Outline

(1) Laplace transform for ODEs
(2) Laplace transform for systems o

- Method formal steps
(3) Lyapunov method

Figure: discontinuous forcing

Laplace transform for 1d ODEs

The Laplace transform of continuous functions $f(t)$ with at most exponential growth, that is $|f(t)| \leq c e^{a t}$ for $c, a>0$, is defined as:

$$
\mathcal{L}\{f\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

where $s>a$.

Laplace transform for 1d ODEs

The Laplace transform of continuous functions $f(t)$ with at most exponential growth, that is $|f(t)| \leq c e^{a t}$ for $c, a>0$, is defined as:

$$
\mathcal{L}\{f\}(s):=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

where $s>a$. By integration by parts we can easily check that we have:

$$
\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}-f(0)
$$

so for the second derivative we have

$$
\mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s \mathcal{L}\left\{f^{\prime}\right\}-f^{\prime}(0)=s^{2} \mathcal{L}\{f\}-f^{\prime}(0)-s f(0)
$$

Laplace transform of vectors

Consider the Laplace transform of vectors $\mathcal{L}\{\mathbf{x}\}(s)$ defined componentwise

$$
\mathcal{L}\{\mathbf{x}\}(s):=\left(\begin{array}{c}
\mathcal{L}\left\{x_{1}\right\}(s) \\
\vdots \\
\mathcal{L}\left\{x_{n}\right\}(s)
\end{array}\right)
$$

Laplace transform of vectors

Consider the Laplace transform of vectors $\mathcal{L}\{\mathbf{x}\}(s)$ defined componentwise

$$
\mathcal{L}\{\mathbf{x}\}(s):=\left(\begin{array}{c}
\mathcal{L}\left\{x_{1}\right\}(s) \\
\vdots \\
\mathcal{L}\left\{x_{n}\right\}(s)
\end{array}\right)
$$

Therefore, as with the usual Laplace transform we obtain:

$$
\mathcal{L}\left\{\mathrm{x}^{\prime}\right\}(s)=s \mathcal{L}\{\mathrm{x}\}(s)-\mathrm{x}(0)
$$

Consider the nonhomogeneous system

$$
\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}+\mathbf{g}(t)
$$

(1) Taking the Laplace transform of each term in the above equation we have:

$$
s \mathcal{L}\{\mathbf{x}\}(s)-\mathbf{x}(0)=\mathbf{A} \mathcal{L}\{\mathbf{x}\}(s)+\mathcal{L}\{\mathbf{g}\}(s)
$$

(2) For simplicity we assume that $\mathrm{x}(0)=0$.
(3) We then obtain the system:

$$
(s \mathbf{I}-\mathbf{A}) \mathcal{L}\{\mathbf{x}\}(s)=\mathcal{L}\{\mathbf{g}\}(s)
$$

(9) By inverting the matrix we obtain:

$$
\mathcal{L}\{\mathbf{x}\}(s)=(s \mathbf{I}-\mathbf{A})^{-1} \mathcal{L}\{\mathbf{g}\}(s)
$$

(5) Then we do inverse Laplace transform of each component using known Laplace transform relations.

All the transforms we will need

$$
\begin{aligned}
\mathcal{L}\{\cos (a t)\}(s) & =\frac{s}{s^{2}+a^{2}} \\
\mathcal{L}\{1\}(s) & =\frac{1}{s} \\
\mathcal{L}\left\{e^{a t}\right\}(s) & =\frac{1}{s-a} \\
\mathcal{L}\left\{t^{n} e^{a t}\right\}(s) & =\frac{n!}{(s-a)^{n+1}} \\
\mathcal{L}\left\{f_{\text {step }}(t, b)\right\} & =\frac{1-e^{-b s}}{s} \\
\mathcal{L}\left\{e^{a(t-b)} f_{\text {heavy }}(t, b)\right\} & =\frac{e^{-b s}}{s-a} .
\end{aligned}
$$

Presenting the method

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right) \mathbf{x}+\binom{f_{\text {step }}(t, 1)}{t}
$$

Presenting the method

(1) First we compute the Laplace transform of \mathbf{g} :

$$
\mathcal{L}\left\{\binom{f_{\text {step }}}{3 t}\right\}(s)=\binom{\frac{1-e^{-s}}{s}}{\frac{1}{s^{2}}}
$$

