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1 Systems of ODEs

Consider system of equations:

x′1 = p11(t)x1 + . . .+ p1nxn + g1(t)
...

x′n = pn1(t)x1 + . . .+ pnnxn + gn(t)

where pij(t), gi(t) are continuous functions. The continuity ensures that we have
existence and uniqueness of solutions. Equivalently we can rewrite this system as

x′(t) = P(t)x(t) + g(t).

where P(t) denote the matrix where the entry in the ijth position is pij(t) and g(t) is the
n-vector with entries gk(t) for 1 ≤ k ≤ n. For the homogeneous problem (i.e. g ≡ 0) we can
see by linearity that if x1,x2 are both solutions to that system, then any linear combination
y = c1x1 + c2x2 is also a solution. In fact, as with second order ODEs, we will show that any
solution to the system is of that form if {xni}, for 1 ≤ i ≤ n are linearly independent solutions
to the system (that is, any solution can be expressed as a linear combination of the solutions
x1, . . . ,xn when they are linearly independent). Analogously to second order, a collection of
solutions x1, ...,xn is called linearly independent if there exists t∗ s.t.

det [X(t)] := det

x11(t∗) x12(t∗) · · · x1n(t∗)
...

... . . . ...
xn1(t∗) xn2(t∗) · · · xnn(t∗)

 6= 0,

where xi = ith row = (x1i, ..., xni).

General solution

Consider x1, . . . ,xn linearly independent solutions of the system x′(t) = P(t)x(t) where
P(t) is an n × n matrix and v(t) is any solution for the nonhomogeneous problem
x′(t) = P(t)x(t) + g(t). Then for any other solution y of the nonhomogeneous problem,
there exist unique constants {ci} s.t.

y = c1x1 + ...+ cnxn + v(t).

Proof. We will follow the same ideas as in the analogous second order result. We begin by
proving an auxiliary result about the homogeneous equation. Let ϕ be a solution for the above
homogeneous problem and K := ϕ(t∗). Consider the system of equations given by

X(t∗)c :=

x1,1(t∗) x1,2(t∗) · · · x1,n(t∗)
...

... . . . ...
xn,1(t∗) xn,2(t∗) · · · xn,n(t∗)

c = K

for unknown vector c. Then, by linear independence of the solutions x1, . . . ,xn, the matrix,
X(t∗) is invertible and so we can solve for c by inverting X(t∗) and multiplying on the right
by K (i.e c = X−1(t∗)c). Let ζ(t) := X(t)c where c is the vector obtained from the above
discussion. Then we have that ζ(t∗) = K = ϕ(t∗). Therefore, by existence and uniqueness
ζ(t) = ϕ(t) for all t.

Next let y be a solution for the nonhomogeneous problem. Then y− v is a solution of
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the homogeneous problem and thus, by the above discussion, ∃ a ∈ Rn s.t.

y = a · x + v.
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2 Homogeneous linear systems with constant coefficients

Consider the homogeneous system of n-ODEs

x′(t) = Ax(t),

where A is n× n matrix with constant real entries. As with second order we make the ansatz
x(t) = ξeλt where ξ is a fixed n-vector (to be chosen precisely later). Then, we observe that if
ξ is chosen so that Aξ = λξ (i.e ξ is an eigenvector of A) we get

Ax(t) = Aξeλt = λξeλt = ξ
d

dt

(
eλt
)
=

dx

dt
(t).

Such ξ, λ are called A′s eigenvector and eigenvalue respectively (as noted earlier). We will now
obtain the general solution. First we will assume that all eigenvalues {λi}ni=1 of A are real and
distinct from each other; in the other sections we study the other cases. Let {ξi}ni=1 be the
corresponding eigenvectors. Then the solutions {ξieλit}ni=1 are linearly independent:

det

ξ11eλ1t · · · ξ1ne
λnt

... . . . ...
ξn1e

λ1t · · · ξnne
λnt

 = e(λ1+...+λn)t det

[
ξ11 · · · ξ1n
... . . . ...
ξn1 · · · ξnn

]
6= 0

where the last step follows because when all the eigenvalues of a matrix are distinct, then its
eigenvectors will be linearly independent. Thus, from the above result we obtained the general
solution.

Example —presenting the method

Consider two connected tanks A and B containing 1000L of well-mixed salt-water with x(t), y(t)
kilogram amounts of salt respectively. Let IP,OP denote the L/min-rate of salt-free water
entering and exiting the two tanks and P1, P2 the L/min-rate of saltwater getting exchanged
between the two tanks.

