates the long term behaviour due to the extra term

(
1
−1

)
t

(provided we do not choose c2 = 0). So we see that, essentially, all solutions are
diverging away from the linear span of

(
1
−1

)
.

Figure 3.1.18: The phase portrait for x = (x1, x2) with ξ1 =
(

1
−1

)
, ξ2 =

(
0
−1

)
.
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• Consider the system

x′ =

[
2 1

2

−1
2

1

]
x

with x(0) =
(

1
3

)
.

1. First we find the eigenvalues:

λ =
Tr(A)

2
± 1

2

√
Tr(A)2 − 4 det(A) =

3

2

and so we have a repeated eigenvalue.

2. Second, we find a corresponding eigenvector:[
2− 3

2
1
2

−1
2

1− 3
2

](
ξ1

ξ2

)
=

(
0

0

)
=⇒ ξ =

(
ξ1

ξ2

)
=

(
1

−1

)
.

3. Assuming the solution is of the form x2 := ξeλt · t+ ηeλt and plugging into our ODE
we obtain:

(A− λI2)η = ξ =⇒
[

2− 3
2

1
2

−1
2

1− 3
2

](
η1

η2

)
=

(
1

−1

)
.

Solving this system gives us:

η1 + η2 = 2 =⇒ η =

(
k

−k + 2

)
= k

(
1

−1

)
+

(
0

2

)
,

where k is any real number. We can rewrite η as:

η = kξ +

(
0

2

)
.

Therefore, the general solution is:

x = c1x1 + c2x2

= c1e
3t
2 ξ + c2(ξe

3t
2 · t+ ηe

3t
2 )

= c1e
3t
2 ξ + c2

[
ξe

3t
2 · t+

{
kξ +

(
0

2

)}
e

3t
2

]
= e

3t
2

[
(c1 + kc2)

(
1

−1

)
+ c2

{(
1

−1

)
t+

(
0

2

)}]
.

If we now use the initial condition we obtain the system of equations(
1

3

)
= (c1 + kc2)

(
1

−1

)
+ c2

(
0

2

)
which can be solved to obtain that c1 = 1− 2k and c2 = 2.

4. The vector ξ1 =
(

1
−1

)
dominates the long term behaviour due to the extra term

(
1
−1

)
t.

So we see that all solutions to the IVP are diverging away from the linear span of(
1
−1

)
.
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Figure 3.1.19: The phase portrait for x = (x1, x2) with ξ1 =
(

1
−1

)
, ξ2 =

(
0
2

)
.
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3.1.4 Stability

Summary of the stability results.

Eigenvalues Type of criti-
cal point Stability Sample phase portrait

λ1 > λ2 > 0 Nodal source Unstable

v2

v1

λ1 > 0 > λ2 Saddle point Unstable

v2

v1

0 > λ1 > λ2 Nodal sink Asymptotically stable

v2

v1

λ1 = 0, λ2 > 0 v0 line Unstable and source

v0

v2

λ1 = 0, λ2 < 0 v0 line Unstable and sink

v0

v2
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λ = λ1 = λ2 > 0

and A =
(
λ
λ

) Proper node Unstable

λ1 = λ2 > 0

and A is not diagonal
Improper node Asymptotically unstable

λ = λ1 = λ2 < 0

and A =
(
λ
λ

) Proper node Stable

λ1 = λ2 < 0

and A is not diagonal
Improper node Asymptotically stable

λ1 = a+ ib, λ2 = a− ib Spiral

a>0 Unstable

0>a Stable

λ1 = ib, λ2 = −ib Center Stable
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detA

Classification of Phase Portraits in the (detA,TrA)-plane

TrA

∆=0 ∆=0: detA= 1
4 (TrA)2

saddle

sink source

spiral sink spiral source

center

line of stable fixed points line of unstable fixed points

degenerate sink degenerate source

uniform
motion

Figure 3.1.20: Classification of phase portraits.

Stability of Eigenvalue Dependence

In this section we study the limiting behaviour of solutions as distinct eigenvalues of A become
repeated. Specifically, we demonstrate that the solutions of x′ = Ax when A has distinct
eigenvalues converges pointwise, after being suitably prepared, to the solution of x′ = Ax when
A has repeated eigenvalues. We focus our analysis on the 2× 2 case. Consider the problem

x′(t) =

(
λ 1

0 λ

)
x(t) (3.1.3)

where λ ∈ R as well as the perturbed problem

x′(t) =

(
λ+ ε 1

0 λ− ε

)
x(t) (3.1.4)

where ε > 0. Notice that the perturbed problem has a matrix with distinct eigenvalues λ+ ε
and λ− ε. One might hope that if we take a sequence of solutions to the perturbed problems as
ε→ 0+ then, in the limit, we obtain a solution to the limiting problem (3.1.3). As we will see,
this only works if we choose the sequence of solutions appropriately. To begin, we note that the
solution xε(t) to the perturbed problem (3.1.4) is

xε(t) = c1(ε)e(λ+ε)t

(
1

0

)
+ c2(ε)e(λ−ε)t

(
1

−2ε

)
for each ε > 0, where c1(ε) and c2(ε) are constants that may depend on ε (note that we are
considering a sequence of solutions with no initial conditions and so we are free to choose these
constants as we please). We now wish to show that as ε → 0+ the above family of solutions
tends to the solution of (3.1.3). Observe that we can write this solution as

xε(t) =

(
c1(ε)e(λ+ε)t + c2(ε)e(λ−ε)t

−2εc2(ε)e(λ−ε)t

)
= eλt

(
c1(ε)eεt + c2(ε)e−εt

−2εc2(ε)e−εt

)
.
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To ensure that the second component converges to an interesting value, k ∈ R, of our choosing
we see that we must require that c2(ε) = −k

2ε
. Updating the family of solutions with this choice

of c2(ε) we obtain

xε(t) = eλt
(
c1(ε)eεt − k

2ε
e−εt

ke−εt

)
.

Observe that the first component now has a term that diverges as ε → 0+. Thus, we must
choose c1(ε) in a way that combats this divergent term. In accordance with the above logic we
choose c1(ε) = k

2ε
+ c3(ε) where we will decide later how to choose c3(ε). Updating our family of

solutions we obtain

eλt
((

k
2ε

+ c3(ε)
)
eεt − k

2ε
e−εt

ke−εt

)
= eλt

(
c3(ε)eεt + k

(
eεt−e−εt

2ε

)
ke−εt

)
= eλt

(
c3(ε)eεt + kt

(
eεt−e−εt

2εt

)
ke−εt

)
.

We now choose c3(ε) = a for some constant a ∈ R so that the first term in the first component
converges. Observe also that, by L’Hôpital’s rule we have

lim
ε→0+

eεt − e−εt
2εt

= lim
ε→0+

2ε

2ε
= 1.

Thus, we conclude that by letting ε tend to 0 from the right we obtain, for each t ∈ R

lim
ε→0+

xε(t) = eλt
(
a+ kt

k

)
= aet

(
1

0

)
+ ket

(
t

1

)
which is a solution to (3.1.3). Notice that a and k were arbitrary choices and so we can obtain
any such solution. Notice, however, that we had to choose very specific behaviour for the
coefficients to get this convergence.
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3.2 Nonhomogeneous linear systems

In this section we study nonhomogeneous first order systems of equations building off of the
previous work on homogeneous first order systems.

3.2.1 Diagonalization Method

Consider nonhomogeneous linear first order systems:

x′ = Ax + g(t),

where g(t) is a vector of continuous functions and A is a diagonalizable n × n matrix with
eigenvalues {λi}i=1,...,n. The latter assumption means that if T has the eigenvectors of A as
columns, then T−1AT = D is a diagonal matrix.

Using diagonalization Plugging in x = Ty for some yet unknown y we obtain

Ty′ = x′ = Ax + g(t) = ATy + g(t)

=⇒ y′ = T−1ATy + T−1g(t) = Dy + T−1g(t).

As a result, we decoupled the system. From this decoupled system we obtain the first order
equations:

y′i = λiyi(t) + (T−1g(t))i for i = 1, ..., n.

For hi(t) := (T−1g(t))i we have (by the method of integrating factors)

yi(t) = eλit
[∫ t

0

e−λishi(s)ds+ ci

]
.

Therefore, we found the solution x = Ty.

Using Jordan form

Method formal steps

1. As usual we first find the eigenvalues λ1, λ2 and corresponding eigenvectors ξ1, ξ2 of the
homogeneous system x′ = Ax.

2. Form the change of basis matrix T := [ξ1, ξ2] and find the solution to the following two
first order odes

y′1 = λ1y1(t) + (T−1g(t))1

y′2 = λ2y2(t) + (T−1g(t))2.

3. By integrating factor the solutions are

y1(t) = eλ1t
[∫ t

0

e−λ1s(T−1g(s))1ds+ c1

]
y2(t) = eλ1t

[∫ t

0

e−λ2s(T−1g(s))2ds+ c2

]
.
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4. We obtain the original solution by undoing the change of basis:

x = Ty.

Example-Presenting the method Consider the system

x′ =

(
2 −1

3 −2

)
x +

(
et

t

)
.

1. First we find the eigenvalues

λ =
Tr(A)

2
± 1

2

√(
Tr(A)

)2 − 4 det(A) =⇒ λ1 = −1, λ2 = 1.

2. The corresponding eigenvectors are, respectively, v1 = (1, 3)T, v2 = (1, 1)T and so the
change of basis matrix T that diagonalizes our matrix is:

T =

(
1 1

3 1

)
.

3. Therefore, as argued above, the solution will be

x = Ty,

where

y1(t) = e−t
∫ t

0

esh1(s)ds+ c1e
−t and y2(t) = et

∫ t

0

e−sh2(s)ds+ c2e
t

with
h1(t) :=

1

2
(t− et) and h2(t) :=

1

2
(3et − t).

First we find the yi (note that sinh(t) is et−e−t
2

):

y1 = c1e
−t +

1

2
e−t
[
et{t− sinh(t)− 1}+ 1

]
and y2 = c2e

t +
1

2
et
[
3t+ e−t(t+ 1)− 1

]
.

4. Therefore, we obtain, since x = Ty

{
x1 = c1e

−t + c2e
t + 1

2
e−t[1 + et{−1 + t− sinh(t)}] + 1

2
et[−1 + 3t+ e−t(1 + t)]

x2 = 3c1e
−t + c2e

t + 3
2
e−t[1 + et{−1 + t− sinh(t)}] + 1

2
et[−1 + 3t+ e−t(1 + t)]

=⇒ x =

[
c1e
−t +

1

2
e−t
{

1 + et(−1 + t− sinh(t))
}](1

3

)
+

[
c2e

t +
1

2
et
{
−1 + 3t+ e−t(1 + t)

}](1

1

)

Examples

• Consider the system

x′ =

(
2 −5

1 −2

)
x +

(
0

cos(t)

)
.
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1. First we find the eigenvalues

λ =
Tr(A)

2
± 1

2

√(
Tr(A)

)2 − 4 det(A) =⇒ λ1 = −2 + i
√

5, λ2 = −2− i
√

5.

2. The corresponding eigenvectors are, respectively, v1 = (i
√

5, 1)T, v2 = (−i
√

5, 1)T

and so the change of basis matrix T that diagonalizes our matrix is:

T =

(
i
√

5 −i
√

5

1 1

)
.

3. Therefore, as argued above, the solution will be

x = Ty,

where

y1(t) = e(−2+i
√

5)t

∫ t

0

e−(−2+i
√

5)sh1(s)ds+c1e
(−2+i

√
5)t and y2(t) = e(−2−i

√
5)t

∫ t

0

e−(−2−i
√

5)sh2(s)ds+c2e
(−2−i

√
5)t

with
h1(t) := −2i cos(t) and h2(t) := cos(t).

4. First we find the yi. We will do y1 and y2 is similar.

∫ t

0

e−(−2+i
√

5)sh1(s)ds+ c1 = −2i

∫ t

0

e−(−2+i
√

5)s cos(s)ds+ c1

=
−2i

1 + (2− i
√

5)2

{
(e−t(−2+i

√
5)(sin(t) + (2− i

√
5) cos(t))− (2− i

√
5)
}

+ c1,

where we used the formula∫
e(a+ib)t cos(s)ds =

1

1 + (a+ ib)2
(et(a+ib)(sin(t) + (a+ ib) cos(t))− (a+ ib)).

we simplify by setting c1 := −2i(2−i
√

5)

1+(2−i
√

5)2
to get

y1 = et(−2+i
√

5) −2i

1 + (2− i
√

5)2

{
e−t(−2+i

√
5)(sin(t) + (2− i

√
5) cos(t))

}
=

−2i

1 + (2− i
√

5)2

{
sin(t) + (2− i

√
5) cos(t)

}
=
−2i

−4i
√

5

{
2 cos(t) + sin(t)− i

√
5 cos(t)

}
=

1

2
√

5

{
2 cos(t) + sin(t)− i

√
5 cos(t)

}
=: u(t) + iv(t)

For y2 we have

y2(t) =
1

1 + (2 + i
√

5)2

{
sin(t) + (2 + i

√
5) cos(t)

}
=

1

4i
√

5

{
2 cos(t) + sin(t) + i

√
5 cos(t)

}
using that i−1 = −i we obtain

=
1

4
√

5

√
5 cos(t)− i

4
√

5
(2 cos(t) + sin(t))
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=
1

4
cos(t)− i

4
√

5
(2 cos(t) + sin(t))

=: ũ(t) + iṽ(t).

5. Undoing the change of basis we obtain:

xnh = Ty

=

(
i
√

5 −i
√

5

1 1

)(
u+ iv

ũ+ iṽ

)

=

(√
5(ṽ − v + i(u− ũ))

ṽ − v + i(u− ũ)

)

=

(√
5(ṽ − v)

ṽ − v

)
+ i

(√
5(u− ũ)

u− ũ

)
we have that

ṽ − v =
−1

4
√

5
(2 cos(t) + sin(t)) + cos(t)

1

2

= cos(t)
1

2
(1− 1√

5
) + sin(t)

−1

4
√

5
and

ũ− u =
1

4
cos(t)− 1

2
√

5
(2 cos(t) + sin(t))

= cos(t)
1

2
(1− 1√

5
) + sin(t)

−1

2
√

5
.

As a result,

=

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√

5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√

5

)

+ i

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

2
√

5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

2
√

5

)

6. Since we are only looking for a particular solution we only take the real part:

xnh =

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√

5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√

5

)

7. Therefore, the general solution is:

x =

[
c1e

(−2+i
√

5)t

(
i
√

5

1

)
+ c2e

(−2−i
√

5)t

(−i√5

1

)]

+

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√

5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√

5

)

• Consider the 2nd order equation

θ′′ − 2θ′ − 3θ = e−t + 3
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then by setting x = θ, y = θ′ we obtain the system:

x′(t) =

[
0 1

3 2

]
x +

(
0

e−t + 3

)
.

1. First we solve the second order equation. The homogeneous part is

xh = c1e
3t + c2e

−t.

2. Then we apply our guess: xnh = atse−t. Since -1 is a simple root, we have s = 1 and
so it remains to find a:

a(−2e−t + te−t − 2e−t + 2te−t − 3te−t) = e−t ⇒ a =
−1

4
.

3. So the solution is:
xgen = c1e

3t + c2e
−t − 1

4
te−t + 1.

4. Next we solve the corresponding nonhomogeneous system. The eigenpairs are
(3,
(

1
3

)
), (−1,

(−1
1

)
) and so the homogeneous part is:

x = c1e
3t

(
1

3

)
+ c2e

−t
(−1

1

)
.

5. So the change of basis is matrix T =

(
1 −1

3 1

)
and we obtain:

h(t) =

(
1 −1

3 1

)−1(
0

e−t

)
=

1

4

(
e−t

e−t

)
.

6. Thus, we obtain

y1(t) =e3t

∫
e−3s(

e−s

4
)ds

=
e−t

−16
and

y2(t) =e−t
∫
es(

e−s

4
)ds

=
e−tt

4
.

7. Therefore, the nonhomogeneous part is

xnh,1 = Ty =
e−t

4

(
1 −1

3 1

)(−1
4

t

)
=
e−t

4

(−1
4
−3
4

)
+
e−tt

4

(−1

1

)

8. For the system x′ = Ax+
(

0
3

)
, we have

xnh,2 = A−1

(
0

−3

)
=

(
1

0

)
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9. The general solution will be:

xgen = c1e
3t

(
1

3

)
+ c2e

−t
(−1

1

)
+
−e−t

16

(
1

3

)
+
e−tt

4

(−1

1

)
+

(
1

0

)
.

10. Indeed the x = θ component is of the form:

θ = x = c1e
3t + c2e

−t − e−tt

4
+ 1,

which agrees with our second order solution.

• Consider the equation
θ′′ + 2θ′ + 2θ = 3 + e−tsin(t)

and its related system

x′(t) =

[
0 1

−2 −2

]
x +

(
0

3 + e−tsin(t)

)
.

1. First we solve the second order equation. The homogeneous part is

xh = c1e
(−1+i)t + c2e

(−1−i)t.

2. Then we apply our guess: xnh = tse−t(a cos(t) + b sin(t)). Since -1+i is a simple root,
we have s = 1 and so it remains to find a,b:

2(e−t − e−tt)(b cos(t)− a sin(t))

+ e−tt(−a cos(t)− b sin(t)) + 2e−tt(a cos(t) + b sin(t))

+ (e−tt− 2e−t)(a cos(t) + b sin(t))

+ 2(e−tt(b cos(t)− a sin(t))

+ e−t(a cos(t) + b sin(t))− e−tt(a cos(t) + b sin(t)))

= e−tsin(t).

Isolating the term e−tsin(t) we obtain

− 2a− b = 1⇒ a = −1

2
and b = 0

and so the nonhomogeneous part is

xnh = te−t(−1

2
cos(t)).

3. So the solution is:

xgen = c1e
(−1+i)t + c2e

(−1−i)t + te−t(−1

2
cos(t)) +

3

2
.

4. Next we solve the corresponding nonhomogeneous system. The eigenpairs are (−1 +
i,
(−1−i

2

)
), (−1 + i,

(
1−i
−2

)
) and so the homogeneous part is:

x = c1e
(−1+i)t

(−1− i
2

)
+ c2e

(−1−i)t
(−1 + i

2

)
.
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5. So the change of basis is matrix T =

(
−1− i −1 + i

2 2

)
and we obtain:

h(t) =

(
−i− 1 i− 1

2 2

)−1(
0

e−tsin(t)

)
=
e−tsin(t)

4

(
1 + i

1− i

)
.

6. Thus, we obtain

y1(t) =e(−1+i)t

∫
e−(−1+i)s(

e−s sin(s)(1 + i)

4
)ds

=
e(−1+i)t(1 + i)

4
(
−it
2
− e−2it

4
)

=
e(−1+i)t(−1− i)

8
(it+

e−2it

2
)

and

y2(t) =e(−1−i)t
∫
e−(−1−i)s(

e−s sin(s)(1− i)
4

)ds

=
e(−1−i)t(1− i)

8
(it− e2it

2
).

