<

© Laplace transform for ODEs !

© Laplace transform for systems o
@ Method formal steps

© Lyapunov method Figure: discontinuous
forcing
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Laplace transform for 1d ODEs

The Laplace transform of continuous functions f(t) with at most
exponential growth, that is |f(t)| < ce? for c,a > 0, is defined as:

cfrh(s) = /Ooo St (1)dt,

where s > a.
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Laplace transform for 1d ODEs

The Laplace transform of continuous functions f(t) with at most
exponential growth, that is |f(t)| < ce? for c,a > 0, is defined as:

cfrh(s) = /OOO St (1)dt,

where s > a. By integration by parts we can easily check that we have:

L{f’}(s) = sﬁ{f} — £(0)
so for the second derivative we have

E{f”}(s) - sﬁ{f’} —(0) = s2£{f} — (0) — s£(0).
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Laplace transform of vectors

Consider the Laplace transform of vectors E{x}(s) defined

componentwise
E{xl } (s)

“je - E{x;}(s)
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Laplace transform of vectors

Consider the Laplace transform of vectors E{x}(s) defined

componentwise
E{xl } (s)

“je - £{x;}(s)

Therefore, as with the usual Laplace transform we obtain:

,c{x'}(s) - sc{x}(s) — x(0).
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Consider the nonhomogeneous system
x'(t) = Ax + g(t).

@ Taking the Laplace transform of each term in the above equation we
have:

sc{x}(s) = x(0) = AL{x}(s) + £{e}(s)
@ For simplicity we assume that x(0) = 0.
© We then obtain the system:

(sI — A)ﬁ{x}(s) - c{g}(s).

@ By inverting the matrix we obtain:

E{X}(s) = (sI— A)_lﬁ{g}(s).

© Then we do inverse Laplace transform of each component using
known Laplace transform relations.
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All the transforms we will need

.c{cos(at)}(s) = 5 i S
£fi)eo-
e =1,
£fee)or= e
£ffunte ) - 15
£ Dt} =
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Presenting the method

Consider the system

dX _ 2 ]_ f_‘gtep(t, 1)
& (0 1> X+ ( t )
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Presenting the method

© First we compute the Laplace transform of g:

_ a—S

{()o- (3 )

@ Then we compute the (sT — A)~L:

l—e* 1
(SI _ A)_lﬁ{g} _ <(s2)s 512(5—2)(s—l)>'

s2(s—1)

MAT?244 Ordinary Differential Equations 7/ 14



Presenting the method

@ So by the cover-up method, we get:

1—e"® 1
(s—2)s s%(s—2)(s—1)

l—e>® 1—¢e° 1 1 1 3
= + + - _ 2

—2s | 2(s—2) 252 (s—1) 4(s—2) 4s
@ Then we have

1 1 _
xi(t) = —Efstep(t, 1)+ E(et — 2D (1))
1 . 1, 3
—_ 7t _ —_
tte —4e 4

© and
xo(t) = —t> — 14 €.
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In class example

Consider the system

X(t) = [_01 :ﬂ X+ <f“;"(f)>.

°
E{l}(S) - é’ﬁ{eat}(s) s i a’c{tneat}(s) - (5—’73!)”+1
°
ﬁ{ﬁstep(t, b)} = 1 _se_bswc{ea(t—b)f (t, b)} _ Se—_bsa
o I, 0<t<b

1 — fu(t, b) = fsep(t, b) =
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in class example

© First we compute the Laplace transform of g;:

—S

f(Fe)o=("5 )

s+2

@ Then we compute the (sT — A)~L:

1—e"*
(sI—A)*lﬁ{g} ((s+1) + (s+3)(s+1)(s+2)>
13)6+2)
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in class example

@ For the first component we have:

1—e° 1

Grls (i3)GIDE12)

l-e® 1-e° 1 -1 1

T sl s (5432 (512 TGrie2
for second

-1 1

(s—|—3)+s+2'

@ So the first component is
1
xi=e t—e (VA (£1) - ftep(t, 1) + Ee_3t — e %t 4271,
© the second component is

_ -3t _—2t
MAT?244 Ordinary Differential Equations




We return to the damping-free pendulum system

de_, W ——gsin(x)
a Va1 '

Consider the total energy of the system:
E(x,y) = Potential + Kinetic

= U(x,y) + K(x,y)

1
= mgL(1 — cos(x)) + §mL2y2.
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The End
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