(2) Then we compute the $(s \mathbf{I}-\mathbf{A})^{-1}$:

$$
(s \mathbf{I}-\mathbf{A})^{-1} \mathcal{L}\{g\}=\binom{\frac{1-e^{-s}}{(s-2) s}-\frac{1}{s^{2}(s-2)(s-1)}}{\frac{1}{s^{2}(s-1)}}
$$

Presenting the method

(1) So by the cover-up method, we get:

$$
\begin{aligned}
& \frac{1-e^{-s}}{(s-2) s}-\frac{1}{s^{2}(s-2)(s-1)} \\
& =\frac{1-e^{-s}}{-2 s}+\frac{1-e^{-s}}{2(s-2)}-\frac{1}{2 s^{2}}+\frac{1}{(s-1)}-\frac{1}{4(s-2)}-\frac{3}{4 s} .
\end{aligned}
$$

(2) Then we have

$$
\begin{aligned}
& x_{1}(t)=-\frac{1}{2} f_{\text {step }}(t, 1)+\frac{1}{2}\left(e^{t}-e^{2(t-1)} f_{\text {heavy }}(t, 1)\right) \\
& -\frac{1}{2} t+e^{t}-\frac{1}{4} e^{t}-\frac{3}{4}
\end{aligned}
$$

(3) and

$$
x_{2}(t)=-t^{2}-1+e^{t}
$$

In class example

Consider the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
0 & -3
\end{array}\right] \mathbf{x}+\binom{f_{\text {step }}(t)}{e^{-t}}
$$

$$
\begin{gathered}
\mathcal{L}\{1\}(s)=\frac{1}{s}, \mathcal{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}, \mathcal{L}\left\{t^{n} e^{a t}\right\}(s)=\frac{n!}{(s-a)^{n+1}} \\
\mathcal{L}\left\{f_{\text {step }}(t, b)\right\}=\frac{1-e^{-b s}}{s}, \mathcal{L}\left\{e^{a(t-b)} f_{H}(t, b)\right\}=\frac{e^{-b s}}{s-a} \\
1-f_{H}(t, b)=f_{\text {step }}(t, b)= \begin{cases}1, & 0 \leq t \leq b \\
0, & t>b\end{cases}
\end{gathered}
$$

in class example

(1) First we compute the Laplace transform of \mathbf{g} :

$$
\mathcal{L}\left\{\binom{f_{\text {step }}}{e^{-2 t}}\right\}(s)=\binom{\frac{1-e^{-s}}{s}}{\frac{1}{s+2}}
$$

(2) Then we compute the $(s \mathbf{I}-\mathbf{A})^{-1}$:

$$
(s \mathbf{I}-\mathbf{A})^{-1} \mathcal{L}\{g\}=\binom{\frac{1-e^{-s}}{(s+1) s}+\frac{1}{(s+3)(s+1)(s+2)}}{\frac{1}{(s+3)(s+2)}}
$$

in class example

(1) For the first component we have:

$$
\begin{aligned}
& \frac{1-e^{-s}}{(s+1) s}+\frac{1}{(s+3)(s+1)(s+2)} \\
& =\frac{1-e^{-s}}{s+1}-\frac{1-e^{-s}}{s}+\frac{1}{(s+3) 2}+\frac{-1}{(s+2)}+\frac{1}{(s+1) 2}
\end{aligned}
$$

for second

$$
\frac{-1}{(s+3)}+\frac{1}{s+2}
$$

(2) So the first component is

$$
x_{1}=e^{-t}-e^{-(t-1)} f_{H}(t, 1)-f_{\text {step }}(t, 1)+\frac{1}{2} e^{-3 t}-e^{-2 t}+2 e^{-t}
$$

(3) the second component is

We return to the damping-free pendulum system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-\frac{g}{L} \sin (x) .
$$

Consider the total energy of the system:

$$
\begin{aligned}
E(x, y) & =\text { Potential }+ \text { Kinetic } \\
& =U(x, y)+K(x, y) \\
& :=m g L(1-\cos (x))+\frac{1}{2} m L^{2} y^{2} .
\end{aligned}
$$

The End