7. Therefore, the nonhomogeneous part is

xnh,1 = Ty =

( ie(−1−i)t

4
(it− e2it

2
) + e(−1+i)t

4
(it+ e−2it

2
)

(1 + i) e
(−1+i)t

4
(−it− e−2it

2
) + (1− i) e(−1−i)t

4
(it− e2it

2
)

)
using the Euler formula we obtain

=

( −e−t
4
t2 cos(t) + i ie

−t

4
sin(t)

e−t

4
(2t− 1)(sin(t) + cos(t))

)
=
e−t

4
t2 cos(t)

(−1

1

)
+
e−t

4
sin(t)

(
i

−1

)
+
e−t

4
(2t sin(t)− cos(t))

(
0

1

)
.

8. For the system x′ = Ax+
(

0
3

)
, we have

xnh,2 = A−1

(
0

−3

)
=

(
3
2

0

)
9. The general solution will be:

xgen =c1e
(−1+i)t

(
i+ 1

−2

)
+ c2e

(−1−i)t
(
i− 1

−2

)
+
e−t

4
t2 cos(t)

(−1

1

)
+
e−t

4
sin(t)

(
i

−1

)
+
e−t

4
(2t sin(t)− cos(t))

(
0

1

)
+

(
3
2

0

)
.
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10. Indeed the x = θ component is of the form:

θ = x = c1e
(−1+i)t + c2e

(−1−i)t + te−t(−1

2
cos(t)) +

3

2
,

which agrees with our second order solution.

3.2.2 Using method of undetermined coefficients

If the components of g(t) are linear combinations of polynomial, exponential, or sinusoidal
functions, then as before we assume that the solution x is a linear combination of the same type
of functions.

Example-Presenting the method

Consider the system

x′ =

(
2 −1

3 −2

)
x + et

(
1

0

)
+ t

(
0

1

)
.

1. Given g(t) =
(
et

t

)
we assume that the solution is of the form:

x(t) = atet + bet + ct+ d.

for some vectors a, b, c, and d to be found.

2. Plugging this into our system we obtain

a(tet + et) + bet + c = x′ = A
(
atet + bet + ct+ d

)
+ et

(
1

0

)
+ t

(
0

1

)
.

Therefore, we obtain algebraic equations for a,b, c,d:

a = Aa,

a + b = Ab +

(
1

0

)
,

0 = Ac +

(
0

1

)
,

c = Ad.

The first equation implies that a is an eigenvector for A with associated double eigenvalue
λ1 = 1 and so we can assume that

a =
3

2

(
1

1

)
because it will solve the second equation:

b =

(
k

k − 1
2

)
= k

(
1

1

)
− 1

2

(
0

1

)
.

By solving the remaining systems we obtain

c =

(
1

2

)
, d =

(
0

−1

)
.
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Therefore, the solution is

x = c1e
−t
(

1

3

)
+

3

2

(
1

1

)
tet +

{
c2

(
1

1

)
− 1

2

(
0

1

)}
et +

(
1

2

)
t−
(

0

1

)
.

3.2.3 Integrating Factor

We now present an alternative method for solving nonhomogeneous first order systems. Specifi-
cally, we wish to solve the first order system described by

x′(t) = Ax(t) + g(t)

where x : R→ Rn is a column vector, A is an n× n matrix, and g : R→ Rn is continuous.
Observe that, by moving the term Ax(t) to the other side we obtain

x′(t)−Ax(t) = g(t). (3.2.1)

One might be reminded of the one-dimensional nonhomogeneous differential equation given by

x′(t)− ax(t) = g(t).

You may recall that to solve such an ODE we multiplied through by an integrating factor,
µ(t), chosen carefully so that we may view the left hand side as the derivative of a product of
functions. Specifically, we choose µ to satisfy µ′(t) = −aµ(t). Multiplying through by µ and
applying the above strategy leads to the solution, as one can check,

x(t) = eat
{
C +

∫ t

0

e−asg(s)ds

}
.

Motivated by the philosophy that ODEs that look similar are probably solved by similar
techniques we attempt to use a similar strategy for the first order system. Note that since we
are working with matrices we have to be careful with what we multiply through since not all
matrices can be multiplied together (recall that matrix multiplication only makes sense if the
row and column sizes are appropriate). After some consideration we may anticipate that the
function we desire is a function of the form µ : R→Mn×n(R). That is, a function such at each
time t we obtain an n× n matrix µ(t). Multiplying our equation on the left by µ(t) gives

µ(t)x′(t)− µ(t)Ax(t) = µ(t)g(t).

If we now choose µ such that µ′(t) = −µ(t)A, where this derivative is understood componentwise
as in the case of x′, then we could rewrite the equation as(

µx
)′

(t) = µ(t)g(t)

and then integrating1 we obtain

µ(t)x(t) = C +

∫ t

0

µ(s)g(s)ds

1It is worth pondering what integration would mean here since the product of µ and g is a column vector
and not a scalar. One is usually taught that integrating a continuous scalar function f is the result of taking a
limit of Riemann sums. That is ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x.
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where C is a vector of constants of integration. Finally, if we are lucky enough that µ(t) is
invertible for all t then we can solve for x to obtain

x(t) =
(
µ(t)

)−1
(

C +

∫ t

0

µ(s)g(s)ds

)
. (3.2.2)

We now try to find our candidate µ. Recall that we needed to solve the equation

µ′(t) = −µ(t)A. (3.2.3)

Given that the one-dimensional case had A on the left hand side of the candidate function one
might find it odd to have the matrix A on the right for this computation. To fix this, we define
y(t) =

(
µ(t)

)T . Transposing equation (3.2.3) we obtain

y′(t) =
(
µ′(t)

)T
=
(
−µ(t)A

)T
= −AT

(
µ(t)

)T
= −ATy(t).

Observe that if we write y is columns then the above can be understood as[
y′1(t) · · · y′n(t)

]
= AT

[
y1(t) · · · yn(t)

]
=
[
−ATy1(t) · · · −ATyn(t)

]
which means that each column yi satisfies the first order homogeneous system

y′i(t) = −ATyi(t).

Suppose now we choose the columns of y to be n-linearly independent solutions (i.e fundamental
solutions) of this first order homogeneous system. Then we will have found y which means
we have found µ by transposing. Specifically, choose y1 . . . ,yn to be n-linearly independent
solutions. Now we let y(t) =

[
y1(t) · · · yn(t)

]
. This tells us that

µ(t) =
(
y(t)

)T
=


(
y1(t)

)T
...(

yn(t)
)T
.

In view of this, we notice that if f : [a, b]→ Rm is now a vector-valued function then f is simply a column of
scalar-valued functions

(
f1, . . . , fm

)T . Observe that in this case it makes sense to write

n∑
i=1

f(xi)∆x =

n∑
i=1



f1(xi)

...

fm(xi)


∆x =



∑n
i=1 f1(xi)∆x

...

∑n
i=1 fm(xi)∆x.


Now taking limits suggests the definition

∫ b

a

f(x)∆x :=



∫ b

a
f1(x)dx

...

∫ b

a
fm(x)dx.
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One can check that equation
(
3.2.3

)
is satisfied. Since we chose that the solutions yi are all

linearly independent then µ(t) is invertible for all t. In particular the formula given in equation(
3.2.2

)
is valid.2 Note that the above technique results in a more general answer than the

technique given by using diagonalization since we did not assume anything about the matrix A.
However, we can see that the cost of generality is that obtaining the solution is more challenging.

To make the above construction more notationally clear we use the concept of a
matrix exponential in the following section outlining the steps to implementing the above
construction. The matrix exponential, etA, (whose formula for a 2 × 2 matrix depends on
whether its eigenvalues are complex, real and repeated, or real and distinct) is the matrix whose
columns are the fundamental solutions to the problem x′ = Ax and whose value at t = 0 is the
identity. Notice that the notation was deliberately chosen to remind you of the scalar ODE
x′ = ax whose solution (up to a constant) is eta.

Method formal steps

1. As usual we first find the eigenvalues λ1, λ2 of the homogeneous system x′ = Ax.

2. Identifying the exponential of A:

• If the eigenvalues are distinct then

etA := eλ1t
1

λ1 − λ2

(A− λ2I2)− eλ2t 1

λ1 − λ2

(A− λ1I2).

• If λ = λ1 = λ2 then
etA := eλtI2 + eλtt(A− λI2).

• If λ1 = a+ ib, λ2 = a− ib then

etA :=
eat

b
{b cos(bt)I2 + sin(bt)(A− aI2)}.

3. We compute e−tA by inverting the matrix etA (see the linear algebra appendix)

4. Finally we obtain the general solution for our system (using identities proven in the linear
algebra appendix):

x(t) =
(
µ(t)

)−1
(

C +

∫ t

0

µ(s)g(s)ds

)
= exp{tA}

(
C +

∫ t

0

exp{−sA}g(s)ds

)
(3.2.4)

Example-Presenting the method

Consider the system

x′ =

(
1 1

0 1

)
x +

(
et

1

)
. (3.2.5)

Notice that the matrix A in equation
(
3.2.5

)
has only 1 as an eigenvalue but the only solution

to (
1 1

0 1

)
v = v

2One might try to check that the formula for the solution given in equation
(
3.2.2

)
is in fact correct. Note,

however, that this computation is actually somewhat sophisticated since you have to differentiate the function(
µ(t)

)−1 which requires computing the derivative of the function that assigns the inverse of a matrix.
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is
v = a

(
1

0

)
for a ∈ R. So this matrix is not diagonalizable and hence the diagonalization method does not
apply. However, the integrating factor technique will still work. Following step 1 we notice that
we have a repeated eigenvalue λ = 1. By step 2 we obtain that

etA = etI2 + ett(A− I2) =

(
et tet

0 et

)

By step 3 we learn that

(etA)−1 = e−tA =

[
e−t −te−t
0 e−t

]
.

Finally, by equation
(
3.2.4

)
we learn that the general solution is:

x(t) =

[
et tet

0 et

](
C +

∫ t

0

[
e−s −se−s
0 e−s

][
es

1

]
ds

)
=

[
et tet

0 et

](
C +

∫ t

0

[
1− se−s
e−s

]
ds

)

=

[
et tet

0 et

](
C +

[
t− 1 + e−t + te−t

1− e−t

])
=

[
et tet

0 et

]
C +

[
2tet − et + 1

et − 1

]

One can check that this solves equation
(
3.2.5

)
since

x′(t) =

[
et tet + et

0 et

]
C +

[
2tet + et

et

]

while

Ax(t) + g(t) =

[
et tet + et

0 et

]
C +

[
2tet

et − 1

]
+

[
et

1

]
=

[
et tet + et

0 et

]
C +

[
2tet + et

et

]
.

3.2.4 Variation of Parameters

Given the complexity of the process to solve the inhomogeneous first order system found in
section

(
3.2.3

)
one might wish to find a simpler way of obtaining the solution. This is possible if

one is more clever about how they proceed. Recall that for the scalar inhomogeneous equation
x′(t) = ax(t) + g(t) the general solution is

x(t) = eat
(
C +

∫ t

0

e−asg(s)ds

)
where C is a constant. Observe that the term Ceat actually solves the homogeneous equation
x′(t) = ax(t). Thus, the part of this solution that is needed to solve the inhomogeneous equation
is

eat
∫ t

0

e−asg(s)ds.

Observe that this looks like the solution to the homogeneous equation multiplied by a new
function. Inspired by this we might try to solve the system

x′(t) = Ax(t) + g(t). (3.2.6)
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by using the ansatz
x(t) = X(t)y(t)

where X(t) is the n×n matrix consisting of n linearly independent solutions to the homogeneous
equation and y is to be determined. Note that X plays the role of eat from the scalar case.
Thus, we desire that

x′(t) = Ax(t) + g(t) = AX(t)y(t) + g(t)

but we have
x′(t) = X′(t)y(t) + X(t)y′(t) = AX(t)y(t) + X(t)y′(t).

Comparing these two equations we see that we must demand

X(t)y′(t) = g(t)

which becomes after solving for y′(t), since X(t) is invertible,

y′(t) =
(
X(t)

)−1
g(t).

Integrating then gives

y(t) = C +

∫ t

0

(
X(s)

)−1
g(s)ds.

Thus, we have found the solution

x(t) = X(t)

(
C +

∫ t

0

(
X(s)

)−1
g(s)ds

)
.

There are a few of advantages to this solution over the one found in section
(
3.2.3

)
. First, notice

that it is not too hard to verify that this does in fact solve
(
3.2.6

)
. Second, unlike the solution

found in section
(
3.2.3

)
this formula makes reference directly to the matrix of fundamental

solutions to the homogeneous system. As a result of this, less computations are needed. In
particualr, exponential matrix identities are not needed to make this expression simpler.

Method formal steps

1. Solve the homogeneous systems to find two linearly independent solutions x1(t) =
(
x1,1(t)
x1,2(t)

)
and x2(t) =

(
x2,1(t)
x2,2(t)

)
to form the fundamental matrix:

Ψ(t) :=

[
x1,1(t) x2,1(t)

x1,2(t) x2,2(t)

]
,

which satisfies Ψ′ = AΨ

2. We make the ansatz we have xnh(t) = Ψ(t) · v(t) = Ψ(t) ·
(
v1(t)
v2(t)

)
.

3. Plugging this guess to the equation we obtain the system:

Ψ(t) · v′(t) = g(t)⇒[
x1,1(t) x2,1(t)

x1,2(t) x2,2(t)

]
·
(
v′1(t)

v′2(t)

)
=

(
g1(t)

g2(t)

)
⇒
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we obtain the system {
x1,1(t)v′1 + x1,2(t)v′2 = g1(t)

x2,1(t)v′1 + x2,2(t)v′2 = g2(t)

4. Solving this system for v′1, v′2 we then integrate to obtain v1, v2 and finally obtain the
xnh(t) = Ψ(t) · v(t).

Examples

• Consider the system

x′(t) =

[
1 1

4 −2

]
x +

(
e−2t

−2et

)
.

1. First we find the fundamental matrix Ψ: the eigenpairs are (−3,
(−1

4

)
), (2,

(
1
1

)
) and

so the fundamental matrix is:

Ψ =

[
−e−3t e2t

4e−3t e2t

]
.

2. The system is

{
−e−3tv′1 + e2tv′2 = e−2t

4e−3tv′1 + e2tv′2 = −2et

and we obtain

v′(t) =

[
−e−3t e2t

4e−3t e2t

]−1(
e−2t

−2et

)
=

1

−5

(
et + 2e4t

−4e−4t + 2e−t

)
⇒

v(t) =
1

−5

(
et + 1

2
e4t

e−4t − 2e−t

)
.

Therefore, the nonhomogeneous solution is

xnh(t) = Ψv =

(
et

2

−e−2t

)
.

The general solution is

x(t) = c1e
−3t

(−1

4

)
+ c2e

2t

(
1

1

)
+

(
et

2

−e−2t

)
.

3. From the above solution we note that the dominating term is e2t
(

1
1

)
so we expect the

solution to converge to the linear span of
(

1
1

)
.
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Figure 3.2.1: Phase portrait

• Consider the system

x′(t) =

[
−1 −1

1 −3

]
x +

(
e−2t

−2et

)
.

1. First we find the fundamental matrix Ψ: the eigenvalue is (−2,
(

1
1

)
) and η = k

(
1
1

)
−
(

0
1

)
,

therefore, the solution is

x(t) =c1e
−2t

(
1

1

)
+ c2(e−2t

(
1

1

)
t−
(

0

1

)
e−2t)⇒

Ψ(t) =

[
e−2t te−2t

e−2t e−2t(t− 1)

]
.

2. The system is

{
e−2tv′1 + te−2tv′2 = e−2t

e−2tv′1 + e−2t(t− 1)v′2 = −2et

and we obtain

v′(t) =

(
1− t(1 + 2e3t)

1 + 2e3t

)
⇒

v(t) =

(
t− 1

2
t2 − 2

3
te3t + 1

9
e3t

t+ 2
3
e3t

)
.

Therefore, the nonhomogeneous solution is

xnh(t) =

(
e−2t(−t2/2− 2/3e3tt+ t+ e3t/9) + e−2tt(t+ (2e3t)/3)

e−2t(−t2/2− 2/3e3tt+ t+ e3t/9) + e−2t(t− 1)(t+ (2e3t)/3)

)
.

The general solution is

x(t) = c1e
−2t

(
1

1

)
+ c2(e−2t

(
1

1

)
t−
(

0

1

)
e−2t) + xnh(t).
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• Consider the 2nd order equation

θ′′ − 2θ′ + θ = 3 + e−t

then by setting x = θ, y = θ′ we obtain the system:

x′(t) =

[
0 1

−1 2

]
x +

(
0

3 + e−t

)
.

1. First we solve the second order equation. The homogeneous part is

xh = c1e
t + c2e

tt.

2. Then we apply our guess: xnh = atse−t. Since -1 is not a root, we have s = 0 and so
it remains to find a:

a(e−t + 2e−t + e−t) = e−t ⇒ a =
1

4
.

3. So the solution is:
xgen = c1e

3t + c2e
−t +

1

4
e−t + 3.

4. Next we solve the corresponding nonhomogeneous system. The eigenpair is (1,
(

1
1

)
)

and η = k
(

1
1

)
+
(

0
1

)
and so the homogeneous part is:

x = c1e
t

(
1

1

)
+ c2e

t(t

(
1

1

)
+

(
0

1

)
).

5. So the fundamental matrix is

Ψ =

(
et tet

et (t+ 1)et

)
.

6. The system becomes

{
x1,1(t)v′1 + x1,2(t)v′2 = g1(t)

x2,1(t)v′1 + x2,2(t)v′2 = g2(t)
⇒{

etv′1 + tetv′2 = 0

etv′1 + (t+ 1)etv′2 = e−t
⇒{

v′1 = −te−2t

v′2 = e−2t
⇒{

v1 = 1
4
e−2t(2t+ 1)

v2 = e−2t

−2

7. Therefore, the nonhomogeneous part is

xnh,1 = Ψv =
e−t

4

(
1

−1

)
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8. For the system x′ = Ax+
(

0
3

)
, we have

xnh,2 = A−1

(
0

−3

)
=

(
3

0

)
9. The general solution will be:

xgen = c1e
t

(
1

1

)
+ c2e

t(t

(
1

1

)
+

(
0

1

)
) +

e−t

4

(
1

−1

)
+

(
3

0

)
.

10. Indeed the x = θ component is of the form:

θ = x = c1e
t + c2te

t +
e−t

4
+ 3,

which agrees with our second order solution.
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3.3 Problems

3.3.1 Real eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour (what is
the dominating term and the limit). Draw the two eigenvector’s spans and draw arrows
towards the dominating term. Is it a saddle or a sink to the origin?

