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1 Autonomous systems

As in the 1D case we will study the following system:

dx

dt
= F (x, y),

dy

dt
= G(x, y),

where F,G are continuously differentiable functions. Here again we might not be able to obtain
explicit solutions, but we can provide a qualitative analysis.

Method formal steps

1. First, we find the critical points by setting

F (x, y) = 0 and G(x, y) = 0.

2. For each critical point we carve out the regions of the phase portrait that converge to it,
called basin regions of attraction. For example, as we will explain later in the competing
species section, we obtain phase portraits of the form:

Figure 1.1: The critical points (14,0) and (0,14) have their own basin regions of attraction

Here the points (14,0) and (0,14) have their own basin regions of attraction (arrows
pointing towards them) that are separated by curves called the separatrix.

3. Sometimes we can even solve such systems by taking their ratio and obtain a parametric
solution:

dy

dx
=

dy
dt
dx
dt

=
G(x, y)

F (x, y)
.
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This ratio depends only on x and y (and not t), so methods from the first order section
could be used.

4. Next we sketch the direction field by doing a nullcline analysis around the critical points.
That is we study the signs of the pair (dx

dt
, dy
dt
).

5. Finally, we plot the parametric solution and check whether it agrees with the direction
field from the above step.

Example-presenting the method

Consider the following oscillating pendulum: a mass m is attached to one end of a rigid, but
weightless, rod of length L which hangs from the pivot point.

θ

L sin θ

mg
θ

m

L

Figure 1.2: oscillating pendulum

The gravitational force mg acts downward and the damping force c|dθ
dt
| is always

opposite to the direction of motion. A rotational analog of Newton’s second law of motion might
be written in terms of torques:

mg · Lsin(θ) + dθ

dt
· L+m

d2θ

d2t
L2 = 0⇒ d2θ

d2t
+ γ

dθ

dt
+ ω2sin(θ) = 0.

This is a nonhomogeneous second order equation, but we can also view it as a system of equations
by letting x := θ and y := dθ

dt
:

dx

dt
= y,

dy

dt
= −γy − ω2sin(x),

where γ is called the damping constant and as in the spring problem it is responsible for removing
energy. This is an autonomous system.

1. First we find the critical points:

dx

dt
= 0,

dy

dt
= 0⇒ y = 0, sin(x) = 0⇒ (kπ, 0) for k ∈ Z.

2. Then we numerically draw the solutions
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Figure 1.3: Phase portrait and solutions for oscillating pendulum.

We see that the basins of attractions for each critical point are regions separated by the
black spiral curves.

3. The ratio is
dy

dx
=

dy
dt
dx
dt

=
−γy − ω2sin(x)

y
,

which is not amenable to known methods (eg. see Chini’s equation).

4. However, if we set γ = 0 (undamped pendulum), we get a separable equation and in turn
the implicit solution:

y2 = 2(ω2cos(x) + c)⇒ y2

2
− ω2cos(x) = constant.

5. Next we do a nullcline analysis around the origin.

• We have dx
dt
> 0, dy

dt
> 0 iff

y > 0,−ω2sin(x) > 0⇔ y > 0,
−π
2

< x < 0.

• We have dx
dt
> 0, dy

dt
< 0 iff

y > 0,−ω2sin(x) < 0⇔ y > 0, 0 < x <
π

2
.
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• We have dx
dt
< 0, dy

dt
> 0 iff

y < 0,−ω2sin(x) > 0⇔ y < 0,
−π
2

< x < 0.

• We have dx
dt
< 0, dy

dt
< 0 iff

y < 0,−ω2sin(x) < 0⇔ y < 0, 0 < x <
π

2
.

6. Therefore, in summary around the origin we have the sketch:

x

y

Figure 1.4: Phase portrait sketch for for undamped oscillating pendulum.

Indeed the parametric solution follows the circular behaviour of the above direction field.

7. The above sketch agrees with the numerically generated phase portrait:

Figure 1.5: Phase portrait and solutions for undamped oscillating pendulum.
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We see that the basins of attractions are separated by ellipses along the horizontal and
they are separated from periodic behaviour along the vertical. Physically a closed curve
around critical point represents the pendulum oscillating periodically since the velocity
y = θ̇ oscillates periodically around that critical point. The wavy lines represent the
pendulum spinning around the pivot point.

Examples

• Consider the system

dx

dt
= 2y,

dy

dt
= −8x.

