Week 12

Variations of these exercises will appear on the final. Most of the exercises are in the main textbook.

Nonhomogeneous: Variation of parameters

- Obtain the general solution for the following systems and identify the dominating term:

1.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right) \mathbf{x}+\binom{t}{0}
$$

2.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right) \mathbf{x}+\binom{\ln (t)}{t} .
$$

3.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & -1 \\
1 & -3
\end{array}\right) \mathbf{x}+\binom{e^{-2 t}}{e^{-2 t}}
$$

Laplace transform

- Use the Laplace transform to solve the following 2nd-order equations (chapter 6.2):

1. $y^{\prime \prime}-2 y^{\prime}+2 y=0, y(0)=0, y^{\prime}(0)=1$.
2. $y^{\prime \prime}+4 y=\left\{\begin{array}{ll}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{array}, y(0)=0, y^{\prime}(0)=0\right.$.
3. $y^{\prime \prime}+y=\left\{\begin{array}{cl}2 \frac{t,}{1} t, & \begin{array}{l}0<t<1 \\ 1, \\ t \geq 1\end{array}\end{array}\right.$

- Use the Laplace transform to solve the following systems (assume $\mathbf{x}(0)=0$):

1. system with repeated eigenvalue:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
4 & -2 \\
8 & -4
\end{array}\right) \mathbf{x}+\binom{t}{0} .
$$

Compare your answer with the variation of parameters above.
2. system with piecewise forcing:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}=\left(\begin{array}{cc}
-2 & 1 \\
0 & -1
\end{array}\right) \mathbf{x}+\binom{f_{\text {piece }}(t)}{0}
$$

where $f_{\text {piece }}:= \begin{cases}t, & 0 \leq t<1 \\ 1, & t \geq 1\end{cases}$
3. for $y^{\prime \prime}+4 y=f_{\text {step }}$ we use the transformation $x_{1}=y, x_{2}=y^{\prime}$ to obtain the 2 d system:

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}=\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right) \mathbf{x}+\binom{0}{f_{\text {step }}(t)} .
$$

Compare your answer with $y^{\prime \prime}+4 y=f_{\text {step }}$.