1.
x′ =

(
3 −2
2 −2

)
x.

2.
x′ =

(
1 −2
3 −4

)
x.

• Find the particular solution of the system. Describe the asymptotic behaviour (what is
the dominating term and the limit). Draw the two eigenvector’s spans and draw arrows
towards the dominating term.

1.
x′ =

(
5 −1
3 1

)
x, x(0) =

(
2

−1

)
,

2.
x′ =

(
4 −3
8 −6

)
x, x(0) =

(
1

1

)
.

• For some a ∈ [1
2
, 2] consider the system

x′ =
( −1 −1
−a −1

)
x.

Find the general solution in terms of a. Determine the asymptotic behaviour for a = 1
2
and

for 2, and find the a∗ ∈ [1
2
, 2],called the bifurcation value, where the asymptotic behaviour

changes.

• (*)The amounts of salt x1(t), x2(t) in the two tanks satisfy the equations

dx1

dt
= −k1x1,

dx2

dt
= k1x1 − k2x2 with x1(0) = 15, x2(0) = 0,

where k1 = r
V1

= 1
5
, k2 = r

V2
= 2

5
. Find the particular solution and determine the

asymptotic behaviour. What does it tell you about the tank’s salt concentration?
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Figure 3.3.1: The two brine tanks.

3.3.2 Complex eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour. Are the
trajectories forming a spiral source, a spiral sink or concentric circles?

1.
x′ =

(
4 −3
3 4

)
x.

2.
x′ =

(
1 −4
1 1

)
x.

3.
x′ =

(
1 2
−5 −1

)
x.

• (*) Find the general solution of the system. Find the bifurcation value or values of α where
the qualitative nature of the phase portrait for the system changes. Draw a phase portrait
for a value of α slightly below, and for another value slightly above, each bifurcation value.

x′ =
(
α 1
−1 α

)
x.

• (*)Consider the circuit

d

dt

(
I

V

)
=
( − 1

2
− 1

8

2 −1
2

)( I
V

)
.

Solve and determine long term behaviour. Is it asymptotically stable?

Figure 3.3.2: The circuit with complex eigenvalues.

3.3.3 Repeated eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour. Are the
trajectories forming a source or sink behaviour wrt the origin?
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1.
x′ =

( −1 0
0 −1

)
x.

2.
x′ =

(
3 −4
1 −1

)
x.

3. Find the particular solution and determine the asymptotic behaviour as above:

x′ =
(

1 −4
4 −7

)
x, x(0) =

(
3

2

)
.

3.3.4 Differential inequalities

1. In this question we will show the following result: Suppose x : [a, b]→ Rn is a function
that is continuous on [a, b], differentiable on (a, b), and satisfies, for A ∈ Mn×n(R) a
diagonal matrix,

x′(t) ≤ Ax(t)

for all t ∈ (a, b), where the inequality means that each component of the left hand side is
smaller than the corresponding component on the right hand side. Then

x(t) ≤ e(t−a)Ax(a).3

(a) First show that if A ∈Mn×n(R) then Ax ≥ 0n×1 whenever x ≥ 0n×1 if and only if
A is a non-negative matrix (all entries in the matrix are non-negative).

(b) Next show that if t ≥ 0 then etA is a non-negative matrix if and only if A has
non-negative off diagonal entries.4

(c) Consider the function w : [a, b]→ R defined by5

w(t) = e(a−t)Ax(t).

Show, using (1b), that w′(t) ≤ 0n×1 for t ∈ (a, b).
(d) Conclude that each component of w is decreasing on [a, b].

(e) Finally, conclude that e(a−t)Ax(t) = w(t) ≤ w(a) = x(a) which can be rewritten as

x(a)− e(a−t)Ax(t) ≥ 0n×1.

Use (1b) to conclude the desired inequality.

2. In this question we show that solutions to the initial value problem x′(t) = Ax(t)
for t ∈ (a, b) with x(a) = x0 are unique using Grönwall type inequalities. Suppose
x,y : [a, b] → R are continuous on [a, b] and differentiable on (a, b). Suppose also that
they satisfy x′(t) = Ax(t) on (a, b) as well as y′(t) = Ay(t) on (a, b).

(a) First show that, for t ∈ (a, b)

1

2

d

dt

(
‖x(t)− y(t)‖2

)
=
(
x(t)− y(t)

)T
A
(
x(t)− y(t)

)
.

3This is known as Grönwall’s inequality. The principle involved here is that if a function grows no quicker
than Ax(t) then the value of the function should not exceed the solution of x′(t) = Ax(t) which maximizes its
growth.

4Such matrices are called Metzler matrices.
5Some properties of the matrix exponential will be used here. Please refer to the linear algebra appendix for

proofs of these properties.
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(b) Next use equation (3.3.1) and the previous step to conclude that

1

2

d

dt

(
‖x(t)− y(t)‖2

)
≤ λn(A)‖x(t)− y(t)‖2.

(c) Argue that we obtain, for t ∈ [a, b],

‖x(t)− y(t)‖2 ≤ e2tλn(A)‖x(a)− y(a)‖2.

(d) Deduce that if x(a) = y(a) then x(t) = y(t) for all t ∈ [a, b].

3.3.5 Systems of ODEs and Quadratic forms

1. (a) In this problem we show that if A has only positive eigenvalues, x(0) 6= 0n×1, and if
x′(t) = Ax(t) then ‖x(t)‖ → +∞ as t→ +∞.

i. First, show that
1

2

d

dt

(
‖x(t)‖2

)
=
(
x(t)

)T
Ax(t).

ii. Next, observe that
min
‖x‖=1

{
xTAx

}
= λ1(A)

where λ1(A) denotes the smallest eigenvalue of A. To see this, note that A is
diagonalizable and so we can represent x as a linear combination of orthonormal
eigenvectors u1, . . . ,un. So we have

Ax = A

(
n∑
i=1

c1ui

)
=

n∑
i=1

λi(A)ciui

which means

xTAx =
n∑
i=1

λic
2
i ≥ λ1(A)

n∑
i=1

c2
i = λ1(A)‖x‖2 = λ1(A)

and observe that x was an arbitrary unit vector. Note that equality can be
obtained.

iii. Using the previous two questions observe that

1

2

d

dt

(
‖x(t)‖2

)
≥ λ1(A)‖x(t)‖2.

Using the integrating factor e−2tλ1(A) conclude that

d

dt

(
e−2tλ1(A)‖x(t)‖2

)
≥ 0.

iv. Conclude that
‖x(t)‖2 ≥ ‖x(0)‖2e2tλ1(A).

(b) In this problem we show that if A has all negative eigenvalues then ‖x(t)‖ → 0 as
t→ +∞ if x′(t) = Ax(t).

i. Show that, as in the previous question,

max
‖x‖=1

{
xTAx

}
= λn(A) (3.3.1)
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and conclude that
1

2

d

dt

(
‖x(t)‖2

)
≤ λn(A)‖x(t)‖2.

ii. Conclude that
‖x(t)‖2 ≤ ‖x(0)‖2e2tλn(A).

2. In this problem we will demonstrate how to find a solution with perpendicular trajectories
in R2. Suppose x,y : R → R2 solve x′(t) = Ax(t) and y′(t) = By(t) respectively,
where A,B ∈ M2×2(R). Assume also that, for all a ∈ R2, that if x(0) = a = y(0) then
x′(0) ⊥ y′(0).

(a) Use the conditions given in the problem description to conclude that

a ·
(
ATBa

)
= 0

for all a ∈ R2.
(b) Conclude that there is a constant c ∈ R such that

ATB = c

(
0 1

−1 0

)
.

(c) If c = 0 conclude that either A = 02×2, B = 02×2, or ATB = 02×2 while A and B
are both not the zero matrix. In the event that ATB = 02×2 even though both A
and cB are both not the zero matrix show that im(A) ⊥ im(B).

(d) Now we may assume that c 6= 0. By taking determinants show that both A and B
are invertible. Finally, conclude that either

ATB = cRπ
2

or
ATB = cR−π

2

for some c > 0 where R±π
2
denote rotation matrices at angles ±π

2
respectively. Use

this to conclude that
B = c

(
A−1

)T
R±π

2
.

3. Notice that for each t ∈ R we can define a map ϕt : Rn → Rn by ϕt(x) = etAx. We say
that the family of maps {ϕt}t∈R is volume preserving if for every t ∈ R and for every open
set U ⊂ Rn we have vol(ϕt(U)) = vol(U).6

(a) With ϕt defined as above for each t ∈ R show that, by the change of variables
theorem, that

vol(ϕt(U)) = | det(etA)|vol(U).

(b) Use this to show that if {ϕt}t∈R is a volume preserving family then det(etA) = 1 for
all t ∈ R.

(c) Recall Liouville’s formula, as seen in the linear algebra appendix, says that

det(etA) = et·tr(A).

Use this to conclude that tr(A) = 0.
(d) Conversely, show that if tr(A) = 0 then {ϕt}t∈R is a volume preserving family of

maps.

6This exercise describes a particular instance of a result known as Liouville’s Theorem.
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Chapter 4

Autonomous systems

As in the 1D case we will study the following system:

dx

dt
= F (x, y),

dy

dt
= G(x, y),

where F,G are continuously differentiable functions. Here again we might not be able to obtain
explicit solutions, but we can provide a qualitative analysis.

Method formal steps

1. First, we find the critical points by setting

F (x, y) = 0 and G(x, y) = 0.

2. For each critical point we carve out the regions of the phase portrait that converge to it,
called basin regions of attraction. For example, as we will explain later in the competing
species section, we obtain phase portraits of the form:

Figure 4.0.1: The critical points (14, 0)

and (0, 14) have their own basin
regions of attraction

Here the points (14, 0) and (0, 14) have their own basin regions of attraction (arrows
pointing towards them) that are separated by curves called the separatrix.

3. Sometimes we can even solve such systems by taking their ratio and obtain a parametric

123
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solution:
dy

dx
=

dy
dt
dx
dt

=
G(x, y)

F (x, y)
.

This ratio depends only on x and y (and not t), so methods from the first order section
could be used.

4. Next we sketch the direction field by doing a nullcline analysis around the critical points.
That is we study the signs of the pair (dx

dt
, dy

dt
).

5. Finally, we plot the parametric solution and check whether it agrees with the direction
field from the above step.

Example-presenting the method

Consider the following oscillating pendulum: a mass m is attached to one end of a rigid, but
weightless, rod of length L which hangs from the pivot point.

θ

L sin θ

mg
θ

m

L

Figure 4.0.2: oscillating pendulum

The gravitational force mg acts downward and the damping force c|dθ
dt
| is always

opposite to the direction of motion. A rotational analog of Newton’s second law of motion might
be written in terms of torques:

mg · L sin(θ) +
dθ

dt
· L+m

d2θ

dt2
L2 = 0 =⇒ d2θ

dt2
+ γ

dθ

dt
+ ω2 sin(θ) = 0

where γ = 1
mL

and ω2 = g
L
. This is a nonhomogeneous second order equation, but we can also

view it as a system of equations by letting x := θ and y := dθ
dt
:

dx

dt
= y,

dy

dt
= −γy − ω2 sin(x),

where γ is called the damping constant and, as in the spring problem, it is responsible for
removing energy. Notice that this is an autonomous system.

1. First we find the critical points:

dx

dt
= 0,

dy

dt
= 0 =⇒ y = 0, sin(x) = 0 =⇒ (kπ, 0) for k ∈ Z.

2. Then we numerically draw the solutions
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Figure 4.0.3: Phase portrait and solutions for oscillating pendulum.

We see that the basin regions of attraction for each critical point are the areas separated
by the black spiral curves.

3. The ratio is
dy

dx
=

dy
dt
dx
dt

=
−γy − ω2 sin(x)

y
,

which is not amenable to known methods (eg. see Chini’s equation).

4. However, if we set γ = 0 (undamped pendulum), we get a separable equation and in turn
the implicit solution:

y2 = 2(ω2 cos(x) + c) =⇒ y2

2
− ω2 cos(x) = constant.

An alternative to using the equation for dy
dx

to obtain the implicit equation is to note that:

1

2

d

dt

(
y2
)

= y
dy

dt
= −yω2 sin(x) = −ω2 sin(x)

dx

dt
=

d

dt

(
ω2 cos(x)

)
.

5. Next we do a nullcline analysis around the origin.

• We have dx
dt
> 0, dy

dt
> 0 iff

y > 0, −ω2 sin(x) > 0 ⇐⇒ y > 0,
−π
2

< x < 0.
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• We have dx
dt
> 0, dy

dt
< 0 iff

y > 0, −ω2 sin(x) < 0 ⇐⇒ y > 0, 0 < x <
π

2
.

• We have dx
dt
< 0, dy

dt
> 0 iff

y < 0, −ω2 sin(x) > 0 ⇐⇒ y < 0,
−π
2

< x < 0.

• We have dx
dt
< 0, dy

dt
< 0 iff

y < 0, −ω2 sin(x) < 0 ⇐⇒ y < 0, 0 < x <
π

2
.

6. Therefore, in summary, around the origin we have the sketch:

x

y

Figure 4.0.4: Phase portrait sketch for
an undamped oscillating pendulum.

Indeed, the parametric solution follows the circular behaviour of the direction field in
Figure 1.4.

7. The sketch in Figure 1.4 agrees with the numerically generated phase portrait displayed
in Figure 1.5:
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Figure 4.0.5: Phase portrait and solutions
for undamped oscillating pendulum.

We see that the basins of attractions are separated by ellipses along the horizontal axis
and they are separated from periodic behaviour along the vertical axis. Physically a closed
curve around critical point represents the pendulum oscillating periodically since the
velocity y = θ̇ oscillates periodically around that critical point. The wavy lines represent
the pendulum spinning around the pivot point.

Examples

• Consider the system

dx

dt
= 2y,

dy

dt
= −8x.

1. The critical point is just (0, 0).
2. To determine the solutions we solve:

dy

dx
=
−8x

2y
.

This equation is separable and so we easily obtain:

y2 = −4x2 + c.

3. Therefore, the solutions are ellipses y2 + 4x2 = c centered at zero.
4. Next we do a nullcline analysis around the origin.

– We have dx
dt
> 0, dy

dt
> 0 iff 2y > 0, −8x > 0⇐⇒ y > 0, x < 0.

– We have dx
dt
> 0, dy

dt
< 0 iff y > 0, x > 0.

– We have dx
dt
< 0, dy

dt
> 0 iff y < 0, x < 0.

– We have dx
dt
< 0, dy

dt
< 0 iff y < 0, x > 0.

5. Therefore, in summary, around the origin we have the sketch depicted in Figure 1.6:
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x

y

Figure 4.0.6: Phase portrait sketch.

Indeed the parametric solution follows the circular behaviour of the above direction
field.

6. The above sketch agrees with the numerically generated phase portrait in Figure 1.7:

Figure 4.0.7: Phase portrait and solutions

• Consider the system (Duffing’s equation)

dx

dt
= y,

dy

dt
= −x+

x3

6
.

It describes the motion of a damped oscillator with a more complex potential than in
simple harmonic motion. In physical terms, it models, for example, a spring pendulum
whose spring’s stiffness does not exactly obey Hooke’s law. The Duffing equation is an
example of a dynamical system that exhibits chaotic behavior.

1. The critical points are (0, 0),
(
±
√

6, 0
)
.
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2. To determine the solutions we solve:

dy

dx
=
−x+ x3

6

y
.

This equation is separable and so we easily obtain:

1

2
y2 = −1

2
x2 +

x4

24
+ c.

3. Therefore, the solutions are the pairs of hyperbolas and ellipses y2 + x2 − x4

12
= c

symmetric wrt to the x-axis.
4. Next we do a nullcline analysis around the origin.

– We have dx
dt
> 0, dy

dt
> 0 iff

y > 0, −x+
x3

6
> 0 ⇐⇒ y > 0, x ∈ [−

√
6, 0] ∪ [

√
6,∞).

– We have dx
dt
> 0, dy

dt
< 0 iff

y > 0, −x+
x3

6
< 0 ⇐⇒ y > 0, x ∈ (−∞,−

√
6] ∪ [0,

√
6].

– We have dx
dt
< 0, dy

dt
> 0 iff

y < 0, −x+
x3

6
> 0⇔ y > 0, x ∈ [−

√
6, 0] ∪ [

√
6,∞).

– We have dx
dt
< 0, dy

dt
< 0 iff

y < 0, −x+
x3

6
< 0⇔ y > 0, x ∈ (−∞,−

√
6] ∪ [0,

√
6].

5. Therefore, in summary, around the origin we have the sketch depicted in Figure 1.8:

x

y
x = −

√
6 x =

√
6

Figure 4.0.8: Phase portrait sketch.

Indeed the parametric solution follows the circular behaviour of the above direction
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field.

6. The above sketch agrees with the numerically generated phase portrait depicted in
Figur 1.9:

Figure 4.0.9: Phase portrait and solutions of duffing’s system



Chapter 5

Locally linear systems

We will study systems
x′ = f(x),

where the components of f are C1 functions so that we are able to Taylor expand them to first
order. A system of the form

x′ = Ax + g(x)

is called locally linear around a critical point x0 of f if

‖g(x)‖
‖x− x0‖

→ 0 as x→ x0.

Example-presenting the method

We continue our study with the damped oscillating pendulum system:

dx

dt
= y,

dy

dt
= −γy − ω2 sin(x),

where γ is called the damping constant and as in the spring problem it is responsible for removing
energy.

1. First we find the critical points. From the previous section we have:

(kπ, 0) for any integer k.

2. Second we Taylor expand the RHS of the system F(x, y) :=
( y

−γy−ω2 sin(x)

)
around arbitrary

critical point (x0, y0):

F(x, y) = F(x0, y0) + JF(x0, y0)

(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖)

=

 0 1

−ω2 cos(x0) −γ

(x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖).

Here JF(x0, y0) is the Jacobian matrix at (x0, y0) which, for function F(x, y) =
(
F1(x,y)
F2(x,y)

)
,

131
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is defined as:

JF(x0, y0) :=


dF1

dx
(x0, y0) dF1

dy
(x0, y0)

dF2

dx
(x0, y0) dF2

dy
(x0, y0)


3. The linearization around (x0, y0) = (kπ, 0) for an even integer k is:

d

dt

(
x

y

)
=

 0 1

−ω2 −γ

(x− kπ
y

)
+ o(‖(x− kπ, y)‖).

The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 − 4ω2

2
.

(a) If γ2 − 4ω2 > 0, then the eigenvalues are real, distinct, and negative. Therefore, the
critical points will be stable nodes.

Figure 5.0.1: Stable nodes at even integer k critical points (kπ, 0) for k = 0, 2,−2.

We observe that the basins of attractions for each even-integer critical points are
well-separated.