1. The critical point is just (0,0).
2. To determine the solutions we solve:

dy

dx
=
−8x
2y

.

This equation is separable and so we easily obtain:

y2 = −4x2 + c.

3. Therefore, the solutions are ellipses y2 + 4x2 = c centered at zero.
4.
5. Next we do a nullcline analysis around the origin.

– We have dx
dt
> 0, dy

dt
> 0 iff 2y > 0,−8x > 0⇔ y > 0, x < 0.

– We have dx
dt
> 0, dy

dt
< 0 iff y > 0, x > 0.

– We have dx
dt
< 0, dy

dt
> 0 iff y < 0, x < 0.

– We have dx
dt
< 0, dy

dt
< 0 iff y < 0, x > 0.

6. Therefore, in summary around the origin we have the sketch:

x

y

Figure 1.6: Phase portrait sketch.

Indeed the parametric solution follows the circular behaviour of the above direction
field.
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7. The above sketch agrees with the numerically generated phase portrait:

Figure 1.7: Phase portrait and solutions

• Consider the system

dx

dt
= −x+ y,

dy

dt
= −x− y.

1. First we find the critical point/s:

−x+ y = 0 and − x− y = 0⇒ (x, y) = (0, 0).

2. Next we find the parametric solution:

dy

dx
=
−x− y
−x+ y

=
−1− y/x
−1 + y/x

=
1 + y/x

1− y/x.

We use the subtistution v = y/x to obtain by chain rule

v′ =
y′

x
+

y

−x2 ⇒ y′ = xv′ + v.

Therefore,

xv′ + v =
1 + y/x

1− y/x =
1 + v

1− v ⇒

xv′ =
1 + v2

1− v ⇒
this equation is separable and so we have:

1− v
1 + v2

dv =
1

x
dx⇒

arctan(v)− 1

2
log(1 + v2) = log(x) + c.

Undoing the change of variables we obtain the implicit solution:

arctan(
y

x
)− 1

2
log(1 + (

y

x
)2) = log(x) + c.

3. Next we do a nullcline analysis.
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– We have dx
dt
> 0, dy

dt
> 0 iff −x+ y > 0,−x− y > 0⇔ y > x, y < −x.

– We have dx
dt
> 0, dy

dt
< 0 iff y > x, y > −x.

– We have dx
dt
< 0, dy

dt
> 0 iff y < x, y < −x.

– We have dx
dt
< 0, dy

dt
< 0 iff y < x, y > −x.

4. Therefore, we have the following sketch:

x

y

y = −x

y = x

Figure 1.8: Phase portrait sketch.

5. The linearization around the origin is:

x′ =
[−1 1
−1 −1

]
x.

(a) The eigenpairs are (−1 + i,
(
i
−1

)
), (−1 + i,

(−i
−1

)
). Therefore, the general solution

is:
x(t) = c1e

(−1+i)t
(
i

−1

)
+ c2e

(−1−i)t
(
i

1

)
(b)

6. The numerically generated phase portrait is:
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Figure 1.9: phase portrait

• Consider the system (Duffing’s equation)

dx

dt
= y,

dy

dt
= −x+ x3

6
.

It describes the motion of a damped oscillator with a more complex potential than in
simple harmonic motion; in physical terms, it models, for example, a spring pendulum
whose spring’s stiffness does not exactly obey Hooke’s law. The Duffing equation is an
example of a dynamical system that exhibits chaotic behavior.

1. The critical points are (0, 0), (±
√
6, 0).

2. To determine the solutions we solve:

dy

dx
=
−x+ x3

6

y
.

This equation is separable and so we easily obtain:

1

2
y2 = −1

2
x2 +

x4

24
+ c.

3. Therefore, the solutions are the pairs of parabolas and ellipses y2 + 1
2
x2 − x4

12
= c

symmetric wrt to the x-axis.
4. Next we do a nullcline analysis around the origin.

– We have dx
dt
> 0, dy

dt
> 0 iff

y > 0,−x+ x3

6
> 0⇔ y > 0, x ∈ [−

√
6, 0] ∪ [

√
6,∞).

– We have dx
dt
> 0, dy

dt
< 0 iff

y > 0,−x+ x3

6
< 0⇔ y > 0, x ∈ (−∞,−

√
6] ∪ [0,

√
6].
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– We have dx
dt
< 0, dy

dt
> 0 iff

y < 0,−x+ x3

6
> 0⇔ y > 0, x ∈ [−

√
6, 0] ∪ [

√
6,∞).