Figure 2.1: Tanks A and B containing salt

To keep the volume of water constant in the two tanks we set IP = OP = 1(L/min).
Let the rates P1 = 1(L/min) and P2 = 2(L/min) be constant in time. The concentration of
salt in each tank is x(t)

1000
kg/L, y(t)

1000
kg/L respectively. Therefore, for tank A the rate of change of

4



the amount of salt:

dx

dt
= Input rate−Output rate = 2 · y(t)

1000
− 1 · x(t)

1000

and for tank B we must also subtract the draining of salt from pipe OP

dy

dt
= Input rate−Output rate = 1 · x(t)

1000
− 2 · y(t)

1000
− 1 · y(t)

1000
.

In matrix form our system is (
x′

y′

)
=

1

1000

[−1 2

1 −3

](
x

y

)
.

1. First we compute the eigenvalues

det

[−1− λ 2

1 −3− λ

]
= 0 ⇒ (−1− λ)(−3− λ)− 2 · 1 = 0

⇒ λ1 = −2 +
√
3, λ2 = −2−

√
3.

2. Second we find the corresponding eigenvectors. To find ξ1 :=
(
ξ1,1
ξ2,1

)
we solve the system

(up to multiples): [−1− λ1 2

1 −3− λ1

](
ξ1,1
ξ2,1

)
=

(
0

0

)
.

By solving the system directly we obtain the solution (up to multiples). For example, we
rewrite the above to get:{

(1−
√
3)ξ1,1 + 2ξ2,1 = 0

ξ1,1 + (−1−
√
3)ξ2,1 = 0

=⇒ ξ1 =

(
ξ1,1
ξ2,1

)
=

(
1 +
√
3

1

)
.

Similarly to obtain ξ2 we have to solve[
−1− (−2−

√
3) 2

1 −3− (−2−
√
3)

](
ξ1,2
ξ2,2

)
=

(
0

0

)
and we get

ξ2 =

(
1−
√
3

1

)
.

3. Therefore, by the discussion above the general solution will be

x(t) =

(
x(t)

y(t)

)
=

1

1000
c1·ξ1eλ1t+

1

1000
c2·ξ2eλ2t = c1·

(
1 +
√
3

1

)
e(−2+

√
3)t

1000
+c2·

(
1−
√
3

1

)
e(−2−

√
3)t

1000
.

4. Since 2 >
√
3, both the eigenvalues are negative and in turn the salt concentrations

x(t), y(t) will go to zero as t→ +∞. This is reasonable because through pipe IP we are
injecting salt-free water that over time transports the tanks’ salt out through pipe OP.

5. Next we study the stability. Since −2 +
√
3 > −2−

√
3, we get e(−2+

√
3)t > e(−2−

√
3)t and

so as t→ +∞ the first eigenvector
(
1+
√
3

1

)
will dominate.
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Figure 2.2: Solutions converge to line defined by vector ξ1 =
(
1+
√
3

1

)
and then to (0, 0).

In other words, for large t we will have

x(t) ≈ (1 +
√
3) · e(−2+

√
3)t > 1 · e(−2+

√
3)t ≈ y(t).

This is reasonable because P2 > P1 and so as t→ +∞ the salt concentration x(t) in tank
A will be greater than that of tank B.

Method formal steps

1. Starting with a matrix A we first compute its eigenvalues {λi} eg. for matrix A =

[
a b

c d

]
we have two eigenvalues:

det

[
a− λ b

c d− λ

]
= 0⇒ λ2 − (a+ d)λ+ ad− bc = 0

⇒ λ =
(a+ d)

2
± 1

2

√
(a+ d)2 − 4(ad− bc) = Tr(A)

2
± 1

2

√
Tr(A)2 − 4det(A).

2. Second for each eigenvalue, we find the corresponding eigenvector. Continuing the example
from the previous step, we find the eigenvector ξ1 :=

(
ξ1,1
ξ2,1

)
by solving the system:[

a− λ1 b

c d− λ1

](
ξ1,1
ξ2,1

)
=

(
0

0

)
.

Here are the general formulas for eigenvectors for 2D systems:

• If c 6= 0 then

ξ1 =

(
λ1 − d
c

)
and ξ2 =

(
λ2 − d
c

)
.
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• If b 6= 0 then

ξ1 =

(
b

λ1 − a

)
and ξ2 =

(
b

λ2 − a

)
.

• If b = c = 0 then
ξ1 =

(
1

0

)
and ξ2 =

(
0

1

)
.

3. Then the general solution will be of the form

x(t) = c1ξ1e
λ1t + ...+ cnξne

λnt.