(b) If γ2 − 4ω2 = 0, then the eigenvalues are repeated, real, and negative. Therefore, the
critical points will be stable nodes.
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Figure 5.0.2: Stable nodes at even integer k critical points (kπ, 0).

(c) If γ2 − 4ω2 < 0, then the eigenvalues are complex with negative real part. Therefore,
the critical points will be stable spiral sinks.

Figure 5.0.3: Stable spiral sinks at even integer k critical points (kπ, 0).
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4. The linearization around (x0, y0) = (kπ, 0) for odd integer k is:

d

dt

(
x

y

)
=

 0 1

ω2 −γ

(x− kπ
y

)
+ o(‖(x− k · π, y)‖).

The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 + 4ω2

2
.

Therefore, it has one negative eigenvalue λ1 < 0 and one positive eigenvalue λ2 > 0, and
so the critical points will be unstable saddle points.

Method formal steps

1. First we obtain the critical points for the system

dx

dt
= F(x)

i.e. points (x0, y0) where F(x0, y0) = 0.

2. We Taylor expand F in higher dimensions around an arbitrary critical point:

F(x, y) = F(x0, y0) + JF(x0, y0)

(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖)

= JF(x0, y0)

(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖).

Here JF(x0, y0) is the Jacobian matrix for the function F(x, y) =
(
F1(x,y)
F2(x,y)

)
:

JF(x0, y0) :=

(
dF1

dx
(x0, y0) dF1

dy
(x0, y0)

dF2

dx
(x0, y0) dF2

dy
(x0, y0)

)

3. Around each critical point we determine the eigenvalues and identify the type of qualitative
behaviour.

General result:

The system
x′ = F (x, y), y′ = G(x, y)

is locally linear around a critical point (x0, y0) if F,G ∈ C2(U) where U ⊂ R2 is some
open neighbourhood around (x0, y0).

Proof. First we Taylor expand F and G about (x0, y0) to get:

F (x, y) = F (x0, y0) + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) +RF (x, y),
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G(x, y) = G(x0, y0) +Gx(x0, y0)(x− x0) +Gy(x0, y0)(y − y0) +RG(x, y),

where by Taylor’s theorem the remainders, RF and RG, satisfy

lim
(x,y)→(x0,y0)

|RF (x, y)|
|(x− x0, y − y0)| = 0 = lim

(x,y)→(x0,y0)

|RG(x, y)|
|(x− x0, y − y0)| . (5.0.1)

Because (x0, y0) is a critical point we have F (x0, y0) = G(x0, y0) = 0. Therefore, we can rewrite
the system as:

d

dt

(
x− x0

y − y0

)
=

d

dt

(
x

y

)
=

(
Fx(x0, y0) Fy(x0, y0)

Gx(x0, y0) Gy(x0, y0)

)(
x− x0

y − y0

)
+

(
RF (x, y)

RG(x, y)

)
.

However, ∥∥∥(RF (x,y)
RG(x,y)

)∥∥∥
‖(x, y)− (x0, y0)‖ =

√( |RF (x, y)|
‖(x− x0, y − y0)

)2

+

( |RG(x, y)|
‖(x− x0, y − y0)‖

)2

and so by 5.0.1 this goes to 0 as (x, y) tends to (x0, y0).

Examples

• We return to Duffing’s equation from the previous section

dx

dt
= y,

dy

dt
= −x+

x3

6
.

1. We found that the critical points are (0, 0), (±
√

6, 0).

2. We obtain the linearization of the RHS of the system F(x, y) :=
( y

−x+x3

6

)
around

arbitrary critical point (x0, y0):

d

dt

(
x

y

)
= F(x, y) = F(x0, y0) + JF(x0, y0)

(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖)

=

(
0 1

−1 + x2

2
0

)(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖)

3. Next we study the stability behaviour around each of the critical points.

– At the origin we have

d

dt

(
x

y

)
=

 0 1

−1 0

(x
y

)
+ o(‖(x, y)‖)

and so the eigenvalues are λ = ±i. Therefore, the stability behaviour at the
origin will be concentric circles.

– At the (±
√

6, 0) we have
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d

dt

(
x

y

)
=

0 1

2 0

(x±√6

y

)
+ o(

∥∥∥(x±
√

6, y)
∥∥∥)

and so the eigenvalues are λ = ±
√

2. Therefore, the stability behaviour at both
(
√

6, 0), (−
√

6, 0) will be unstable saddle nodes.

• Consider the system

dx

dt
= y + ε sin(x),

dy

dt
= −x+ ε sin(y),

for small ε ∈ R. We will study the affect of the stability behaviour as ε→ 0.

1. First we find that the only critical point is the origin (0, 0). We can deduce this by
drawing the two curves (x,−ε sin(x)), (ε sin(y), y) and see that they intersect only at
the origin.

2. Next we linearize around the origin:

d

dt

(
x

y

)
=

 ε 1

−1 ε

(x
y

)
+ o(‖(x, y)‖).

Therefore, the eigenvalues are λ1 = ε+ i, λ1 = ε− i.

(a) If ε < 01, the origin becomes a sink spiral point.

1It is generally a bad idea to use ε to denote a negative number as it has become a symbol of a generic small
positive number. There are, in fact, jokes about this (see here for a discussion of this). Despite this, the authors
hope there is no confusion.

https://math.stackexchange.com/questions/510319/is-there-something-to-the-let-varepsilon-0-joke-that-im-missing
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Figure 5.0.4: For negative perturbation we get sink spiral.

(b) If ε > 0, the origin becomes a source spiral point.

Figure 5.0.5: For positive perturbation we get source spiral.
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(c) If ε = 0, the origin is a center of concentric circles.

Figure 5.0.6: For zero perturbation we get circular behaviour.

If ε = −0.1 we get an almost circular picture:
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Figure 5.0.7: For small perturbation we get almost circular behaviour.

• Consider the system
dx

dt
= x+ y2,

dy

dt
= x+ y.

1. First we find the critical points:

dx

dt
= 0 and

dy

dt
= 0⇒

x = −y and y(y − 1) = 0⇒ (x, y) = (0, 0), (−1, 1).

2. We linearize around the origin:

x′ =

(
1 2y

1 1

)
|(0,0)x

=

(
1 0

1 1

)
x

3. The eigenpair is (1,
(

0
1

)
) and η = k

(
0
1

)
+
(

1
0

)
and so the solution is:

x = c1e
t

(
0

1

)
+ c2e

t(t

(
0

1

)
+

(
1

0

)
).

4. We linearize around the (-1,1):
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x′ =

(
1 2y

1 1

)
|(−1,1)(x−

(−1

1

)
)

=

(
1 2

1 1

)
x +

(−1

0

)

5. The eigenpairs are (1 +
√

2,
(√

2
1

)
), (1−

√
2,
(−√2

1

)
) and so the solution is:

x = c1e
(1+
√

2)t

(√
2

1

)
+ c2e

(1−
√

2)t

(−√2

1

)
+

(−1

1

)
.

• Consider the system
dx

dt
= 1− xy, dy

dt
= x− y3.

1. First we find the critical points:

dx

dt
= 0 and

dy

dt
= 0⇒

1 = xy and x = y3 ⇒ (x, y) = (−1,−1), (1, 1).

2. We linearize around the critical point (-1,-1):

x′ =

(
−y −x
1 3y2

)
|(−1,−1)

(
x−

(−1

−1

))
=

(
1 1

1 3

)
x +

(
2

4

)

3. For solutions of the form x′ = Ax + v we have

xnh = A−1(−v) =

(−1

−1

)

4. The eigenpair is (2 +
√

2,
(−1+

√
2

1

)
), (2−

√
2,
(−1−

√
2

1

)
) and so the general solution is:

x = c1e
(2+
√

2)t

(−1 +
√

2

1

)
+ c2e

(2−
√

2)t

(−1−
√

2

1

)
+

(−1

−1

)
.

5. We linearize around the critical point (1,1):

x′ =

(
−y −x
1 3y2

)
|(1,1)

(
x−

(
1

1

))
=

(
−1 −1

1 3

)
x +

(
2

−4

)
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6. The eigenpair is (1 +
√

3,
(−2+

√
3

1

)
), (1−

√
3,
(−2−

√
3

1

)
) and so the general solution is:

x = c1e
(1+
√

3)t

(−2 +
√

3

1

)
+ c2e

(1−
√

3)t

(−2−
√

3

1

)
+

(
1

1

)
.

5.0.1 Applied Examples

Competing species

Suppose that in some closed environment there are two similar species competing for a limited
food supply—for example, two species of fish in a pond that do not prey on each other but do
compete for the available food. Let x and y be the populations of the two species at time t.

As discussed in Section 2.5, we assume that the population of each of the species, in
the absence of the other, is governed by a logistic equation

dx

dt
= x(ε1 − σ1x)

dy

dt
= y(ε2 − σ2y)

However, when both species are present, each will tend to diminish the available food
supply for the other. In effect, they reduce each other’s growth rates and saturation populations:

dx

dt
= x(ε1 − σ1x− α1y)

dy

dt
= y(ε2 − σ2y − α2x)

The α1 is a measure of the degree to which species y interferes with species x and
similarly for α2. The values of the positive constants εi, σi, αi depend on the particular species
under consideration and, in general, must be determined from observation.

1. First we find the critical points

{
x(ε1 − σ1x− α1y) = 0

y(ε2 − σ2y − α2x) = 0
=⇒ (0, 0),

( ε1

σ1

, 0
)
,
(

0,
ε2

σ2

)
, and

( ε1σ2 − ε2α1

σ1σ2 − α1α2

,
ε2σ1 − ε1α2

σ1σ2 − α1α2

)
.

For the last critical point to be a realistic steady state we require that both components
be positive:

Case I: Both ε1σ2 > ε2α1 and ε2σ1 > ε1α2

which also imply σ1σ2 > α1α2. This happens if ε1 = ε2 = 1, σ1 = σ2 = 2, and α1 = α2 = 1.

Case II: Both ε1σ2 < ε2α1 and ε2σ1 < ε1α2

which also imply σ1σ2 < α1α2. This happens if ε1 = ε2 = 1, σ1 = σ2 = 1, and α1 = α2 = 2.

The unrealistic cases are:

Case III: ε1σ2 > ε2α1 and ε2σ1 < ε1α2
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which also imply σ1σ2 < α1α2.This happens if ε1 = ε2 = 1, α1 = σ1 = 1, and σ2 = α2 = 2.

Case IV: ε1σ2 < ε2α1 and ε2σ1 > ε1α2

which also imply σ1σ2 < α1α2. This happens if ε1 = ε2 = 1, σ1 = α1 = 2, and α2 = σ2 = 1.

2. We linearize the system by 2D-Taylor expanding

F(x, y) =

(
x(ε1 − σ1x− α1y)

y(ε2 − σ2y − α2x)

)
around critical point (x0, y0):

d

dt

(
x

y

)
= F(x, y) = JF(x0, y0)

(
x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖)

=

ε1 − 2σ1x0 − α1y0 −α1x0

−α2y0 ε2 − α2x0 − 2σ2y0

(x− x0

y − y0

)
+ o(‖(x− x0, y − y0)‖).

3. We determine the stability behaviour around each of the critical points.

(a) At (x0, y0) = (0, 0) we have

d

dt

(
x

y

)
=

ε1 0

0 ε2

(x
y

)
+ o(‖(x, y)‖).

Therefore, the eigenvalues are λ1 = ε1 > 0, λ2 = ε2 > 0 and so the origin (0, 0) is an
unstable source node.

Figure 5.0.8: The origin is an unstable source node
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(b) At (x0, y0) = ( ε1
σ1
, 0) we have

d

dt

(
x

y

)
=

−ε1
−α1ε1
σ1

0 ε2 − α2ε1
σ1

(x− x0

y

)
+ o(‖(x− x0, y)‖).

Therefore, the eigenvalues are λ1 = −ε1 < 0, λ2 = σ1ε2−α2ε1
σ1

and so

• in cases I and IV the point ( ε1
σ1
, 0) is an unstable saddle node.

(a) Case I (b) Case IV

• in cases II and III the point ( ε1
σ1
, 0) is an stable sink node.

(a) Case II (b) Case III

(c) At (x0, y0) = (0, ε2
σ2

) we have

d

dt

(
x

y

)
=

(
ε1 − α1ε2

σ2
0

−α2ε2
σ2

−ε2

)(
x− x0

y

)
+ o(‖(x, y − y0)‖).

Therefore, the eigenvalues are λ1 = ε1σ2−α1ε2
σ2

, λ2 = −ε2 < 0 and so
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• in cases I and III the point (0, ε2
σ2

) is an unstable saddle node.

(a) Case I (b) Case III

• in cases II and IV the point (0, ε2
σ2

) is an stable sink node.

(a) Case II (b) Case IV

(d) At (x0, y0) = ( ε1σ2−ε2α1

σ1σ2−α1α2
, ε2σ1−ε1α2

σ1σ2−α1α2
) we have

d

dt

(
x

y

)
=

(
σ1x0 −α1x0

−α2y0 σ2y0

)(
x− x0

y

)
+ o(‖(x− x0, y − y0)‖).

Therefore, the eigenvalues are

λ1 =
−(σ1x0 + σ2y0)−

√
(σ1x0 + σ2y0)2 − 4(σ1σ2 − α1α2)x0y0

2

=
−(σ1x0 + σ2y0)−

√
(σ1x0 − σ2y0)2 + 4α1α2x0y0

2

and
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λ2 =
−(σ1x0 + σ2y0) +

√
(σ1x0 + σ2y0)2 − 4(σ1σ2 − α1α2)x0y0

2

=
−(σ1x0 + σ2y0) +

√
(σ1x0 − σ2y0)2 + 4α1α2x0y0

2
.

• In cases I and II we have σ1σ2 − α1α2 > 0. Thus, we observe that the radicand
is positive and so the eigenvalues will always be real. Therefore, we get λ1 < 0
and λ2 < 0 and in turn (x0, y0) is stable sink node.

(a) Case I (b) Case II

• In cases III and IV the σ1σ2 − α1α2 < 0 and so λ1 < 0, λ2 > 0. Thus, (x0, y0) is
an unstable saddle node.

(a) Case III (b) Case IV

4. We also do a nullcline analysis to predict how solutions will behave based on their initial
data.
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Figure 5.0.15: Case I Figure 5.0.16: Case II

Figure 5.0.17: Case II Figure 5.0.18: Case IV

(a) For simplicity lets start from case III and IV where the lines are well separated. First
in case III we will show that all solutions tend to ( ε1

σ1
, 0) (i.e. second species dies out).
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Figure 5.0.19: Case III

In the region where 0 > y′, 0 > x′ we will have the solutions flowing towards the left
(left pointing arrow) and downwards (down pointing arrow). We similarly obtain
the other arrows as shown in the figure. Therefore, solutions will escape the region
where y′ > 0, x′ > 0, then once in the region 0 > y′x′ > 0 they will move south and
rightwards till they hit the critical point ( ε1

σ1
, 0).

The case IV similarly gives that (0, ε2
σ2

) is the equilibrium point (i.e. first species dies
out).

(b) Next we study case I. We will show that all solutions tend to the equilibrium point
(both species coexist)

(x0, y0) =
( ε1σ2 − ε2α1

σ1σ2 − α1α2

,
ε2σ1 − ε1α2

σ1σ2 − α1α2

)
.

Figure 5.0.20: Case I

In the region where 0 > y′, 0 > x′ we will have the solutions flowing towards the left
(left pointing arrow) and downwards (down pointing arrow). Solutions will escape
the region where y′ > 0, x′ > 0, into either a) the region 0 > y′x′ > 0 in which they
will move south and rightwards till they hit the equilibrium point or into b) the
region y′ > 0, 0 > x′ in which they will move north and leftwards till they hit the
equilibrium point. Case II similarly gives the same equilibrium point as the stable
solution.

Price adjustment mechanism [SHS]

Consider the following system of differential equations:

p′ = H1(D1(p, q)− S1(p, q)), q′ = H2(D2(p, q)− S22(p, q)).
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where p, q denote the prices of two different commodities with corresponding demand and supply
Di, Si for i = 1, 2 and Hi are functions of one variable. Assume that H1(0) = H2(0) = 0 and
that H ′1 > 0, H ′2 > 0.

Walras’s law and the tâtonnement mechanism

Here, we consider the question of stability of a pure exchange, competitive equilibrium with an
adjustment mechanism known as tâtonnement and directly inspired by the work of Léon Walras
(1874), one of the founding fathers of mathematical economics.
The basic idea behind the tâtonnement mechanism is the same assumed in the rudimentary
price adjustment mechanism models, namely that prices of commodities rise and fall in response
to discrepancies between demand and supply (the so-called ’law of demand and supply’). In the
present case, demand is determined by individual economic agents maximising a utility function
subject to a budget constraint, given a certain initial distribution of stocks of commodities. The
model can be described schematically as follows.

dp

dt
= f(p) =

(
f1(p)

f2(p)

)
,

where f1, f2 : R2 → R are continuous functions with all their derivatives continuous as well.

1. A price point p0 is called an equilibrium if

fi(p0) ≤ 0, pi ≥ 0,and pj > 0for some j
or fi(p0) < 0,p0 = 0.

The first case makes economic sense (i.e. at least one price is nonzero) and so by equilibrium
point we will mean the first case.

2. (Hypothesis H) The hypothesis that agents maximise utility is that the functions fi(p)
are homogeneous of degree zero, namely fi(λp) = λ0fi(p) = fi(p) for any λ > 0.

3. (Walras’s law)Consider that the budget constraint for each individual k takes the form

2∑
i=1

pif
k
i (p) = p1f

k
1 (p) + p2f

k
2 (p) = 0,

where fki denotes the excess demand by the kth economic agent for the ith commodity,
i.e., the difference between the agent’s demand for, and the agent’s initial endowment of,
that commodity. In general for m commodities by summing over all N economic agents
we have:

N∑
k=1

m∑
i=1

pif
k
i (p) =

∑
i

pmi=1fi(p) = 0.

This law states that, in view of the budget constraints, for any set of semipositive prices p
(not necessarily equilibrium prices), the value of aggregate excess demand, evaluated at
those prices, must be zero.

4. The Jacobian matrix for f is

Df(p0) =

(
df1(p0)

dp1

df1(p0)
dp2

df2(p0)
dp1

df2(p0)
dp2

)
.

We will need this matrix to be Metzler:
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(a) Suppose that if the price of the ith commodity increases, while all the other prices
remain constant, the excess demand for the ith commodity decreases (and vice versa).
Suppose also that the effect of changes in the price of the ith commodity on its own
excess demand is stronger than the combined effect of changes in the other prices
(where the latter can be positive or negative). This can be formalised by assuming
that

aii :=
dfi(p0)

dpi

< 0

and the "strict diagonal dominance" (SDD) assumption that there exists a positive
vector d ∈ Rm (in our case m = 2) s.t.

|aii|di >
∑
3mm
j=1

j 6= im|aij|dj.