– We have dx
dt
< 0, dy

dt
< 0 iff

y < 0,−x+ x3

6
< 0⇔ y > 0, x ∈ (−∞,−

√
6] ∪ [0,

√
6].

5. Therefore, in summary around the origin we have the sketch:

x

y
x = −

√
6 x =

√
6

Figure 1.10: Phase portrait sketch.

Indeed the parametric solution follows the circular behaviour of the above direction
field.

6. The above sketch agrees with the numerically generated phase portrait:

Figure 1.11: Phase portrait and solutions of duffing’s system
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2 Locally linear systems

We will study systems
x = f(x),

where the components of f are C1 functions so that we are able to Taylor expand them. The
following system

x = Ax+ g(x)

is called locally linear around a critical point x0 if

‖g(x)‖
‖x‖ → 0 and asx→ x0.

Example-presenting the method

We continue our study with the damped oscillating pendulum system:

dx

dt
= y,

dy

dt
= −γy − ω2sin(x),

where γ is called the damping constant and as in the spring problem it is responsible for removing
energy.

1. First we find the critical points. From the previous section we have:

(n · π, 0) for any integer n.

2. Second we Taylor expand the RHS of the system F (x, y) :=
(

y
−γy−ω2sin(x)

)
around arbitrary

critical point (x0, y0):

F (x, y) = F (x0, y0) + JF (x0, y0) +

(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2)

=
(

0 1
−ω2cos(x0) −γ

)(x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2).

Here JF (x0, y0) is the Jacobian matrix for function F (x, y) =
(
F1(x,y)
F2(x,y)

)
:

JF (x0, y0) :=

( d
dx
F1(x0, y0)

d
dy
F1(x0, y0)

d
dx
F2(x0, y0)

d
dy
F2(x0, y0)

)

3. The linearization around (x0, y0) = (n · π, 0) for even integer n is:

d

dt

(
x

y

)
=
(

0 1
−ω2 −γ

)(x− n · π
y

)
+O(‖(x− n · π, y)‖2).

The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 − 4ω2

2
.

(a) If γ2 − 4ω2 > 0, then the eigenvalues are real,distinct and negative. Therefore, the
critical points will be stable nodes.
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Figure 2.1: Stable nodes at even integer n critical points (nπ, 0) for n=0,2,-2.

We observe that the basins of attractions for each even-integer critical point are
well-separated.

(b) If γ2 − 4ω2 = 0, then the eigenvalues are repeated, real and negative. Therefore, the
critical points will be stable nodes.
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Figure 2.2: Stable nodes at even integer n critical points (nπ, 0).

(c) If γ2 − 4ω2 < 0, then the eigenvalues are complex with negative real part. Therefore,
the critical points will be stable spiral sinks.

Figure 2.3: Stable spiral sinks at even integer n critical points (nπ, 0).
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4. The linearization around (x0, y0) = (n · π, 0) for odd integer n is:

d

dt

(
x

y

)
=
(
0 1
ω2 −γ

)(x− n · π
y

)
+O(‖(x− n · π, y)‖2).

The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 + 4ω2

2
.

Therefore, it has one negative eigenvalue λ1 < 0 and one positive eigenvalue λ2 > 0, and
so the critical points will be unstable saddle points.

Method formal steps

1. First we obtain the critical points for the system

d

dt
x = F(x)

i.e. points (x0, y0) where F(x0, y0) = 0.

2. We Taylor expand F in higher dimensions around an arbitrary critical point:

F (x, y) = F (x0, y0) + JF (x0, y0) +

(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2)

= JF (x0, y0) +

(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2).

Here JF (x0, y0) is the Jacobian matrix for function F (x, y) =
(
F1(x,y)
F2(x,y)

)
:

JF (x0, y0) :=

( d
dx
F1(x0, y0)

d
dy
F1(x0, y0)

d
dx
F2(x0, y0)

d
dy
F2(x0, y0)

)

3. Around each critical point we determine the eigenvalues and identify the type of qualitative
behaviour.

General result:

The system
x′ = F (x, y), y′ = G(x, y)

is locally linear around a critical point (x0, y0) if F,G ∈ C2 around it.

