Outline

(1) Variation of parameters

Figure: competing species separatrix

General nonhomogeneous systems

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{P}(\mathbf{t}) \mathbf{x}(t)+\mathbf{g}(t), \tag{1}
\end{equation*}
$$

where $P(t)$ is a matrix that also depends on time.

General nonhomogeneous systems

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=\mathbf{P}(\mathbf{t}) \mathbf{x}(t)+\mathbf{g}(t) \tag{1}
\end{equation*}
$$

where $P(t)$ is a matrix that also depends on time. We make the ansatz

$$
\mathbf{x}(t)=\mathbf{\Psi}(t) \mathbf{y}(t)
$$

where Ψ is a matrix whose columns are the x_{1}, x_{2} solutions for the homogeneous problem.

Variation of parameters: system to solve

Plugging in the ansatz we obtain:

$$
\Psi(t) \mathbf{y}^{\prime}(t)=\mathbf{g}(t)
$$

Variation of parameters: system to solve

Plugging in the ansatz we obtain:

$$
\boldsymbol{\Psi}(t) \mathbf{y}^{\prime}(t)=\mathbf{g}(t)
$$

or equivalently

$$
\left\{\begin{array}{l}
x_{1,1}(t) v_{1}^{\prime}+x_{1,2}(t) v_{2}^{\prime}=g_{1}(t) \\
x_{2,1}(t) v_{1}^{\prime}+x_{2,2}(t) v_{2}^{\prime}=g_{2}(t)
\end{array}\right.
$$

Example

Consider the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \mathbf{x}+\binom{e^{-2 t}}{-2 e^{t}}
$$

in class example

Consider the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right] \mathbf{x}+\binom{t^{-3}}{-t^{-2}}
$$

(1) First we find the fundamental matrix $\boldsymbol{\Psi}$: the eigenvalue is $\left(0,\binom{1}{2}\right)$ and $\eta=k\binom{1}{2}-\binom{0}{1}$, therefore, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=c_{1}\binom{1}{2}+c_{2}\left(t\binom{1}{2}-\binom{0}{1}\right) \Rightarrow \\
\mathbf{\Psi}(t)=\left[\begin{array}{cc}
1 & t \\
2 & 2 t-1
\end{array}\right]
\end{gathered}
$$

(2) The system is

$$
\left\{\begin{array}{c}
v_{1}^{\prime}+t v_{2}^{\prime}=t^{-3} \\
2 v_{1}^{\prime}+(2 t-1) v_{2}^{\prime}=-t^{-2}
\end{array}\right.
$$

and we obtain

$$
\begin{aligned}
& \mathbf{v}^{\prime}(t)=\binom{-\left(t^{-1}+2 t^{-2}-t^{-3}\right)}{t^{-2}+2 t^{-3}} \Rightarrow \\
& \mathbf{v}(t)=\binom{\frac{4 t-1}{2 t^{2}}-\log (t)}{-\frac{t+1}{t^{3}}}
\end{aligned}
$$

Therefore, the nonhomogeneous solution is

$$
\begin{aligned}
\mathbf{x}_{n h}(t) & =\mathbf{\Psi}(t) \mathbf{v}(t) \\
& =\left[\begin{array}{cc}
1 & t \\
2 & 2 t-1
\end{array}\right]\binom{\frac{4 t-1}{2 t^{2}}-\log (t)}{-\frac{t+1}{t^{3}}} \\
& =\binom{-\frac{1+t}{t^{2}}+\frac{-1+4 t}{2 t^{2}}-\log (t)}{-\frac{((1+t)(-1+2 t))}{t^{3}}+2\left(\frac{(-1+4 t)}{2 t^{2}}-\log (t)\right)} \\
& =-\log (t)\binom{1}{2}+t^{-2}\binom{-3 / 2}{-2}+t^{-1}\binom{1}{2}+t^{-3}\binom{0}{1}
\end{aligned}
$$

The general solution is

In class example

Consider the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right] \mathbf{x}+\binom{e^{-2 t}}{-2 e^{t}}
$$

The End

