
1 Hamiltonian systems and Modeling of Mechanical sys-
tems

This project is taken from [NSS14, chapter 5, D Project]. The problems in this project explore the
Hamiltonian formulation of the laws of motion of a system and its phase plane implications. This
formulation replaces Newton’s second law F = ma = my” and is based on three mathematical
manipulations:

• It is presumed that the force F (t, y, y′) depends only on y and F (y) = −dV (y)
dy

, where V(y)
is called the potential.

• The velocity variable y’ is replaced throughout by the momentum y′ = p/m.

• The Hamiltonian of a system (conservative or not) is defined as

H(y, p) :=
p2

2m
+ V (y),

i.e. the sum of the kinetic and potential energy.

With these in mind we express the equation my′′ = F (y) = −dV (y)
dy

as the following
system called Hamilton’s equations :

dy

dt
=

dH

dp
=

p

m

dp

dt
= −dH

dy
= −dV (y)

dy
.

These equations imply by chain rule that

d

dt
H(y, p) =

dH

dy

dy

dt
+

dH

dp

dp

dt
=

dH

dy

dH

dp
− dH

dp

dH

dy
= 0.

Therefore, the Hamiltonian remains constant along solution curves γ(t) = (y(t), p(t)) of the
above system. This is the equivalent formulation of the conservation of energy when the forces
are conservative (i.e. do not change in time such as gravity).
Hamilton’s formulation for mechanical systems and the conservation of energy principle imply
that the phase plane trajectories of conservative systems lie on the curves where the Hamiltonian
H1y, p2 is constant, and plotting these curves may be considerably easier than solving for the
trajectories directly (which, in turn, is easier than solving the original system!).
A general system

dy

dt
= f(y, p),

dp

dt
= g(y, p)

has a Hamiltonian function H if
∂f

∂y
= −∂g

∂p
.

Because then if we define H by

∂H

∂p
= f(y, p),

∂H

∂y
= −g(y, p)
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then we have conservation of energy:

dH(y, p)

dt
= Hy

dy

dt
+Hp

dp

dt
= −g(y, p)f(y, p) + g(y, p)f(y, p) = 0.

2 Project "Hamiltonian systems and Modeling of Mechan-
ical systems" Problems

1. (30 points) For the mass–spring oscillator the spring force is given by F (y) = −k · y(where
k is the spring constant).

(a) (5 points) For a general Hamiltonian system

dy

dt
= f(y, p),

dp

dt
= g(y, p)

compute its linearization and plug in the Hamiltonian equations to conclude that a
Hamiltonian system cannot have spiral sinks or sources critical point\-s.

(b) (5 points) Show that the above system with spring force F (y) = −k ·y is Hamiltonian
and then find the Hamiltonian and express Hamilton’s equations.

(c) (10 points)As done for autonomous systems, take the ratio of the equations and show
that the phase plane trajectories H(y, p) = constant for this system are the ellipses
given by p2/2m+ ky2/2 = constant.

(d) (10 points)Bonus: Plot the direction field and some of the ODE solutions using an
ODE solver.

(e) (10 points) Linearize the system on the critical point\-s and deduce the stability
behaviour. Does that agree with part 1? Does it agree with the direction field (if
you did the matlab part)?

2. (70 points) Stability and damping.
The damping force -by’ considered is not conservative, of course. Physically speaking,
we know that damping drains the energy from a system until it grinds to a halt at an
equilibrium point. In the phase plane, we can qualitatively describe the trajectory as
continuously migrating to successively lower constant-energy orbits; stable centers become
asymptotically stable spiral points when damping is taken into consideration. The second
Hamiltonian equation, which effectively states p′ = my′′ = F , has to be changed to

p′ = −dH

dy
− by′ = −dH

dy
− b

p

m
,

when damping is present.
Periodic force: For a pendulum system with a periodic force given by

F = −l ·m · g · sin(θ) = − ∂

∂θ
(−l ·m · g · cos(θ)) = − ∂

∂θ
V (θ),

where l is the length of the pendulum. With damping present and using that the angular
momentum is p = ml2θ′, the Hamiltonian equations are:

dθ

dt
=

dH

dp
=

p

ml2

dp

dt
= −dH

dθ
− bθ′ = −dV (θ)

dθ
− b

p

ml2
.
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(a) (5 points) Derive the Hamiltonian for the undamped system (b=0) and sketch the
phase trajectories.

(b) (5 points) Bonus: Plot the Hamiltonian trajectories using software.
(c) (10 points) Obtain the linearization for the undamped system and the damped system

around arbitrary point.
(d) (30 points) Linearize the undamped system around each of the critical point\-s and

based on the eigenvalues identify the qualitative behaviour (saddle-unstable, unstable
or stable node).

(e) (5 points) Bonus: Plot the direction field and the ODE solutions using an ODE
solver. Compare them to those of the Hamiltonian.

(f) (30 points) Linearize the damped system around each of the critical point\-s and
based on the eigenvalues identify the qualitative behaviour (saddle-unstable, unstable
or stable node). What happens to the stability behaviour as the damping b gets
smaller?

(g) (5 points) Bonus: Plot the direction field and the ODE solutions using an ODE
solver. Compare them to those of the Hamiltonian as the damping b gets smaller.
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