Proof. First we Taylor expand them

F (x, y) = F (x0, y0) + Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) +RF (x, y),

G(x, y) = G(x0, y0) +Gx(x0, y0)(x− x0) +Gy(x0, y0)(y − y0) +RG(x, y),
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where by Taylor’s thm the residues satisfy

lim
(x,y)→(x0,y0)

RF (x, y)

|(x0, y0)|
= 0 = lim

(x,y)→(x0,y0)

RG(x, y)

|(x0, y0)|
.

Because (x0, y0) is a critical point we have F (x0, y0) = G(x0, y0) = 0. Therefore, we
can rewrite the system as:

d

dt

(
x− x0
y − y0

)
=

d

dt

(
x

y

)
=

(
Fx(x0, y0) Fy(x0, y0)
Gx(x0, y0) Gy(x0, y0)

)(
x− x0
y − y0

)
+

(
RF (x, y)

RG(x, y)

)
.

However,

Examples

• We return to Duffing’s equation from the previous section

dx

dt
= y,

dy

dt
= −x+ x3

6
.

1. We found that the critical points are (0, 0), (±6, 0).
2. We obtain the linearization of the RHS of the system F (x, y) :=

( y

−x+x3

6

)
around

arbitrary critical point (x0, y0):

d

dt

(
x

y

)
= F (x, y) = F (x0, y0) + JF (x0, y0) +

(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2)

=

(
0 1

−1 + x2

2
0

)(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2)

3. Next we study the stability behaviour around each of the critical points.
– At the origin we have

d

dt

(
x

y

)
=
(
0 1
−1 0

)(x
y

)
+O(‖(x, y)‖2)

and so the eigenvalues are λ = ±i. Therefore, the stability behaviour at the
origin will be concentric circles.

– At the (±6, 0) we have

d

dt

(
x

y

)
=
(
0 1
17 0

)(x± 6

y

)
+O(‖(x± 6, y)‖2)

and so the eigenvalues are λ = ±
√
17. Therefore, the stability behaviour at both

(6, 0), (−6, 0) will be unstable saddle nodes.

• Consider the system
dx

dt
= y + εsin(x),

dy

dt
= −x− εcos(y),

for small ε ∈ R. We will study the affect of the stability behaviour as ε→ 0.

14



1. First we find that the only critical point is the origin (0,0). We can deduce this by
drawing the two curves (x, εsin(x)), (εcos(y), y) and see that they intersect only at
the origin.

2. Next we linearize around the origin:

d

dt

(
x

y

)
=
(
ε 1
−1 ε

)(x
y

)
+O(‖(x, y)‖2).

Therefore, the eigenvalues are λ1 = ε+ i, λ1 = ε− i.
(a) If ε < 0, the origin becomes a sink spiral point.

Figure 2.4: For negative pertubation we get sink spiral.

(b) If ε > 0, the origin becomes a source spiral point.
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Figure 2.5: For positive pertubation we get source spiral.

(c) If ε = 0, the origin is a center of concentric circles.

Figure 2.6: For zero pertubation we get circular behaviour.
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If ε = −0.1 we get an almost circular picture:

Figure 2.7: For small pertubation we get almost circular behaviour.

2.1 Applied Examples

2.1.1 Competing species

Suppose that in some closed environment there are two similar species competing for a limited
food supply—for example, two species of fish in a pond that do not prey on each other but do
compete for the available food. Let x and y be the populations of the two species at time t.

As discussed before, we assume that the population of each of the species, in the
absence of the other, is governed by a logistic equation

dx

dt
= x(ε1 − σ1x)

dy

dt
= y(ε2 − σ2y)

However, when both species are present, each will tend to diminish the available food
supply for the other. In effect, they reduce each other’s growth rates and saturation populations:

dx

dt
= x(ε1 − σ1x− α1y)

dy

dt
= y(ε2 − σ2y − α2x)
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The α1 is a measure of the degree to which species y interferes with species x and
similarly for α2. The values of the positive constants εi, σi, αi depend on the particular species
under consideration and, in general, must be determined from observations.

1. First we find the critical points

{
x(ε1 − σ1x− α1y) = 0
y(ε2 − σ2y − α2x) = 0 ⇒ (0, 0), (

ε1
σ1
, 0), (0,

ε2
σ2

), and (
ε1σ2 − ε2α1

σ1σ2 − α1α2

,
ε2σ1 − ε1α2

σ1σ2 − α1α2

).