(b) Moreover, we have the "gross substitutability" (GS) assumption that if we start from
equilibrium and the price of a commodity increases (decreases) while the prices of
all other commodities remain constant, then the excess demand of all of the other
commodities increases (decreases):

aij :=
dfi(p0)

dpj

> 0, i 6= j.

5. The eigenvalues for this system are:

λ =
a11 + a22

2
± 1

2

√
(a11 + a22)2 − 4(a11a22 − a12a21)

=
−|a11 + a22|

2
± 1

2

√
|(a11 − a22)2 + 4a12a21|

5.1 Simulation code
Encoding the system If we start with the 2D system

dx

dt
= f1(x, y, t) and

dy

dt
= f2(x, y, t),

we first encode it as a function as follows:
1 f = @( t , y ) [ f_{1}(y (1 ) , y (2 ) , t ) ; f_{2}(y (1 ) , y (2 ) , t ) ] ; }

where y(1) = x and y(2) = y. For example, for

dx

dt
= x2 + y and

dy

dt
= sin(y)

we write
1 f = @( t , y ) [ y (1 )^2+y (2) ; s i n ( y (2 ) ) ] ; }

Direction field The following matlab-function will generate the direction field for the above
function f:

1 f unc t i on v e c t f i e l d ( func , y1val , y2val , t )
2 i f narg in==3
3 t=0;
4 end
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5 n1=length ( y1val ) ;
6 n2=length ( y2val ) ;
7 yp1=ze ro s (n2 , n1 ) ;
8 yp2=ze ro s (n2 , n1 ) ;
9 f o r i =1:n1

10 f o r j =1:n2
11 ypv = f e v a l ( func , t , [ y1val ( i ) ; y2val ( j ) ] ) ;
12 yp1 ( j , i ) = ypv (1 ) ;
13 yp2 ( j , i ) = ypv (2 ) ;
14 end
15 end
16 qu iver ( y1val , y2val , yp1 , yp2 , ’ r ’ , ’ Auto s ca l e f a c t o r ’ , 3)%’MaxHeadSize ’ ) ;
17 ax i s t i g h t ;

This is an example of calling it for the above example F(x, y) = (x2 + y, sin(y)):
1 f = @( t , y ) [ y (1 )^2+y (2) ; y (2 ) ] ;
2 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
3

Figure 5.1.1: Direction field for system dx
dt

= x2 + y and dy
dt

= sin(y).

Solving the ODE system Given function f and initial data (x0, y0), the following ODE
solver outputs a two dimensional solution run up to time T :

1 [ ts , ys ] = ode45 ( f , [ 0 ,T ] , [ x0 ; y0 ] ) ;

This is an example for the above function
1 x0=0.5;
2 y0=0.5;
3 T=4
4 f = @( t , y ) [ y (1 )^2+y (2) ; y (2 ) ] ;
5 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
6 hold on
7

8 p lo t ( x0 , y0 , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’ MarkerSize ’ ,20)
9

10 hold on ;
11 [ ts , ys ] = ode45 ( f , [ 0 ,T/ 1 0 ] , [ x0 ; y0 ] ) ;
12 p lo t ( ys ( : , 1 ) , ys ( : , 2 ) , ’ k ’ , ’ Linewidth ’ , 4)
13 x l ab e l ( ’ y1 ( t ) s o l u t i o n ’ )
14 y l ab e l ( ’ y2 ( t ) /dt s o l u t i o n ’ )

that outputs:
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Figure 5.1.2: Solution curve for system dx
dt

= x2 + y and dy
dt

= sin(y).

Plotting implicit solutions If we obtain the implicit solutions f(x, y) = constant then we
can plot them with

1 f i m p l i c i t (@(x , y ) f (x , y )=k , ’ LineWidth ’ ,1 , ’ Color ’ , ’ k ’ )

For example, for x2 + y2 − sin(y) = constant the following program

1 f o r k=1:10
2 f=@(x , y )x^2+y^2− s i n (y )−k ;
3 f i m p l i c i t ( f , ’ LineWidth ’ ,1 , ’ Color ’ , ’ k ’ )
4 end

outputs

Figure 5.1.3: trajectories of implicit solutions.
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Plotting eigenvectors for linear system Consider the system

d

dt

(
x

y

)
=

1 1

0 2

(x
y

)
.

First we find the eigenvalues
1 [V,D]= e i g (A) ;

The following code will generate linear spans for the eigenvectors and plot them:
1

2 A=[1 1 ; 0 2 ]
3 [V,D]= e i g (A) ;
4

5 m1=1; %%% This two parameters s c a l e the l ength o f the l i n e
6 m2=1;
7

8 xi11 = [−m1∗ V(1 ,1 ) , m1∗V(1 ,1 ) ] ;
9 xi21 = [−m1∗V(2 ,1 ) , m1∗V(2 ,1 ) ] ;

10 pl1 = l i n e ( xi11 , xi21 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
11

12 x1 = V(1 , 1 ) /3 ;
13 y1 =V(2 , 1 ) ;
14 txt1 = ’ \xi_1 ’ ;
15 t ex t ( x1 , y1 , txt1 , ’ FontSize ’ ,20)
16 hold on
17

18 xi12 = [−m2∗ V(1 ,2 ) , m2∗V(1 ,2 ) ] ;
19 xi22 = [−m2∗V(2 ,2 ) , m2∗V(2 ,2 ) ] ;
20

21 pl2 = l i n e ( xi12 , xi22 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
22

23 x2 = V(1 , 2 ) /3 ;
24 y2 =V(2 , 2 ) /3 ;
25 txt1 = ’ \xi_2 ’ ;
26 t ex t ( x2 , y2 , txt1 , ’ FontSize ’ ,20)

This is the full example with both the direction field and the eigenvector spans:
1 x0=0.5;
2 y0=0.5;
3 T=4
4

5 f = @( t , y ) [ y (1 ) ; 2∗ y (2 ) ] ;
6 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
7 hold on
8

9 p lo t ( x0 , y0 , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’ MarkerSize ’ ,20)
10

11 hold on ;
12 [ ts , ys ] = ode45 ( f , [ 0 ,T/ 1 0 ] , [ x0 ; y0 ] ) ;
13 p lo t ( ys ( : , 1 ) , ys ( : , 2 ) , ’ k ’ , ’ Linewidth ’ , 4)
14 hold on ;
15

16 A=[1 1 ; 0 2 ]
17 [V,D]= e i g (A) ;
18
19
20
21 m1=1;
22 m2=1;
23
24

25 xi11 = [−m1∗ V(1 ,1 ) , m1∗V(1 ,1 ) ] ;
26 xi21 = [−m1∗V(2 ,1 ) , m1∗V(2 ,1 ) ] ;
27 pl1 = l i n e ( xi11 , xi21 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
28

29 x1 = V(1 , 1 ) /3 ;
30 y1 =V(2 , 1 ) ;
31 txt1 = ’ \xi_1 ’ ;
32 t ex t ( x1 , y1 , txt1 , ’ FontSize ’ ,20)
33
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34

35 hold on
36

37 xi12 = [−m2∗ V(1 ,2 ) , m2∗V(1 ,2 ) ] ;
38 xi22 = [−m2∗V(2 ,2 ) , m2∗V(2 ,2 ) ] ;
39

40 pl2 = l i n e ( xi12 , xi22 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
41

42 x2 = V(1 , 2 ) /3 ;
43 y2 =V(2 , 2 ) /3 ;
44 txt1 = ’ \xi_2 ’ ;
45 t ex t ( x2 , y2 , txt1 , ’ FontSize ’ ,20)

It outputs the following figure:

Figure 5.1.4: Eigenvectors spans and direction field
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Chapter 6

Liapunov’s Second Method

Consider the autonomous system:

dx

dt
= F (x, y) and

dx

dt
= G(x, y).

We will obtain a criterion for concluding asymptotic stability and even determining the basin of
attraction.

6.0.1 Example-presenting the method

We return to the damping-free pendulum

θ

L sin θ

mg
θ

m

L

Figure 6.0.1: oscillating pendulum

whose angle θ satisfies the equation

d2θ

d2t
+
mg

L
sin(θ) = 0.

This is a nonhomogeneous second order equation, but we can also view it as a system of equations
by letting x := θ and y := dθ

dt
:

dx

dt
= y,

dy

dt
= − g

L
sin(x).

1. Consider the total energy of the system:

E(x, y) = Potential + Kinetic
= U(x, y) +K(x, y)

:= mgL(1− cos(x)) +
1

2
mL2y2.

2. Since the system is damping-free, the energy is conserved and so we should have:

155
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dV

dt
= 0.

Lets prove this:

dV

dt
=

d

dt
[mgL(1− cos(x)) +

1

2
mL2y2]

= mgLsin(x)
dx

dt
+mL2y

dy

dt

using the equations

= mgLsin(x)y +mL2y(− g
L
sin(x))

= 0.

3. Therefore, we obtain an implicit solution:

mgL(1− cos(x)) +
1

2
mL2y2 = constant.

4. Next we consider the case where there is damping i.e. θ satisfies the equation:

d2θ

d2t
+ γ

dθ

dt
+ ω2sin(θ) = 0

and so the system is:
dx

dt
= y,

dy

dt
= −γy − g

L
sin(x).

5. By computing the time derivative of the total energy we obtain:

dV

dt
= −mL2γy2 = −mL2γ(θ̇)2 ≤ 0.

6. Physically this means that the energy will be decreasing over time as the damping
force keeps slowing down the pendulum. Therefore, we expect that the system will be
asymptotically stable towards the origin, where both the angle and the velocity are zero.

6.0.2 Method formal steps

For the autonomous system:

dx

dt
= F (x, y) and

dx

dt
= G(x, y)

let (x0, y0) denote a critical point. We will need the following definitions:

Definition 6.0.1. A point (x0, y0) is Lyapunov-stable if a solution that starts close to it, then it
will stay close to that critical point for all future time. Given any desired ε > 0 we can find
δ > 0 s.t. if we start δ−close

‖x(0)− (x0, y0)‖ ≤ δ,

then we stay ε−close:
‖x(t)− (x0, y0)‖ ≤ ε,∀t > 0.
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A point (x0, y0) is asymptotically stable if a solution that starts close to it converges to that
critical point:

‖x(t)− (x0, y0)‖ → 0.

1. Find the "total energy" V of the autonomous system by solving:

dV (x(t), y(t))

ddt
= Vx

dx

dt
+ Vy

dy

dt
= VxF (x(t), y(t)) + VyG(x(t), y(t)).

2. If dV (x(t),y(t))
ddt

= 0, then use to find the implicit solutions:

constant = V (x(t), y(t)).

3. If V satisfies the following conditions:

• V (x0, y0) = 0,
• V (x, y) > 0 for all other (x, y) 6= (x0, y0) in a disk around (x0, y0),

• and it is nondecreasing in time dV
dt
≤ 0 for all other (x, y) 6= (x0, y0) in a disk around

(x0, y0),

then
(x0, y0) is a Lyapunov-stable critical point.

4. If instead we have

• V (x0, y0) = 0,
• V (p) > 0 for at least one point p 6= (x0, y0) in a disk around (x0, y0),

• and strictly decreasing energy dV
dt
< 0 for all other (x, y) 6= (x0, y0),

then
(x0, y0) is an asymptotically stable critical point.

6.0.3 Finding the Lyapunov function

So clearly finding such a scalar function is the first serious obstacle. Here are some ideas and
heuristics on guessing such a function:

Physical systems For physical systems the energy/Hamiltonian is a good guess. For example,
if there is no new energy input, then the energy function will decay over time or remain constant.

Lur’e type systems Consider the system:

dx

dt
= −y − h1(x) and

dy

dt
= h2(x),

h1 is differentiable and h2 integrable. We will obtain a Lyapunov function for this type of
system.By taking t-derivative of the first equation and using the second one we obtain

d2x

d2t
= −h2(x)− h′1(x)

dx

dt



158 CHAPTER 6. LIAPUNOV’S SECOND METHOD

multiplying by dx
dt

we obtain
d2x

d2t

dx

dt
= −h2(x)

dx

dt
− h′1(x)(

dx

dt
)2 ⇒

d

dt

((dx
dt

)2

2
+

∫ x

0

h2(s)ds
)

= −h′1(x)(
dx

dt
)2.

Thus, if we have h′1(x) > 0 in a neighbourhood of x0, then the function

V (x) :=
(dx

dt
)2

2
+

∫ x

0

h2(s)ds

has a strictly negative derivative. Moreover, if
∫ x

0
h2(x)

Cost functions Distance and cost functions with respect to the critical point (x0, y0) are
also good guesses because close to the critical point the derivatives dx

dt
, dy

dt
are decaying to zero

and so we might indeed have:

Vx
dx

dt
+ Vy

dy

dt
≤ 0.

Linear systems When the system is linear i.e. ẋ = Ax then a candidate Lyapunov function
is

V (x) =

∫ ∞
0

∥∥eAtx∥∥dt = xT
(∫ ∞

0

e(AT+A)tdt
)
.

This is indeed a Lyapunov function for exponentially stable systems (see more details in the
converse theorems 6.0.3)

Polynomial systems When f1, f2 are polynomials of highest degree m, then there are many
algorithms for generating the corresponding Lyapunov functions of the form

V (x, y) =
m+1∑
j,k

cj,kx
jyk,

by optimizing over the coefficients (see [giesl2015review] for the sum-of-squares (SOS) theory).

6.0.4 General result:

Lyapunov’s second method

Theorem 6.0.2. Consider system

dx

dt
= f1(x, y) and

dy

dt
= f2(x, y),

and (x0, y0) a particular isolated equilibrium point. If we can find a continuously differen-
tiable function V : U(x0,y0) → R around some neighbourhood U(x0,y0) of the critical point
(x0, y0) with the following properties:

1. V (x0, y0) = 0,

2. V (x, y) > 0 for (x, y) ∈ U(x0,y0) \ {(x0, y0)},
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3. and dV
dt

:= dV
dx
f1 + dV

dy
f2 ≤ 0 in punctured neighbourhood U(x0,y0) \ {(x0, y0)}

then the critical point (x0, y0) is stable. In fact if we replace the last condition by strict
inequality:

dV

dx
f1 +

dV

dy
f2 < 0

then critical point (x0, y0) is asymptotically stable.

Converse theorems: existence of Lyapunov function

Theorem 6.0.3. Suppose that the linearization around an equilibrium point is

d

dt

(
x

y

)
=

(
a b

c d

)(
x

y

)
,

s.t. det(A) = ad− bc > 0 and a+ d < 0. Then the function

V (x, y) = Ax2 +Bxy + Cy2,

is a Lyapunov function for this system with V̇ < 0 if

A = −c
2 + d2 + det(A)

2Tr(A)det(A)

B =
bd+ ac

Tr(A)det(A)

C = −a
2 + b2 + det(A)

2Tr(A)det(A)

because then V̇ (x, y) = −x2 − y2 and the matrix(
A B

B C

)

is positive definite.

6.0.5 Examples

• Consider the system
dx

dt
= y and

dy

dt
= −x− y.

1. First we find that the equilibrium point is only the origin (0, 0).
2. We take the Euclidean distance function as a guess:

V (x, y) =
1

2
(x2 + y2).

3. Next we check each of the properties
– V (0, 0) = 0,
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– V (x, y) > 0 for (x, y) 6= 0,
– and

dV

dt
= Vxf1 + Vyf2 = (x)y + (y)(−x− y) = −y2 < 0

for (x, y) in a punctured disk centered at the origin.
4. Therefore, V (x, y) is a Lyapunov function and so the point (x0, y0) is asymptotically

stable.

• Consider the linear harmonic oscillator

dx

dt
= y and

dy

dt
= −kx,

for k > 0, with V = Pot+Kin = 1
2
kx2 + 1

2
y2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.

– We indeed have V (0, 0) = 1
2
k0 + 1

2
0 = 0.

– We have V (x, y) = 1
2
kx2 + 1

2
y2 > 0 for (x, y) 6= (0, 0).

– Finally, we have
dV

dt
= Vxẋ+ Vyẏ = kxy − kxy = 0.

2. So the origin will be an asymptotically stable point (solutions that start close, remain
close).

3. Indeed from linearization around the origin we obtain:

JF =

(
0 1

−k 0

)
,

which has eigenvalues λ = ±i
√
k and so the phase portrait will be concentric circles

centered at the origin. This agrees with our Lyapunov behaviour because solutions
that start in a circle close to the origin, stay on that circle for all future time.

• Consider the linear harmonic oscillator with damping

dx

dt
= y and

dy

dt
= −kx− αy3(1 + x2),

for k > 0, with the same V = Pot+Kin = 1
2
kx2 + 1

2
y2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.
– The first two conditions are the same.
– Finally, we have

dV

dt
= Vxẋ+ Vyẏ = kxy − kxy − αy4(1 + x2) = −αy4(1 + x2).

2. If α > 0 (i.e. the is positive damping removing energy from the system), then dV
dt
≤ 0

and so the origin will be an asymptotically stable point (solutions that start close,
remain close).

3. The linearization around the origin is:

JF =

(
0 1

−k 0

)
,
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which again has eigenvalues λ = ±i
√
k and so the phase portrait will be concentric

circles centered at the origin.
4. For α > 0 the behaviour is more complicated and we will explain it later.

• Consider the system
dx

dt
= −x+ 4y and

dy

dt
= −x− y3,

with V = ax2 + by2 as its candidate Lyapunov function.

1. First, we check that we indeed have a Lyapunov function.
– We indeed have V (0, 0) = 0 and V (x, y) > 0 for (x, y) 6= (0, 0) if a, b > 0.
– We have

dV

dt
= Vxẋ+ Vyẏ

= 2ax(−x+ 4y) + 2by(−x− y3)

= −2ax2 + xy(8a− 2b)− 2by4,

to make this strictly negative we set a = 1, b = 4 to get
= −2x2 − 8y4 < 0.

2. So the origin will be a stable point (solutions converge to the origin).
3. Indeed from linearization we obtain:

JF =

(
−1 4

−1 0

)
,

which has repeated eigenvalue λ = −1 and so the solution will converge to the origin
for any initial data.

• Consider the system:

x′ =

(
1 2

0 2

)
x,

for Lyapunov function V = 1
2
x2 − 2

3
xy + 7

12
y2.

1. At the origin we indeed have V(0,0)=0.
2. Next we prove that V > 0. The goal is to complete the square. A quick formula for

any monomial is

x2 + bx+ c = (x+
1

2
b)2 + c− b2

4
.

So if we have k > 0 we are done. Indeed

c− b2

4
= y2(

7

6
− 4

9
) > 0.

3. Next we check the sign of V̇ . We have

V̇ = Vxẋ+ Vyẏ = x2 + y2 > 0.