For the last critical point to be a realistic steady state we require that both components
are positive:

Case I: Both ε1σ2 > ε2α1 and ε2σ1 > ε1α2

which also imply σ1σ2 > α1α2. This happens if ε1 = ε2 = 1, σ1 = σ2 = 2, α1 = α2 = 1.

Case II: Both ε1σ2 < ε2α1 and ε2σ1 < ε1α2

which also imply σ1σ2 < α1α2. This happens if ε1 = ε2 = 1, σ1 = σ2 = 1, α1 = α2 = 2.

The unrealistic cases are:

Case III: ε1σ2 > ε2α1 and ε2σ1 < ε1α2

which also imply σ1σ2 < α1α2.This happens if ε1 = ε2 = 1, α1 = σ1 = 1, σ2 = α2 = 2.

Case IV: ε1σ2 < ε2α1 and ε2σ1 > ε1α2

which also imply σ1σ2 < α1α2. This happens if ε1 = ε2 = 1, σ1 = α1 = 2, α2 = σ2 = 1.

2. We linearize the system by 2D-Taylor expanding

F (x, y) =

(
x(ε1 − σ1x− α1y)

y(ε2 − σ2y − α2x)

)
around critical point (x0, y0):

d

dt

(
x

y

)
= F (x, y) = JF (x0, y0) +

(
x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2)

=
(
ε1 − 2σ1x0 − α1y0 −α1x0−α2y0 ε2 − α2x0 − 2σ2y0

)(x− x0
y − y0

)
+O(‖(x− x0, y − y0)‖2).

3. We determine the stability behaviour around each of the critical points.

(a) At (x0, y0) = (0, 0) we have

d

dt

(
x

y

)
=
(
ε1 0
0 ε2

)(x
y

)
+O(‖(x, y)‖2).

Therefore, the eigenvalues are λ1 = ε1 > 0, λ2 = ε2 > 0 and so the origin (0,0) is an
unstable source node.
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Figure 2.8: The origin is an unstable source node

(b) At (x0, y0) = ( ε1
σ1
, 0) we have

d

dt

(
x

y

)
=

(
−ε1 −α1ε1

σ1
0 ε2 − α2ε1

σ1

)(
x− x0
y

)
+O(‖(x− x0, y)‖2).

Therefore, the eigenvalues are λ1 = −ε1 < 0, λ2 =
σ1ε2−α2ε1

σ1
and so

• in cases I,IV, the ( ε1
σ1
, 0) is an unstable saddle node.

(a) Case I (b) Case IV

• in cases II,III, the ( ε1
σ1
, 0) is an stable sink node.
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(a) Case II (b) Case III

(c) At (x0, y0) = (0, ε2
σ2
) we have

d

dt

(
x

y

)
=

(
ε1 − α1ε2

σ2
0

−α2ε2
σ2

−ε2

)(
x− x0
y

)
+O(‖(x, y − y0)‖2).

Therefore, the eigenvalues are λ1 = ε1σ2−α1ε2
σ2

, λ2 = −ε2 < 0 and so

• in cases I,III, the (0, ε2
σ2
) is an unstable saddle node.

(a) Case I (b) Case III

• in cases II,IV, the (0, ε2
σ2
) is an stable sink node.

20



(a) Case II (b) Case IV

(d) At (x0, y0) = ( ε1σ2−ε2α1

σ1σ2−α1α2
, ε2σ1−ε1α2

σ1σ2−α1α2
) we have

d

dt

(
x

y

)
=
(
σ1x0 −α1x0−α2y0 σ2y0

)(x− x0
y

)
+O(‖(x− x0, y − y0)‖2).

Therefore, the eigenvalues are

λ1 =
−(σ1x0 + σ2y0)−

√
(σ1x0 + σ2y0)2 − 4(σ1σ2 − α1α2)x0y0

2
by rearranging

=
−(σ1x0 + σ2y0)−

√
(σ1x0 − σ2y0)2 + 4α1α2x0y0

2

λ2 =
−(σ1x0 + σ2y0) +

√
(σ1x0 + σ2y0)2 − 4(σ1σ2 − α1α2)x0y0

2
by rearranging

=
−(σ1x0 + σ2y0) +

√
(σ1x0 − σ2y0)2 + 4α1α2x0y0

2
.

• In cases I,II we have σ1σ2 − α1α2 > 0. Thus, weobserve that the radicand is
positive and so the eigenvalues will always be real. Therefore, we get λ1 < 0 and
λ2 < 0 and in turn (x0, y0) is stable sink node.
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(a) Case I (b) Case II

• In cases III,IV the σ1σ2 − α1α2 < 0 and so λ1 < 0, λ2 > 0. Thus, (x0, y0) is an
unstable saddle node.

(a) Case III (b) Case IV

4. We also do a nullcline analysis to predict how solutions will behave based on their initial
data.
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Figure 2.15: Case I Figure 2.16: Case II

Figure 2.17: Case II Figure 2.18: Case IV

(a) For simplicity lets start from case III and IV where the lines are well separated. First
in case III we will show that all solutions tend to ( ε1

σ1
, 0)(i.e. second species dies out).

23



Figure 2.19: Case III

In the region where 0 > y′, 0 > x′ we will have the solutions flowing towards the left
(left pointing arrow) and downwards (down pointing arrow). We similarly obtain
the other arrows as shown in the figure. Therefore, solutions will escape the region
where y′ > 0, x′ > 0, then once in the region 0 > y′x′ > 0 they will move south and
rightwards till they hit the critical point ( ε1

σ1
, 0).

The case IV similarly gives that (0, ε2
σ2
) is the equilibrium point (i.e. first species dies

out).
(b) Next we study case I. We will show that all solutions tend to the equilibrium point

(both species coexist)

(x0, y0) = (
ε1σ2 − ε2α1

σ1σ2 − α1α2

,
ε2σ1 − ε1α2

σ1σ2 − α1α2

).

Figure 2.20: Case I

In the region where 0 > y′, 0 > x′ we will have the solutions flowing towards the left
(left pointing arrow) and downwards (down pointing arrow). Solutions will escape
the region where y′ > 0, x′ > 0, into either a) the region 0 > y′x′ > 0 in which
they will move south and rightwards till they hit the equilibrium point or into b)the
region y′ > 0, 0 > x′ in which they will move north and leftwards till they hit the
equilibrium point.
The case II similarly gives the same equilibrim point as the stable solution.

Price adjustment mechanism [SHS08, p. 6.8]

Consider the following system of differential equations:

p′ = H1(D1(p, q)− S1(p, q)), q
′ = H2(D2(p, q)− S22(p, q)).
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where p, q denote the prices of two different commodities with corresponding demand and supply
Di, Si for i = 1, 2 and Hi are functions of one variable. Assume that H1(0) = H2(0) = 0 and
that H ′1 > 0, H ′2 > 0.

Walras’s law and the ttonnement mechanism

Here, we consider the question of stability of a pure exchange, competitive equilibrium with an
adjustment mechanism known as t^atonnement and directly inspired by the work of LonWalras
(1874), one of the founding fathers of mathematical economics.
The basic idea behind the t^atonnement mechanism is the same assumed in the rudimentary
price adjustment mechanism models, namely that prices of commodities rise and fall in response
to discrepancies between demand and supply (the so-called ’law of demand and supply’).
In the present case, demand is determined by individual economic agents maximising a utility
function subject to a budget constraint, given a certain initial distribution of stocks of com-
modities. The model can be described schematically as follows.

dp

dt
= f(p) =

(
f1(p)

f2(p)

)
,

where f1, f2 : R2 → R are continuous functions with all their derivatives continuous as well.

1. A price point p0 is called an equilibrium if

fi(p0) ≤ 0, pi ≥ 0,and pj > 0for some j
or fi(p0) < 0,p0 = 0.

The first case makes economic sense (i.e. at least one price is nonzero) and so by equilibrium
point we will mean the first case.

2. (Hypothesis H)The hypothesis that agents maximise utility is that the functions fi(p) are
homogeneous of degree zero, namely fi(λp) = λ0fi(p) = fi(p) for any λ > 0.

3. (Walras’s law)Consider that the budget constraint for each individual k takes the form

2∑
i=1

pif
k
i (p) = p1f

k
1 (p) + p2f

k
2 (p) = 0,

where fki denotes the excess demand by the kth economic agent for the ith commodity,
i.e., the difference between the agent’s demand for, and the agent’s initial endowment of,
that commodity. In general for m commodities by summing over all N economic agents
we have:

N∑
k=1

m∑
i=1

pif
k
i (p) =

∑
i

pmi=1fi(p) = 0.

This law states that, in view of the budget constraints, for any set of semipositive prices p
(not necessarily equilibrium prices), the value of aggregate excess demand, evaluated at
those prices, must be zero.