4. So it says that the system is unstable. Indeed its eigenvalues are 1, 2 and so the origin
is a source (i.e. the initial data matters because for initial data it stays trapped in
the origin).
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• Consider the system:

x′ =

(
1 2

0 1

)
x,

for Lyapunov function V = 1
2
x2 − xy + 3

2
y2.

1. As above in order to complete the square we find the sign of

c− b2

4
= y2(

1

2
− 1

4
) =

y2

4
.

2. Next we find the sign of V̇ :

V̇ = Vxẋ+ Vyẏ

= (x− y)(x+ 2y) + (−x+ 3y)y

= x2 + xy(2− 1− 1) + y2 = x2 + y2 > 0.

3. So it says that the origin is unstable. Indeed the eigenvalues are 1,1 and so the origin
is a source (i.e. for zero initial data it gets trapped whereas for nonzero initial data
it moves to infinity and so the initial data is relevant).

• Consider the system:
dx

dt
= −x+ 2y + y4,

dx

dt
= −y + x4

for Lyapunov function V = 1
2
x2 + xy + 3

2
y2.

1. First we check the sign of V. In completing the square we find the sign of

c− b4

2
= y2 1

4
> 0.

2. Next we check the sign of V̇ :

V̇ = Vxẋ+ Vyẏ = −x2 − y2 − (x+ y)y4 − (
3x

2
− 2y)x4.

For (x, y) close to zero we have x4 << x2, y4 << y2 and so we indeed have V̇ < 0.
3. This agrees with the linearization since the eigenvalues will be the repeated −1, which

makes the origin a source.

• Consider the system:

dx

dt
= −x+ 2y + y4,

dx

dt
= 2y − 2x+ x4

for Lyapunov function V = 4x2 − 3xy + 7
4
y2 = 4(x2 − 3

4
xy + 7

16
y2).

1. First we check the sign of V. In completing the square we find the sign of

c− b4

2
= y2(

7

16
− 9

4 ∗ 16
) > 0.

2. Next we check the sign of V̇ :

V̇ = Vxẋ+ Vyẏ = x2 + y2 − (8x− 3y)y4 − (−3x+
7

2
y)x4.
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For (x, y) close to zero we have x4 << x2, y4 << y2 and so we indeed have V̇ > 0.
3. This agrees with the linearization since the eigenvalues will be the repeated −1, 2,

which makes the origin an unstable saddle.

6.0.6 Applied examples

Walras’s law and the ttonnement mechanism

Here, we consider the question of stability of a pure exchange, competitive equilibrium with an
adjustment mechanism known as t^atonnement and directly inspired by the work of LonWalras
(1874), one of the founding fathers of mathematical economics.
The basic idea behind the t^atonnement mechanism is the same assumed in the rudimentary
price adjustment mechanism models, namely that prices of commodities rise and fall in response
to discrepancies between demand and supply (the so-called ’law of demand and supply’).
In the present case, demand is determined by individual economic agents maximising a utility
function subject to a budget constraint, given a certain initial distribution of stocks of com-
modities. The model can be described schematically as follows.

dp

dt
= f(p) =

(
f1(p)

f2(p)

)
,

where f1, f2 : R2 → R are continuous functions with all their derivatives continuous as well.

1. A price point p0 is called an equilibrium if

fi(p0) ≤ 0, pi ≥ 0,and pj > 0for some j
or fi(p0) < 0,p0 = 0.

The first case makes economic sense (i.e. at least one price is nonzero) and so by equilibrium
point we will mean the first case.

2. (Hypothesis H)The hypothesis that agents maximise utility is that the functions fi(p) are
homogeneous of degree zero, namely fi(λp) = λ0fi(p) = fi(p) for any λ > 0.

3. (Walras’s law)Consider that the budget constraint for each individual k takes the form

2∑
i=1

pif
k
i (p) = p1f

k
1 (p) + p2f

k
2 (p) = 0,

where fki denotes the excess demand by the kth economic agent for the ith commodity,
i.e., the difference between the agent’s demand for, and the agent’s initial endowment of,
that commodity. In general for m commodities by summing over all N economic agents
we have:

N∑
k=1

m∑
i=1

pif
k
i (p) =

∑
i

pmi=1fi(p) = 0.

This law states that, in view of the budget constraints, for any set of semipositive prices p
(not necessarily equilibrium prices), the value of aggregate excess demand, evaluated at
those prices, must be zero.

The Jacobian matrix for f is

Df(p0) =

(
df1(p0)

dp1

df1(p0)
dp2

df2(p0)
dp1

df2(p0)
dp2

)
.
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Chapter 7

Laplace transform

7.1 Laplace transform for 1D ODEs

The Laplace transform of continuous functions f(t) with at most exponential growth, that is
|f(t)| ≤ ceat for a ≥ 0 and c ≥ 0, is defined as:

L{f}(s) :=

∫ ∞
0

e−stf(t)dt,

where s > a. In future, we denote continuous functions such that |f(t)| ≤ ceat for a ≥ 0,
c ≥ 0, and for all t ≥ 0 as C([0,∞), eat), where if a = 0 we understand this as the space of
bounded continuous functions on [0,∞). Note that we have dropped the constant c from the
definition of C([0,∞), eat) since only a affects the region of definition of the Laplace transform.
By integrating by parts we can easily check that we have:

L{f ′}(s) = sL{f} − f(0)

so for the second derivative we have, by iterating the previous observation,

L{f ′′}(s) = sL{f ′} − f ′(0) = s2L{f} − f ′(0)− sf(0).

Continuing with the above observation we see that

L{f (m)}(s) = smL{f} −
m−1∑
j=0

sjfm−j−1(0)

where f (m) denotes themth derivative of f . Another useful property is that the Laplace transform
is linear on continuous function of exponential growth. First observe that if f, g ∈ C([0,∞), eat)

then linear combination of f, g also belong to C([0,∞), eat). Thus, the Laplace transform is
defined on f + g, for f, g ∈ C([0,∞), eat), and satisfies:

L{f + g}(s) = L{f}(s) + L{g}(s)

for s > a.

Method formal steps

1. Starting from the equation ay′′(t) + by′(t) + cy(t) = g(t) we compute the laplace transform
of both sides, assuming an exponential growth condition on y and g, to obtain:

aL{y′′}(s) + bL{y′}(s) + cL{y}(s) = L{g}(s)

165
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we obtain from above:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c
.

2. So by inverting the laplace transform (using linearity and known inversions) we can obtain
solution y(t) back. Note that inverting the laplce transform is permitted by Lerch’s
theorem (3) which says that if two functions, f1 and f2, have the same laplace transform
then they are "essentially” equal.

3. The main computational aspect of this is splitting partial fractions to get the known
relations. But Heaviside motivated by the same problem when computing the Laplace
transform, came up with the cover-up method. In computing the coefficients below

p(s)

(s− a1) · · · (s− an)
=

A1

s− a1

+ ...+
An

s− an
,

for polynomial p(s), we see by rearranging that:

p(s)

(s− a1) · · · (s− ai−1)(s− ai+1) · · · (s− an)
=
A1(s− ai)
s− a1

+ ...+ Ai + ...+
An(s− ai)
s− an

,

and by setting s = ai we obtain the ith coefficient Ai:

Ai =
p(ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

Here is a table of known Laplace transforms (see section 7.3 for proofs):
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function f(t) = L−1{g}(t) Laplace transform g(s) = L{f}(s) Region of definition

constant a
a

s
s > 0

sin(at)
a

s2 + a2
s > 0

cos(at)
s

s2 + a2
s > 0

eat
1

s− a s > a

sin(bt)eat
b

(s− a)2 + b2
s > a

cos(bt)eat
s− a

(s− a)2 + b2
s > a

fstep(t, a) :=

{
1, 0 ≤ t ≤ a

0, t > a

1− e−as
s

s > 0

ea(t−b)fheavy(t, b) := ea(t−b)(1− fstep(t, b)
) e−bs

s− a s > a

tn
n!

sn+1
s > 0

tp, p > −1
Γ(p+ 1)

sp+1
s > 0

tneat
n!

(s− a)n+1
s > a

Examples

• Consider the equation

y′′(t)− y′(t)− 6y(t) = 0, y(0) = 1, y′(0) = −1.

1. By taking the Laplace transform of both sides we obtain:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation we have

=
y(0)(s− 1) + y′(0)

s2 − s− 6

for our IC we have

=
(s− 1)− 1

s2 − s− 6

=
s− 2

(s− 3)(s+ 2)
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2. Next we split it into partial fractions

L{y}(s) =
s− 2

(s− 3)(s+ 2)

=
1/5

s− 3
+

4/5

s+ 2

So we use L{eat} = 1
s−a ⇐⇒ eat = L{ 1

s−a}−1

y(t) = L−1
{ 1/5

s− 3
+

4/5

s− (−2)

}
(t)

=
1

5
e3t +

4

5
e−2t.

3. Indeed, using the method of characteristic equations for second order equations we
obtain

y(t) = c1e
3t + c2e

−2t.

Therefore, by using the IC we have{
1 = y(0) = c1 + c2

−1 = y′(0) = 3c1 − 2c2

=⇒
{
c1 = 1

5

c2 = 4
5

.

4. So for homogeneous equations it is clearly much faster and less error prone to use
the method of characteristics.

• Consider the nonhomogeneous equation

y′′(t)− 2y′(t) + 2y(t) = e−t, y(0) = 0, y′(0) = 1

1. First we take the Laplace transform of both sides to obtain:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation it becomes

=
1
s+1

+ y′(0) + y(0)(s− 2)

s2 − 2s+ 2

=
1
s+1

+ 1

s2 − 2s+ 2

=
s+ 2

(s+ 1)(s2 − 2s+ 2)

by partial fractions we obtain

=
1

5(s+ 1)
+

8− s
5(s2 − 2s+ 2)

=
1

5(s+ 1)
+

8− s
5(s− (1− i))(s− (1 + i))

repeating partial fractions for the last term we have

=
1

5(s+ 1)
+

7
2
i− 1

2

5(s− (1− i)) +
−7

2
i− 1

2

5(s− (1 + i))
.
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So by inverting the Laplace transform we have

y(t) = L−1

{
1

5(s+ 1)

}
+ L−1

{ 7
2
i− 1

2

5(s− (1− i))

}
+ L−1

{ −7
2
i− 1

2

5(s− (1 + i))

}
=

1

5
e−t +

( 7

10
i− 1

10

)
e(1+i)t +

(−7

10
i− 1

10

)
e(1−i)t.

2. Let’s check this with the method of undetermined coefficients.
(a) First we solve the homogeneous problem. The method of characteristics gives:

xh(t) = c1e
(1+i)t + c2e

(1−i)t.

(b) We make the ansatz xnh(t) = ce−t (here s = 0 because r∗ = −1 is not a root).
Plugging in we have

ce−t + 2ce−t + 2ce−t = e−t =⇒ c+ 2c+ 2c = 1 =⇒ c = 1/5,

which is the same nonhomogeneous solution as in the Laplace transform.
(c) Next we evaluate the coefficients.{

0 = y(0) = c1 + c2 + 1
5

1 = y′(0) = (1 + i)c1 + (1− i)c2 − 1
5

=⇒
{
c1 = 7

10
i− 1

10

c2 = − 7
10
i− 1

10

.

• Consider the equation

y′′(t) + 4y(t) =

{
1, 0 ≤ t < π

0, π ≤ t <∞
with initial data y(0) = 1, y′(0) = 0.

1. The Laplace transform of the above step function1 is

1− e−πs
s

.

2. We take the Laplace transform of both sides:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation the above becomes

L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c
=

1−e−πs
s

+ y′(0) + sy(0)

s2 + 4

=
1− e−πs + s2

s(s2 + 4)

=
s

s2 + 4
+

1

s(s2 + 4)
− e−πs

s(s2 + 4)

=
s

s2 + 4
+
( 1

4s
− 1

8(s+ 2i)
− 1

8(s− 2i)

)
(1− e−πs).

1Technically we have defined the Laplace transform only for continuous functions of controlled growth.
However, the Laplace transform is extendable to Riemann integrable functions of controlled growth. In particular,
for this example, one computes the Laplace transform by splitting the function into the two regions where it is
understood. For more information see this exercises at the end of this section.
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We will use the following Laplace transforms:

L{cos(2t)}(s) =
s

s2 + 4

L
{1

4

}
(s) =

1

4s

L
{1

8
e−2it

}
(s) =

1

8(s+ 2i)

L
{1

8
e2it
}

(s) =
1

8(s− 2i)

L
{
e−πs

}
(s) =

1

s− (−π)
=

1

s+ π

L
{
e−a(t−b)(1− fstep(t, b)

)}
=

e−bs

s+ a
.

So we have

y(t) = L−1
{ s

s2 + 4

}
+ L−1

{ 1

4s

}
+ L−1

{
− 1

8(s+ 2i)

}
+ L−1

{
− 1

8(s− 2i)

}
+ L−1

{
e−πs

1

4s

}
+ L−1

{
− 1

8(s+ 2i)
e−πs

}
+ L−1

{
− 1

8(s− 2i)
e−πs

}
= cos(2t) +

1

4
− 1

8
e−2it − 1

8
e2it

+
1

4

(
1− fstep(t, π)

)
+

1

8
e−2i(t−π)(1− fstep(t, π)) +

1

8
e2i(t−π)(1− fstep(t, π))

7.2 Laplace transform for systems

Consider the Laplace transform of vectors L{x}(s) defined componentwise2

L{x}(s) :=


L{x1}(s)

...

L{xn}(s)

.

Therefore, as with the usual Laplace transform we obtain, by repeatedly using the scalar version
of this identity, that:

L{x′}(s) = sL{x}(s)− x(0).

7.2.1 Method formal steps

Consider the nonhomogeneous system

x′(t) = Ax(t) + g(t).

2Recall that integration extends to vectors by integration componentwise. Since this transform is defined by
integration it too extends to vectors by acting componentwise.
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1. Taking the Laplace transform of each term in the above equation we have:

sL{x}(s)− x(0) = AL{x}(s) + L{g}(s).

2. For simplicity we assume that x(0) = 0n×1.

3. We then obtain the system:

(sIn −A)L{x}(s) = L{g}(s).

4. By inverting the matrix, assuming s is not an eigenvalue of A, we obtain:

L{x}(s) = (sIn −A)−1L{g}(s).

5. Then we do inverse Laplace transform of each component using known Laplace transform
relations.

6. The main computational aspect of this is splitting partial fractions to get the known
relations. But Heaviside motivated by the same problem when computing the Laplace
transform, came up with the cover-up method. In computing the coefficients below

p(s)

(s− a1) · · · (s− an)
=

A1

s− a1

+ ...+
An

s− an
,

for polynomial p(s), we see by rearranging that:

p(s)

(s− a1) · · · (s− ai−1)(s− ai+1) · · · (s− an)
=
A1(s− ai)
s− a1

+ ...+ Ai + ...+
An(s− ai)
s− an

,

and by setting s = ai we obtain the ith coefficient Ai:

Ai =
p(ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

7.2.2 Examples

• Consider the system

dx

dt
=

2 1

0 1

x +

(
2e−t

3t

)
.

1. We take Laplace transform of both sides

(sI−A)L
{

x
}

(s) =

s− 2 1

0 s− 1

L{x
}

(s) =

( 2
s+1

3
s2

)
.

2. We simplify

L
{

x
}

(s) =

s− 2 1

0 s− 1


−1( 2

s+1
3
s2

)
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=
1

(s− 2)(s− 1)

s− 1 −1

0 s− 2

( 2
s+1

3
s2

)

=

( 2
(s+1)(s−2)

− 3
(s−1)(s−2)s2

3
(s−1)s2

)
.

By partial fractions we get

=

( 2
3(s−2)

− 2
3(s+1)

−
(

3
2s2
− 3

s−1
+ 9

4
1
s

+ 3
4

1
s−2

)
−3
s2
− 3

s
+ 3

s−1

)

=

( −1
12(s−2)

− 2
3(s+1)

− 3
2s2

+ 3
s−1
− 9

4
1
s

−3
s2
− 3

s
+ 3

s−1

)
.

3. We use known Laplace transform relations to obtain x by inverting:

x(t) =

(L−1
{

−1
12(s−2)

− 2
3(s+1)

− 3
2s2

+ 3 1
s−1
− 9

4
1
s

}
(t)

L−1
{
−3
s2
− 3

s
+ 3

s−1

}
(t)

)
.

For the first component we have

x1(t) =
−1

12
L−1

{ 1

s− 2

}
(t)− 2

3
L−1

{ 1

s+ 1

}
(t)− 3

2
L−1

{ 1

s2

}
(t)

+ 3L−1
{ 1

s− 1

}
(t)− 9

4
L−1

{1

s

}
(t)

=
−1

12
e2t − 2

3
e−t − 3

2
t+ 3et − 9

4
.

For the second component we have

x2(t) = −3L−1
{ 1

s2

}
(t)− 3L−1

{1

s

}
(t) + 3L−1

{ 1

s− 1

}
(t)

= −3t− 3 + 3et.

Therefore, together give

xnh(t) =

(−1
12
e2t − 2

3
e−t − 3

2
t+ 3et − 9

4

−3t− 3 + 3et

)

= e2t

(−1
12

0

)
− 2

3
e−t
(

1

0

)
− 3t

(
1
2

1

)
− 3

(
3
4

1

)
+ 3et

(
1

1

)
.

4. Therefore, the general solution is

x(t) = c1e
2t

(
1

0

)
+ c2e

t

(
1

−1

)
+ e2t

(−1
12

0

)
− 2

3
e−t
(

1

0

)
− 3t

(
1
2

1

)
− 3

(
3
4

1

)
+ 3et

(
1

1

)
.

• Consider the second order equation
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w′′(t) + w(t) =

{
1, 0 ≤ t ≤ 1

0, t > 1

with zero initial data. By setting x = w, y = w′ we obtain x′ = y, y′ + x = fstep(t) or in
system form

d

dt

(
x

y

)
=

 0, 1

−1 0

(xy
)

+

(
0

fstep(t)

)
.

1. We take Laplace transform of both sides

(sIn −A)L{x}(s) =

s −1

1 s

L{x}(s) =

(
0

L{fstep}(s)

)
.

2. The Laplace transform of the RHS is

L{fstep}(s) =

∫ ∞
0

e−stfstep(t)dt =

∫ 1

0

e−stdt =
1− e−s

s
.

3. We simplify

L{x}(s) =

s −1

1 s


−1(

0
1−e−s
s

)

=
1

s2 + 1

 s 1

−1 s

( 0
1−e−s
s

)

=

( 1−e−s
s(s2+1)

1−e−s
s2+1

)

=

(−i
2

1−e−s
s+i
− i

2
1−e−s
s−i + 1−e−s

s

−i
2

1−e−s
s+i

+ i
2

1−e−s
s−i

)
.