4. The Jacobian matrix for f is

Df(p0) =

(
df1(p0)
dp1

df1(p0)
dp2

df2(p0)
dp1

df2(p0)
dp2

)
.

We will need this matrix to be Metzler:
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(a) Suppose that if the price of the ith commodity increases, while all the other prices
remain constant, the excess demand for the ith commodity decreases (and vice versa).
Suppose also that the effect of changes in the price of the ith commodity on its own
excess demand is stronger than the combined effect of changes in the other prices
(where the latter can be positive or negative). This can be formalised by assuming
that

aii :=
dfi(p0)

dpi

< 0

and the "strict diagonal dominance" (SDD) assumption that there exists a positive
vector d ∈ Rm (in our case m = 2) s.t.

|aii|di >
m∑
j=1
j 6=i

|aij|dj.

(b) Moreover, we have the "gross substitutability" (GS) assumption that if we start from
equilibrium and the price of a commodity increases (decreases) while the prices of
all other commodities remain constant, then the excess demand of all of the other
commodities increases (decreases):

aij :=
dfi(p0)

dpj

> 0, i 6= j.

5. The eigenvalues for this system are:

λ =
a11 + a22

2
± 1

2

√
(a11 + a22)2 − 4(a11a22 − a12a21)

=
−|a11 + a22|

2
± 1

2

√
|(a11 − a22)2 + 4a12a21|

3 Simulation code
Encoding the system If we start with the 2D system

dx

dt
= f1(x, y, t) and

dy

dt
= f2(x, y, t),

we first encode it as a function as follows:
1 f = @( t , y ) [ f_{1}(y (1 ) , y (2 ) , t ) ; f_{2}(y (1 ) , y (2 ) , t ) ] ; }

where y(1) = x and y(2) = y. For example, for

dx

dt
= x2 + y and

dy

dt
= sin(y)

we write
1 f = @( t , y ) [ y (1 )^2+y (2) ; s i n ( y (2 ) ) ] ; }

Direction field The following matlab-function will generate the direction field for the above
function f:

1 f unc t i on v e c t f i e l d ( func , y1val , y2val , t )
2 i f narg in==3
3 t =0;
4 end
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5 n1=length ( y1val ) ;
6 n2=length ( y2val ) ;
7 yp1=ze ro s (n2 , n1 ) ;
8 yp2=ze ro s (n2 , n1 ) ;
9 f o r i =1:n1

10 f o r j =1:n2
11 ypv = f e v a l ( func , t , [ y1val ( i ) ; y2val ( j ) ] ) ;
12 yp1 ( j , i ) = ypv (1 ) ;
13 yp2 ( j , i ) = ypv (2 ) ;
14 end
15 end
16 qu iver ( y1val , y2val , yp1 , yp2 , ’ r ’ , ’ Auto s ca l e f a c t o r ’ , 3)%’MaxHeadSize ’ ) ;
17 ax i s t i g h t ;

This is an example of calling it for the above example F = (x2 + y, sin(y)):
1 f = @( t , y ) [ y (1 )^2+y (2) ; y (2 ) ] ;
2 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
3

Figure 3.1: Direction field for system dx
dt

= x2 + y and dy
dt

= sin(y).

Solving the ode system Given function f and initial data x0, y0, the following ode solver
outputs a two dimensional solution run up to time T:

1 [ ts , ys ] = ode45 ( f , [ 0 ,T ] , [ x0 ; y0 ] ) ;

This is an example for the above function
1 x0 =0.5;
2 y0 =0.5;
3 T=4
4 f = @( t , y ) [ y (1 )^2+y (2) ; y (2 ) ] ;
5 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
6 hold on
7

8 p lo t ( x0 , y0 , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’ MarkerSize ’ ,20)
9

10 hold on ;
11 [ ts , ys ] = ode45 ( f , [ 0 ,T/ 1 0 ] , [ x0 ; y0 ] ) ;
12 p lo t ( ys ( : , 1 ) , ys ( : , 2 ) , ’ k ’ , ’ Linewidth ’ , 4)
13 x l ab e l ( ’ y1 ( t ) s o l u t i o n ’ )
14 y l ab e l ( ’ y2 ( t ) /dt s o l u t i o n ’ )

that outputs:
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Figure 3.2: Solution curve for system dx
dt

= x2 + y and dy
dt

= sin(y).

Plotting implicit solutions If we obtain the implicit solutions f(x, y) = constant then we
can plot them with

1 f i m p l i c i t (@(x , y ) f (x , y )=k , ’ LineWidth ’ ,1 , ’ Color ’ , ’ k ’ )

For example, for x2 + y2 − sin(y) = constant the following program
1 f o r k=1:10
2 f=@(x , y )x^2+y^2− s i n (y )−k ;
3 f i m p l i c i t ( f , ’ LineWidth ’ ,1 , ’ Color ’ , ’ k ’ )
4 hold on ;
5 end

outputs

Figure 3.3: trajectories of implicit solutions.

Plotting eigenvectors for linear system Consider the system

d

dt

(
x

y

)
=
(
1 1
0 2

)(x
y

)
.
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First we find the eigenvalues
1 [V,D]= e i g (A) ;

The following code will generate linear spans for the eigenvectors and plot them:
1

2 A=[1 1 ; 0 2 ]
3 [V,D]= e i g (A) ;
4

5 m1=1; %%% This two parameters s c a l e the l ength o f the l i n e
6 m2=1;
7

8 xi11 = [−m1∗ V(1 ,1 ) , m1∗V(1 ,1 ) ] ;
9 xi21 = [−m1∗V(2 ,1 ) , m1∗V(2 ,1 ) ] ;

10 pl1 = l i n e ( xi11 , xi21 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
11

12 x1 = V(1 , 1 ) /3 ;
13 y1 =V(2 , 1 ) ;
14 txt1 = ’ \xi_1 ’ ;
15 t ex t ( x1 , y1 , txt1 , ’ FontSize ’ ,20)
16 hold on
17

18 xi12 = [−m2∗ V(1 ,2 ) , m2∗V(1 ,2 ) ] ;
19 xi22 = [−m2∗V(2 ,2 ) , m2∗V(2 ,2 ) ] ;
20

21 pl2 = l i n e ( xi12 , xi22 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
22

23 x2 = V(1 , 2 ) /3 ;
24 y2 =V(2 , 2 ) /3 ;
25 txt1 = ’ \xi_2 ’ ;
26 t ex t ( x2 , y2 , txt1 , ’ FontSize ’ ,20)

This is the full example with both the direction field and the eigenvector spans:
1 x0 =0.5;
2 y0 =0.5;
3 T=4
4

5 f = @( t , y ) [ y (1 ) ; 2∗ y (2 ) ] ;
6 v e c t f i e l d ( f , −1 : 0 . 1 : 1 , −1 : 0 . 1 : 1 ) ;
7 hold on
8

9 p lo t ( x0 , y0 , ’ o ’ , ’ MarkerFaceColor ’ , ’ b ’ , ’ MarkerSize ’ ,20)
10

11 hold on ;
12 [ ts , ys ] = ode45 ( f , [ 0 ,T/ 1 0 ] , [ x0 ; y0 ] ) ;
13 p lo t ( ys ( : , 1 ) , ys ( : , 2 ) , ’ k ’ , ’ Linewidth ’ , 4)
14 hold on ;
15

16 A=[1 1 ; 0 2 ]
17 [V,D]= e i g (A) ;
18
19
20
21 m1=1;
22 m2=1;
23
24

25 xi11 = [−m1∗ V(1 ,1 ) , m1∗V(1 ,1 ) ] ;
26 xi21 = [−m1∗V(2 ,1 ) , m1∗V(2 ,1 ) ] ;
27 pl1 = l i n e ( xi11 , xi21 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
28

29 x1 = V(1 , 1 ) /3 ;
30 y1 =V(2 , 1 ) ;
31 txt1 = ’ \xi_1 ’ ;
32 t ex t ( x1 , y1 , txt1 , ’ FontSize ’ ,20)
33
34

35 hold on
36

37 xi12 = [−m2∗ V(1 ,2 ) , m2∗V(1 ,2 ) ] ;
38 xi22 = [−m2∗V(2 ,2 ) , m2∗V(2 ,2 ) ] ;
39

40 pl2 = l i n e ( xi12 , xi22 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 2 ) ;
41

42 x2 = V(1 , 2 ) /3 ;
43 y2 =V(2 , 2 ) /3 ;
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44 txt1 = ’ \xi_2 ’ ;
45 t ex t ( x2 , y2 , txt1 , ’ FontSize ’ ,20)

It outputs the following figure:

Figure 3.4: Eigenvectors spans and Direction field
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