4. We use known Laplace transform relations to invert

For the first component we have

x1(t) = L−1
{1− e−s

s

}−1

(t) + L−1
{−i

2

1− e−s
s+ i

− i

2

1− e−s
s− i

}−1

(t)

= fstep(t, 1) +
−i
2

[
L−1

{ 1

s+ i

}
(t)− L−1

{ e−s

s+ i

}
(t)
]

+
−i
2

[
L−1

{ 1

s− i
}−1

(t)− L−1
{ e−s

s− i
}−1

(t)
]

= fstep(t, 1) +
−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.
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For the second component we have

x2(t) = L−1
{−i

2

1− e−s
s+ i

+
i

2

1− e−s
s− i

}−1

(t)

=
−i
2

[
L−1

{ 1

s+ i

}
(t)− L−1

{ e−s

s+ i

}
(t)
]

+
i

2

[
L−1

{ 1

s− i
}−1

(t)− L−1
{ e−s

s− i
}−1

(t)
]

=
−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

Therefore, together we obtain

xnh(t) =fstep(t, 1)

(
1

0

)
+

(
1

1

)−i
2

[
e−it − e−i(t−(−1))fstep(t, 1)

]
+

(
1

−1

)
i

2

[
eit − ei(t+1)fstep(t, 1)

]
.

5. The general solution will be:

x(t) = c1e
it

(
i

1

)
+ c1e

−it
(−i

1

)
+ fstep(t, 1)

(
1

0

)
+

(
1

1

)−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+

(
1

−1

)
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

6. For comparison we also compute the solution of the second order equation:

w′′(t) + w(t) =


1, 0 ≤ t ≤ 1

0, t > 1

.

7. By taking the Laplace transform of both sides we obtain

s2L
{
w
}
− sw(0)− w′(0) + L

{
w
}

= L
{
fstep(·, 1)

}
(s)

using that w(0) = w′(0) = 0 we obtain

L
{
w
}

=
L
{
fstep(·, 1)

}
(s)

s2 + 1

=
1− e−s
s(s2 + 1)

=
1− e−s
s(s2 + 1)

=
1− e−s

s
+
−i
2

1− e−s
s+ i

− i

2

1− e−s
s− i .

Therefore, by inverting we obtain

w(t) = fstep(t, 1) +
−i
2

[
e−it − e−i(t+1)(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

8. This is indeed the solution we obtained for the first component x1(t) := w(t).
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• Consider the system

x′(t) =

 0 1

−1 2

x +

(
0

e−(t−1)(1− fstep(t, 1))

)
.

1. First we take the Laplace transform forcing term:

L
{( 0

e−(t−1)(1− fstep(t, 1))

)}
=

(
0
e−s

s+1

)
.

2. Therefore,

L
{

x
}

= (sI−A)−1

(
0
e−s

s+1

)

=
1

(s− 1)2

s− 2 1

−1 s

(0

1

)
e−s

s+ 1

=
1

(s− 1)2

(−1

s

)
e−s

s+ 1
.

Using the cover-up method we compute the partial fraction for the first component:

− e−s( 1

2(s− 1)2
− 1

4(s− 1)
+

1

4(s+ 1)
)

and for the second component

− e−s( 1

2(s− 1)2
+

1

4(s− 1)
− 1

4(s+ 1)
).

Next we invert the first component:

x = L−1
{
− e−s( 1

2(s− 1)2
− 1

4(s− 1)
+

1

4(s+ 1)
)
}

= −e
t−1(t− 1)

2
fheavy(t, 1) +

et−1

4
fheavy(t, 1)− e1−t

4
fheavy(t, 1)

and the second component

y = −e
t−1(t− 1)

2
fheavy(t, 1)− et−1

4
fheavy(t, 1) +

e1−t

4
fheavy(t, 1).

3. So in vector notation we have the general solution:

xgen =c1e
−t
(

3

1

)
+ c2e

−t(t

(
3

1

)
+

(
0

1

)
)

− et−1(t− 1)

2
fheavy(t, 1)

(
1

1

)
+
[et−1

4
fheavy(t, 1)− e1−t

4
fheavy(t, 1)

]( 1

−1

)
.
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7.3 Properties of Laplace Transform

We begin by demonstrating the following commonly used identities for the Laplace transform:

Proposition 1. The Laplace transform satisfies the following identities:

1. If f, g ∈ C([0,∞), eat) then for b, c ∈ R L{bf + cg}(s) = bL{f}(s) + c}(s) for s > a.

2. If f ∈ C([0,∞), eat) and b > −a then ebt · f ∈ C([0,∞), e(a+b)t) and L{ebtf}(s) =
L{f}(s− b) for s > a+ b.

3. Suppose f ∈ C([0,∞), eat) for a 6= 0 and define F : [0,∞)→ R by F (t) =
∫ t

0
f(s)ds. Then

F ∈ C([0,∞), eat) and for s > a we have L{F}(s) = 1
s
L{f}(s).

4. Suppose F : [0,∞) → R is defined by F (t) =
∫ t

0
f(s)ds for f ∈ C([0,∞), eat) and we

assume that F ∈ C([0,∞), eat) then for s > a we have L{F}(s) = 1
s
L{f}(s).

5. For a ∈ R we have L{a}(s) = a
s
for s > 0.

6. For a ∈ R we have L{sin(at)}(s) = a
s2+a2

for s > 0.

7. For a ∈ R we have L{cos(at)}(s) = s
s2+a2

for s > 0.

8. For a ∈ R we have L{eat}(s) = 1
s−a for s > a.

9. For a, b ∈ R we have L{sin(at)ebt}(s) = a
(s−b)2+a2

for s > b.

10. For a, b ∈ R we have L{cos(at)ebt}(s) = s−b
(s−b)2+a2

for s > b.

Proof.

1. Suppose f, g ∈ C([0,∞), eat) and b, c ∈ R. Observe that

|bf(t) + cg(t)| ≤ |b| · |f(t)|+ |c| · |g(t)| ≤ |b| · Cfeat + |c|Cgeat = (|b|Cf + |c|Cg)eat

for t ≥ 0 where Cf and Cg are non-negative constants. We conclude that bf + cg ∈
C([0,∞), eat). Thus, the Laplace transform of bf + cg, f , and g are all defined for s > a.
Computing gives, for s > a, that:

L{bf + cg}(s) =

∫ ∞
0

e−st(bf(s) + cg(s))ds

= b

∫ ∞
0

e−stf(s)ds+ c

∫ ∞
0

e−stg(s)ds

= bL{f}+ cL{g}.

2. Suppose f ∈ C([0,∞), eat) and b > −a. Then for t ≥ 0 we have:

|f(t)ebt| = ebt|f(t)| ≤ Cfe
bt · eat = Cfe

(a+b)t.

Thus, ebtf ∈ C([0,∞), e(a+b)t) which means the Laplace transform of ebtf is defined for
s > a+ b. Observe that, for s > a+ b

L{ebtf}(s) =

∫ ∞
0

e−stebtf(t)dt =

∫ ∞
0

e−(s−b)tf(t)dt = L{f}(s− b).
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3. Suppose f ∈ C([0,∞), eat) and F (t) =
∫ t

0
f(s)ds for t ≥ 0. Then for t ≥ 0 we have, if

a 6= 0

|F (t)| =
∣∣∣∣∫ t

0

f(s)ds

∣∣∣∣ ≤ ∫ t

0

|f(s)|ds ≤ Cf

∫ t

0

easds = Cf ·
ee
at − 1

a
≤ Cf

a
· eat.

Thus, for a 6= 0 the Laplace transform is defined for f for s > a. In particular, by
integrating by parts, which is permitted since f is continuous, we get:

L{F}(s) =

∫ ∞
0

e−stF (t)dt =
−e−stF (t)

s

∣∣∣∞
0

+
1

s

∫ ∞
0

e−stf(t)dt =
1

s
L{f}(s).

4. By assumption the Laplace transform of both f and F is defined for s > a. Thus, for
s > a we have, by integrating by parts.

L{F}(s) =

∫ ∞
0

e−stF (t)dt =
−e−stF (t)

s

∣∣∣∞
0

+
1

s

∫ ∞
0

e−stf(t)dt =
1

s
L{f}(s).

5. Suppose a ∈ R. Then the constant function defined by f(t) = a for t ≥ 0 is bounded and
hence f ∈ C([0,∞), e0·t). Thus, the Laplace transform is defined for s > 0. Computing
this we obtain, for s > 0:

L{a}(s) =

∫ ∞
0

e−stadt = a

∫ ∞
0

e−stdt =
a

s

6. For a ∈ R we have sin(at) ∈ C([0,∞), e0·t) since this function is bounded. Thus, the
Laplace transform is defined for s > 0. Computing the transform we get, for s > 0:

L{sin(at)}(s) =

∫ ∞
0

e−st sin(at)dt = −e
−st sin(at)

s

∣∣∣∞
0

+
a

s

∫ ∞
0

e−st cos(at)dt

= −ae
−st cos(at)

s2

∣∣∣∞
0
− a2

s2

∫ ∞
0

e−st sin(at)dt

=
a

s2
− a2

s2
L{sin(at)}(s).

Thus, we obtain, for s > 0 (
s2 + a2

s2

)
L{sin(at)}(s) =

a

s2

and so
L{sin(at)}(s) =

a

s2 + a2

7. Observe that, for a 6= 0, cos(at) = 1 − a
∫ t

0
sin(as)ds and that cos(at), sin(at), and the

constant function −1 are all bounded functions. In particular, we see that∫ t

0

sin(as)ds =
1− cos(at)

a

is bounded for t ≥ 0. Thus, the Laplace transform of all functions involved is defined for
s > 0. Applying properties 1, 4, and 6 we obtain for s > 0

L{cos(at)}(s) =
1

s
− a

s
· a

s2 + a2
=

1

s
· s

2 + a2 − a2

s2 + a2
=

s

s2 + a2
.
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8. By properties 2 and 5 we have

L{eat} =
1

s− a
for s > a since 1 is bounded.

9. By properties 2 and 6 we have

L{sin(at)ebt} =
a

(s− b)2 + a2

for s > b since sin(at) is bounded.

10. By properties 2 and 7 we have

L{cos(at)ebt} =
s− b

(s− b)2 + a2

for s > b since sin(at) is bounded.

The spaces C([0,∞), eat) for a ≥ 0, while large enough to deal with simple functions we
encounter in the wild, are not large enough to deal with some of the obstacles we may run into. In
particular, these spaces are not suited to dealing with "modestly” growing functions like x 7→ xn

for n ∈ N which grows slower at infinity then any function of the form eat for a > 0 but is not
bounded. To get around this obstacle we define the spaces Lp((0,∞), e−at) consisting of functions,
f , such that

∫∞
0
e−at|f(t)|pdt <∞ for a ≥ 0 and 1 ≤ p <∞. Observe that such functions have

laplace transform defined for s > a and if a = 0 then Lp((0,∞), e−at) = Lp((0,∞)). We will,
in particular, consider the case p = 1 as this allows an immediate extension to the Laplace
transform. With this new definition we will demonstrate some properties of the extended Laplace
transform. We will also show that the properties demonstrated in proposition 1 remain true for
the extended Laplace transform.

Proposition 2. The generalized Laplace transform satisfies the following identities:

1. Suppose f ∈ C([0,∞), e−at). Then f ∈ L1((0,∞), e−at) and so the laplace transform is
defined, by the same formula, for s > a.

2. If p ≥ 0 then f(s) = sp is an element of L1((0,∞)) and satisfies L{f}(s) = Γ(p+1)
sp+1 for

s > 0.

Proof. 1. Observe that for s > a we have

Theorem 3. (Lerch’s theorem) Suppose f1, f2 ∈ Lp((0,∞), e−at) and L{f1}(s) = L{f2}(s) for
all s > a. Then f1 = f2 almost everywhere on (0,∞).



Chapter 8

Appendix

8.1 Inverse of a matrix

Given a 2× 2 matrix A we will sometimes have to compute its inverse. To do this efficiently we
provide an algorithm which gives the formula for the inverse of A. We recall that if v =

(
v1
v2

)
then v⊥ =

(
v2
−v1

)
is its perpendicular vector.

8.1.1 Formal steps

1. We are given a 2× 2 matrix A which takes the form

A =

[
ξ η

]
where ξ and η are vectors in R2. We compute ξ⊥ and η⊥.

2. Next we compute ξ · η⊥.

3. Finally, we form the inverse matrix

A−1 =
1

ξ · η⊥


(η⊥)T

−(ξ⊥)T

.

8.1.2 Example of the method

1. Consider the matrix

A =


3 5

2 −7


for which ξ =

(
3
2

)
and η =

(
5
−7

)
. We compute that ξ⊥ =

(
2
−3

)
and η⊥ =

(−7
−5

)
.

2. ξ · η⊥ = −31.

179
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3. Finally we obtain that

A−1 =
−1

31


−7 −5

−2 3

.

We can check that this is correct by multipling A−1 and A to obtain I2.

8.1.3 Reasoning behind the method

This algorithm comes from the following reasoning. If we have a matrix A and we want to find
its inverse A−1 then we require that

1 0

0 1

 = A−1A =


αT

βT


(
ξ η

)
=


α · ξ α · η

β · ξ β · η

.

Comparing both sides we see that we must have α · η = 0 as well as β · ξ = 0. The easiest way
to achieve this is to choose α = ηT and β = ξT. This, however, ignores that we need α · ξ = 1
and β · η = 1. Fortunately, with the choices α = η⊥ and β = ξ⊥ we have

α · ξ = η⊥ · ξ = ξ1η2 − ξ2η1

as well as
β · η = ξ⊥ · η = ξ2η1 − ξ1η2

which differ by a factor of −1. If we now choose β = −ξ⊥ (essentially multiplying both sides of
the last computation by −1) then we have α · ξ = β · η. Thus, the matrix B defined by

B =


(η⊥)T

−(ξ)T


satisfies

BA =


ξ · η⊥ 0

0 ξ · η⊥

 = ξ · η⊥


1 0

0 1

.
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Dividing both sides by ξ · η⊥ we get that

( 1

ξ · η⊥B
)
A =


1 0

0 1


which gives us the inverse matrix.

8.2 Exponential of matrix

8.2.1 Identities and formulas

Proposition 8.2.1. We let etA denote the unique1 matrix which solves

X′(t) = AX(t), X(0) = In.

I claim that, in this case, etA satisfies:

1. e0 = In

2. The unique solution to the problem X′(t) = AX(t), X(0) = X0 is etAX0.

3. AetA = etAA

4. The exponential of matrix is invertible and we have that (etA)−1 = e−tA

5. If AB = BA then et(A+B) = etAetB

6. (etA)T = etA
T

7. If T is an invertible matrix then etT−1AT = T−1etAT.

8. If A2 = A then etA = In + (et − 1)A.

9. Formulas of etA for n = 2:

(a) If the eigenvalues are distinct then

exp{tA} := eλ1t
1

λ1 − λ2

(A− λ2I2)− eλ2t 1

λ1 − λ2

(A− λ1I2).

(b) If λ = λ1 = λ2 then
exp{tA} := eλtI2 + eλtt(A− λI2).

(c) If λ1 = a+ ib, λ2 = a− ib then

exp{tA} :=
eat

b
{b cos(bt)I2 + sin(bt)(A− aI2)}.

10. Suppose A is invertible. Then ∫
etAdt = A−1etA + C

1This is due to the uniqueness theorem for linear matrix ODEs.
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Proof.

1. By definition we have
e0 = e0A = X(0) = In.

2. Let Y(t) = etAX0. Then,

Y′(t) =
(
etAX0

)′
= AetAX0 = AY(t)

and
Y(0) = e0X0 = InX0 = X0.

By uniqueness of solutions of linear matrix IVPs we have that Y is the only solution to
this matrix IVP.

3. Let Y(t) = AetA. Observe that

Y′(t) = A
(
etA
)′

= A
(
AetA

)
= AY(t)

and
Y(0) = Ae0 = AIn = A.

By 2 we must have
AetA = Y(t) = etAA

for all t.

4. Let F(t) = etAe−tA for t ∈ R. Observe that

F ′(t) = (etA)′e−tA + etA(e−tA)′ = AetAe−tA − etAAe−tA = AetAe−tA −AetAe−tA = 0.

where I have used 3. Thus, F is constant. In particular, we have, by evaluating at t = 0

F(0) = e0e0 = InIn = In.

By reversing the roles of etA and e−tA we obtain the desired conclusion.

5. For this proof we let X(t) = etA, Y(t) = etB, and Z(t) = et(A+B). Define G(t) =
Z(t)−X(t)Y(t). Differentiating we obtain

G ′(t) = Z′(t)−X′(t)Y(t)−X(t)Y′(t)

= (A + B)Z(t)−AX(t)Y(t)−X(t)BY(t).

Note that if we can show that X(t)B = BX(t) then we get

= (A + B)Z(t)−AX(t)Y(t)−X(t)BY(t)

= (A + B)Z(t)−AX(t)Y(t)−BX(t)Y(t)

= (A + B)Z(t)− (A + B)X(t)Y(t)

= (A + B)(Z(t)−X(t)Y(t))

= (A + B)G(t).

We also have
G(0) = Z(0)−X(0)Y(0) = In − InIn = In − In = 0.

By 2 we have
G(t) = et(A+B)0 = 0.

Thus,
et(A+B) − etAetB = Z(t)−X(t)Y(t) = 0
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as we wanted. Now we show that X(t)B = BX(t). Observe that

(BX(t))′ = BX′(t) = BAX(t) = ABX(t) = A(BX(t))

and
BX(0) = BIn = B.

By 2 we must have
BX(t) = X(t)B

for all t ∈ R.

6. Observe that by 3 we have
(etA)′ = AetA = etAA.

By transposing the previous equation we have

((etA)T)′ = AT(etA)T.

Observe also that (e0A)T = IT
n = In. Hence, by definition we have

etA
T

= (etA)T.

7. Observe that

(T−1etAT)′ = T−1(etA)′T = T−1AetAT = (T−1AT)(T−1etAT )

and T−1eoAT = T−1InT = T−1T = In. Thus, by definition we have

etT
−1AT = T−1etAT.

8. We have that
(etA)′ = AetA

and so
(AetA)′ = A(etA)′ = A2etA = AetA.

Also Ae0A = A so by 2 we have
AetA = etA.

Observe that
(In −A)A = A−A2 = 0.

This means that

((In −A)etA)′ = (In −A)(etA)′ = (In −A)AetA = 0.

We conclude that (In −A)etA is constant and equal to In −A at t = 0. Thus,

etA = AetA + (In −A)etA = etA + (In −A) = In + (et − 1)A.

9. (a)

(b)

(c)

10. Let F(t) = A−1etA. Observe that

F′(t) = A−1AetA = etA.
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Thus, ∫
etAdt = F(t) + C.

We observe that identity 7 allows for easier computation of the matrix exponential
when the matrix A is diagonalizable. To see this, observe that in this case we can find an
invertible matrix T and a diagonal matrix D such that T−1AT = D. Identity 7 gives

etD = et·T
−1AT = T−1etAT

which means
etA = TetDT−1.

Note that solving the vector ODE x′ = Dx is much simpler since D is a diagonal matrix.

8.2.2 Local lipschitz constant of exponential matrix*

We will demonstrate some results about the operator norm and Frobenius norm of the exponential
matrix as well as the local lipschitz constant of the exponential matrix function. Before we
begin we recall that if A is an n× n matrix then the operator norm of A, denoted by ‖A‖op, is
defined as

‖A‖op = sup
x 6=0n×1

{‖Ax

x

}
.

We also define the Frobenius inner product of matrices A,B ∈Mn×n(R) defined by

〈A,B〉F = tr(ATB)

as well as its associated norm, denoted by ‖ · ‖F . Finally, recall the following result, which is a
guided exercise in the section on first order equations, known as Grönwall’s inequality:

Grönwall’s inequality

Suppose x : [a, b] → R is continuous on [a, b], differentiable on (a, b), and satisfies
x′(t) ≤ c(t)x(t) + b(t) on (a, b) where c, b : [a, b]→ R are continuous. Then

x(t) ≤ x(a)e
∫ t
ac(s)ds + e

∫ t
ac(s)ds

∫ t

a

e

[
−

∫ s
a c(s)ds

]
b(s)ds

for t ∈ [a, b].

In particular, we observe that if c is a constant function with value D then the inequality
gives

x(t) ≤ x(a)eD(t−a) + eD(t−a)

∫ t

a

eD(a−s)b(s)ds.

WIth these reminders in place we now prove the following

Proposition 8.2.2. Let A,B ∈Mn×n(R). Then we have:

1. if t ∈ [0,∞) then ‖etA‖op ≤ et‖A‖op and, in particular, ‖eA‖op ≤ e‖A‖op.

2. If t ∈ [0, 1] then ‖et(A+B) − etA‖op ≤ ‖B‖op · et‖A‖op
(
e(‖A+B‖op−‖A‖op)t−1
‖A+B‖op−‖A‖op

)
and, in

particular, ‖e(A+B) − eA‖op ≤ ‖B‖op · e‖A‖op
(
e‖A+B‖op−‖A‖op−1
‖A+B‖op−‖A‖op

)
.
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3. ‖eA − eB‖op ≤
(
e‖A‖op−e‖B‖op
‖A‖op−‖B‖op

)
‖A−B‖op ≤ ‖A−B‖op · emax {‖A‖op, ‖B‖op}

Proof.

1. Let x0 ∈ Rn be non-zero and Z : R→ R be defined by

Z(t) = ‖etAx0‖2.

Observe that by Cauchy-Schwarz as well as the definition of the operator norm we have

Z ′(t) = 2
(
etAx0

)
·
(
AetAx0

)
≤ 2‖etAx0‖‖A

(
etAx0

)
‖ ≤ 2‖A‖op‖etAx0‖2 = 2‖A‖opZ(t)

for t ∈ R. Hence, (
e−2t‖A‖opZ(t)

)′ ≤ 0

for t ∈ R. Thus, w(t) = e−2t‖A‖opZ(t) is non-increasing and hence w(t) ≤ w(0) for t ≥ 0.
This shows that for t ≥ 0 we have

e−2t‖A‖op‖etAx0‖2 ≤ ‖x0‖2

and hence
‖etAx0‖ ≤ ‖x0‖et‖A‖op .

From this we conclude that
‖etAx0‖
‖x0‖

≤ et‖A‖op

for all t ≥ 0. Since x0 was arbitrary we obtain

‖etA‖op ≤ et‖A‖op

for t ≥ 0. Choosing t = 1 gives the second part of the statement.

2. Let x0 ∈ Rn be non-zero and define Z(t) = ‖
(
et(A+B) − etA

)
x0‖2 for t ∈ R. Observe that

by Cauchy-Schwarz and the definition of the operator norm we have, for t ∈ (0, 1)

Z ′(t) = 2
[(
et(A+B) − etA

)
x0

]
·
[
(A + B)et(A+B)x0 −AetAx0

]
= 2
[(
et(A+B) − etA

)
x0

]
·
[
A
(
et(A+B) − etA

)
x0

]
+ 2
[(
et(A+B) − etA

)
x0

]
·
[
Bet(A+B)x0

]
≤ 2‖A‖op‖

(
et(A+B) − etA

)
x0

)
‖2 + 2‖

(
et(A+B) − etA

)
x0‖‖Bet(A+B)x0‖

= 2‖A‖opZ(t) + 2
√
Z(t)‖Bet(A+B)x0‖.

We can rewrite this as, assuming for now, to be removed later, that Z(t) 6= 0 for t ∈ (0, 1),

2
(√

Z(t)
)′

=
Z ′(t)√
Z(t)

≤ 2‖A‖op

√
Z(t) + 2‖Bet(A+B)x0‖

and so we get (√
Z(t)

)′ ≤ ‖A‖op

√
Z(t) + ‖Bet(A+B)x0‖

By 1 we can further estimate the last inequality as, for t ≥ 0,

|A‖op

√
Z(t) + ‖B‖op‖et(A+B)x0‖

≤‖A‖op

√
Z(t) + ‖B‖op‖et(A+B)‖op‖x0‖

≤‖A‖op

√
Z(t) + ‖B‖ope

t‖A+B‖op‖x0‖.
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Altogether we conclude that(√
Z(t)

)′ ≤ ‖A‖op

√
Z(t) + ‖B‖ope

t‖A+B‖op‖x0‖

for for t ∈ (0, 1). By applying Grönwall’s inequality we conclude that, for t ∈ [0, 1],

√
Z(t) ≤

√
Z(0)et‖A‖op + ‖x0‖‖B‖ope

t‖A‖op
∫ t

0

e−s‖A‖opes‖A+B‖opds.

Note that Z(0) = ‖e0n×n − e0n×n‖2 = ‖0‖2 = 0. Thus, the inequality reduces to

√
Z(t) ≤ ‖x0‖‖B‖ope

t‖A‖op
∫ t

0

es(‖A+B‖op−‖A‖op)ds

= ‖x0‖‖B‖ope
t‖A‖op

(
et(‖A+B‖op−‖A‖op) − 1

‖A + B‖op − ‖A‖op

)
.

We deduce that, for t ∈ [0, 1],

‖
(
et(A+B) − etA

)
x0‖ ≤ ‖x0‖‖B‖ope

t‖A‖op
(
et(‖A+B‖op−‖A‖op) − 1

‖A + B‖op − ‖A‖op

)
Dividing by ‖x0‖ and noticing that x0 was an arbitrary non-zero vector gives

‖et(A+B) − etA‖op ≤ ‖B‖op · et‖A‖op
(
et(‖A+B‖op−‖A‖op) − 1

‖A + B‖op − ‖A‖op

)
.

for t ∈ [0, 1]. Taking t = 1 gives the second part of the statement. Notice that the above
was only derived for assuming Z(t) 6= 0 for t ∈ (0, 1). If this is not the case we consider
W (t) = Z(t) + ε. Then W ′(t) = Z ′(t) and W (t) > 0 for t ∈ (0, 1). Thus, the previous
analysis applied to W gives

W ′(t) ≤ 2‖A‖op

√
Z(t) + 2‖B‖op‖x0‖ope

t‖A+B‖op
√
Z(t)

≤ 2‖A‖op[
√
Z(t) + ε] + 2‖B‖op‖x0‖ope

t‖A+B‖op
√

[Z(t) + ε]

= 2‖A‖opW (t) + 2‖B‖op‖x0‖ope
t‖A+B‖op

√
W (t)

and hence (√
W (t)

)′ ≤ ‖A‖√W (t) + ‖B‖ope
t‖A+B‖op‖x0‖.

Applying Grönwall’s ineqality we get

√
Z(t) + ε =

√
W (t) ≤ √εet‖A‖op + ‖x0‖‖B‖ope

t‖A‖op
∫ t

0

e−s‖A‖opes‖A+B‖opds.

Letting ε > 0 tend to 0 we get the same inequality as before. Thus, we can repeat the
same analysis to get the desired conclusion.

3. Notice that A and B were arbitrary in 2 and so we placing A + B with X and A with Y
the inequality becomes, for t = 1,

‖eX − eY‖op ≤ ‖X−Y‖op · e‖Y‖op
(
e‖X‖op−‖Y‖op − 1

‖X‖op − ‖Y‖op

)
= ‖X−Y‖op

(
e‖X‖op − e‖Y‖op
‖X‖op − ‖Y‖op

)
which demonstrates one of the desired inequalities. Notice that since A and B can vary
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over all matrices and

(
X

Y

)
=


1 1

1 0


(
A

B

)

meaning that the linear map transforming A and B to X and Y is invertible then X and
Y vary over all matrices. Now, consider the function g : R → R defined by g(s) = es.
Observe that for any s, t ∈ R we have, for some r ∈ (0, 1),

g(t)− g(s) = g′((1− r)s+ rt)(t− s)
so

et − es
t− s = e(1−r)s+rt ≤ emax s,t

where I have used that the exponential is an increasing function. From this we conclude
that

‖eX − eY‖op ≤ ‖X−Y‖op

(
e‖X‖op − e‖Y‖op
‖X‖op − ‖Y‖op

)
≤ emax{‖X‖op,‖Y‖op}‖X−Y‖op

which proves the desired inequality.

It is worth remarking that the inequalities shown in 3 are in fact sharp in the sense
that there is no constant 0 < c < 1 such that either

‖eX − eY‖op ≤ c‖X−Y‖op

(
e‖X‖op − e‖Y‖op
‖X‖op − ‖Y‖op

)
or

‖eX − eY‖op ≤ cemax{‖X‖op,‖Y‖op}‖X−Y‖op

or

‖X−Y‖op

(
e‖X‖op − e‖Y‖op
‖X‖op − ‖Y‖op

)
≤ cemax{‖X‖op,‖Y‖op}‖X−Y‖op

can hold. To see this, consider the sequence Xm = mIn and Ym = (m− 1
m

)In. Then ‖Xm‖op = m,
‖Ym‖op = m− 1

m
, eXm = emIn, and eYm = em−

1
m In. Thus, ‖eXm − eYm‖op = em(1− e− 1

m )

and ‖Xm −Ym‖op = 1
m
. From this we conclude that

‖eXm − eYm‖op ≈
1

m
em

and

‖Xm −Ym‖op

(
e‖Xm‖op − e‖Ym‖op

‖Xm‖op − ‖Ym‖op

)
≈ 1

m
em

and
emax{‖Xm‖op,‖Ym‖op}‖Xm −Ym‖op ≈

1

m
em.

In fact, if we set A = aIm and B = bIm, for a > b > 0, then we obtain ‖A‖op = a, ‖B‖op = b,
‖A−B‖op = a− b, and ‖eA − eB‖op = ea − eb. Hence,

‖eA − eB‖op = ea − eb
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e‖A‖op − e‖B‖op
‖A‖op − ‖B‖op

)
‖A−B‖op =

(ea − eb
a− b

)
(a− b) = ea − eb.

Thus, we actually have that strict equality is attained in the first inequality. Now we demonstrate
a similar result for the Frobenius norm. The proof is fairly similar to the operator norm case so
we will proceed quickly.

Proposition 8.2.3. Let A,B ∈Mn×n(R). Then we have:

1. ‖etA‖F ≤ et‖A‖F for t ≥ 0 and, in particular, for t = 1, ‖eA‖F ≤ e‖A‖F.

2. ‖eA − eB‖F ≤ ‖A−B‖F
(
e‖A‖F−e‖B‖F
‖A‖F−‖B‖F

)
≤ emax{‖A‖F,‖B‖F}‖A−B‖F.

3. ‖A‖op ≤ ‖A‖F .

Proof. 1. Observe that if X(t) = tr((etA)T etA) defined on R we have, by Cauchy-Schwarz,

X ′(t) = 2tr((etA)TAetA) = 2tr((etA)T etAA)

≤ 2‖(etA)T etA‖F‖A‖F =≤ 2‖etA‖2
F‖A‖F.

Hence, by Grönwall’s inequality we have, for t ≥ 0,

X(t) ≤ X(0)e2t‖A‖F = e2t‖A‖F

and hence
‖etA‖F ≤ et‖A‖F

for t ≥ 0, as we wanted.

2. Define, similar to the previous proof, X : [0, 1] → R by X(t) = ‖etA − etB‖2
F and

differentiate for t ∈ (0, 1) to get

X ′(t) = 2
〈
etA − etB,AetA −BetB

〉
F

= 2
〈
etA − etB,A(etA − etB)

〉
F + 2

〈
etA − etB, (A−B)etB

〉
F

≤ 2‖etA − etB‖F · ‖A(etA − etB)‖F + 2‖etA − etB‖F‖(A−B)etB‖F
≤ 2‖A‖FX(t) + 2

√
X(t)‖A−B‖et‖B‖F .

If X(t) 6= 0 for all t ∈ (0, 1), and maneuvering as in the proof of 2 if this is not the case,
we obtain (√

X(t)
)′ ≤ 2‖A‖F

√
X(t) + ‖A−B‖Fet‖B‖F

which gives, by Grönwall’s inequality and noting that X(0) = 0,

‖etA − etB‖F =
√
X(t) ≤ ‖A−B‖F

et‖B‖F − et‖A‖F
‖B‖F − ‖A‖F

.

3. Note that for each non-zero x0 ∈ Rn we have

‖Ax0‖2 = (Ax0)T (Ax0) = xT0 ATAx0 = tr(xT0 ATAx0) = tr(x0x
T
0 ATA)

≤
√

tr(x0xT0 x0xT0 )‖ATA‖F ≤ ‖x0‖
√

tr(x0xT0 )‖A‖2
F

= ‖x0‖
√

tr(xT0 x0)‖A‖2
F = ‖x0‖2‖A‖2

F.
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We conclude that for all non-zero x0 that

‖Ax0‖
‖x0‖

≤ ‖A‖F

and so
‖A‖op ≤ ‖A‖F.

8.2.3 Liouville’s Formula*

Proposition 8.2.4. Suppose A : R→Mn×n(R) is a matrix-valued function. Then

d

dt
(det(A(t))) =

n∑
i=1

det(Ai(t))

where

Ai(t) =



A1,1(t) A1,2(t) · · · A1,n(t)

A2,1(t) A2,2(t) · · · A2,n(t)

...
... . . . ...

A′i,1(t) A′i,2(t) · · · A′i,n(t)

...
... . . . ...

An,1(t) An,2(t) · · · An,n(t)


for i = 1, . . . , n.

Proof. We proceed by induction. For n = 1, since A(t) will be a 1× 1 matrix then det(A(t)) =
A1,1(t) and so

d

dt
(det(A(t))) = A′1,1(t) =

1∑
i=1

det(Ai(t))

where the last equality follows from the fact that there is only one row to take the derivative of
and

det(A1(t)) = det(A′1,1(t)) = A′1,1(t).

Now we presume this formula holds for n− 1, n ≥ 2 and we show it holds for n. Observe that

det(A(t)) =
n∑
i=1

(−1)1+iA1,i(t) det(Ã1,i(t))

where Ã1,i(t) denotes the matrix, of size (n− 1)× (n− 1) obtained from A(t) which has row 1
and column i removed. Differentiating and using the induction hypothesis we obtain

d

dt
(det(A(t))) =

n∑
i=1

(−1)1+iA′1,i(t) det( ˜A1,i(t)) +
n∑
i=1

(−1)1+iA1,i(t)
d

dt
(det(Ã1,i(t)))
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=
n∑
i=1

(−1)1+iA′1,i(t) det( ˜A1,i(t)) +
n∑
i=1

(−1)1+iA1,i(t)
n−1∑
j=1

det(Ã
j

1,i(t))

= det(A1(t)) +
n∑
i=1

(−1)1+iA1,i(t)
n−1∑
j=1

det(Ã
j

1,i(t))

= det(A1(t)) +
n−1∑
j=1

n∑
i=1

(−1)1+iA1,i(t) det(Ã
j

1,i(t))

= det(A1(t)) +
n−1∑
j=1

det(Aj+1(t))

= det(A1(t)) +
n∑
j=2

det(Aj(t))

=
n∑
j=1

det(Aj(t))

Proposition 8.2.5. Let X(t) denote the matrix of fundamental solutions to the problem

x′(t) = Ax(t)

where x(t) is an n-vector. Then

det(X(t)) = det(X(0))et·tr(A).

As a consequence we have
det(etA) = et·tr(A).

Proof. We first notice that by proposition 2.2 we have

d

dt
(X(t)) =

n∑
i=1

det(Xi(t)).

Observe that

Xi(t) =



X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...

X ′i,1(t) X ′i,2(t) · · · X ′i,n(t)

...
... . . . ...

Xn,1(t) Xn,2(t) · · · Xn,n(t)
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=



X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...∑n

j=1Ai,jXj,1(t)
∑n

j=1Ai,jXj,2(t) · · · ∑n
j=1 Ai,jXj,n(t)

...
... . . . ...

Xn,1(t) Xn,2(t) · · · Xn,n(t)


.

Recall that subtracting multiples of one row from another does not change the value of the
determinant. So subtracting Ai,1 times row 1 of X(t) from row i and then subtracting A2,i times
row 2 of X(t) from row i and so on does not change the value of the determinant but leads us to

det(Xi(t)) = det



X1,1(t) X1,2(t) · · · X1,n(t)

...
... . . . ...

Ai,iXi,1(t) Ai,iXi,2(t) · · · Ai,iXi,n(t)

...
... . . . ...

Xn,1(t) Xn,2(t) · · · Xn,n(t)


= Ai,i det(X(t)).

The above conclusions are true for each i = 1, . . . , n. We conclude that

d

dt
(det(X(t))) =

n∑
i=1

Ai,i det(X(t)) = tr(A) det(X(t)).

We conclude that
det(X(t)) = Cet·tr(A).

Evaluating at t = 0 gives
C = det(X(0)).

To obtain the second identity notice that the first identity can be written as

det(X(t)(X(0))−1) = et·tr(A)

and notice that X(t)(X(0))−1 solves

X′(t) = AX(t), X(0) = In.

8.2.4 Remarks

The construction of the matrix exponential given in section 8.2 is not the standard development.
Generally, one defines this matrix through the use of infinite series of matrices. It is then a
theorem that the matrix exponential solves the matrix ODE X′ = AX with X(0) = In. The
construction given in section 8.2 is probably not new though the authors of these notes have no
citations for this technique. It is, perhaps, worth noting that many of the standard identities
involving the exponential matrix can be obtained from 8.2.1 and 8.2.3 by simply setting t = 1.
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