4. Finally we study the stability for 2D systems:

• If λ1 6= λ2 and both positive then (0,0) will be a nodal source and solutions will be
moving away from it (unstable).
• If λ1 6= λ2 and both negative then (0,0) will be a nodal sink and solutions will be

moving towards it (asymptotically stable).
• If λ1 6= λ2 and with opposite signs then (0,0) will be a saddle point and solutions
will be moving away from it along one eigenvector and towards it along the other
eigenvector (unstable).
• If one of the eigenvalues is zero eg. λ1 = 0 and λ2 < 0 then the line defined by ξ1
will be a nodal source (asymptotically stable).
• If one of the eigenvalues is zero eg. λ1 = 0 and λ2 > 0 then the line defined by ξ1
will be a nodal sink (asymptotically unstable).

Examples

• We will exhibit each of the above stability cases by studying the IVP problem

dx

dt
=

[
a 0

0 b

]
x

with x(0) =
(
2
2

)
.

1. First we find the eigenvalues. For diagonal matrices this is immediate: λ1 = a, λ2 = b.
2. Next we find the corresponding eigenvectors:[

a− λ1 0

0 b− λ1

](
ξ1,1
ξ2,1

)
=

(
0

0

)
=⇒ ξ2,1 = 0

therefore ξ1 =
(
1
0

)
. Similarly, we obtain ξ2 =

(
0
1

)
.

3. Therefore, the general solution is

x(t) = c1

(
1

0

)
eat + c2

(
0

1

)
ebt.

4. Finally, using the initial condition we obtain

x(t) = 2

(
1

0

)
eat + 2

(
0

1

)
ebt.

5. Next we study the stability. The origin is a special point for dynamics because if
x(t∗) = 0 then dx

dt
(t∗) = A ·

(
0
0

)
=
(
0
0

)
and so it is a critical point.
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(a) If a 6= b and both positive we obtain that the solutions diverge to infinity

Figure 2.3: a = 1, b = 3

(b) If a 6= b and both negative we obtain that they both converge to the source (0,0)

Figure 2.4: a = −1, b = −3

(c) If a 6= b with different signs we obtain that (0,0) is a saddle point: if a = −1, b = 3
then the solutions converge to the origin if they start on the linear span of ξ1
(x-axis) otherwise they diverge to infinity.
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(a) a = −1, b = 3 (b) a = 1, b = −3

(d) If a = 0 and b < 0 then the linear span of ξ1 (x-axis) will attract all the solutions:

Figure 2.6: a = 0, b = −3

(e) If a = 0 and b > 0 then the linear span of ξ1 (x-axis) will repel all the solutions:
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Figure 2.7: a = 0, b = 3

Applied examples

• Richardson Arms race model: Consider countries A,B with x(t), y(t) amount of
weaponry respectively. The model for the rate of change of weaponry is:

dx

dt
= −a · x+ b · y + e1

dy

dt
= c · x− d · y + e2

The constants a, b, c, d are nonnegative. The constants b, c represent the fear magnitude eg.
when y(t) goes up then country A will increase its rate of weapon production by b · y(t).
The constants a, d represent the fatigue factor because some countries decide on a lower
rate of production given the amount of weapons they currently possess. For simplicity the
constant e1 represents the distrust country A has for country B and the reverse for e2.
But they can represent other factors not accounted for such as revenge, degradation of
weapons, etc. So if we have no interaction i.e. a = b = 0 but positive amount of distrust
e1 > 0 then we still have a steady rate of weapon production x′(t) = e1 > 0.
For simplicity e1 = −1, e2 = −1 consider the following matrix system

dx

dt
=

[−1 2

4 −3

]
x +

(
−1
−1

)
.

1. A constant solution for this nonhomogeneous problem is v(t) =
(
1
1

)
, which we obtained

by setting dx
dt

=
(
0
0

)
and solving for x. Therefore, as explained above the general

solution will be:
x = c1ξ1e

λ1t + c2ξ2e
λ2t +

(
1

1

)
.
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2. The eigenvalues for this matrix are the solutions to

0 = λ2 − Tr(A)λ+ det(A) = λ2 + 4λ− 5

⇒ λ1 = 1, λ2 = −5.

3. The corresponding eigenvectors are ξ1 =
(
1
1

)
and ξ2 =

(−1
2

)
. So the general solution

is
x(t) = c1

(
1

1

)
et + c2

(
−1
2

)
e−5t +

(
1

1

)
.

4. Therefore,
(
1
1

)
becomes a saddle point. That is, if a solution starts from

(
1
1

)
in a

direction parallel to
(−1

2

)
(i.e. choose c1 = 0), then the solution will converge to

the constant
(
1
1

)
at an exponential rate (like e−5t). For example, this happens if

x(0) =
( 1

2
2

)
. However for c1 6= 0 the solution will diverge to infinity like et in the

direction
(
1
1

)
away from the starting point

(
1
1

)
.

Figure 2.8: The
(
1
1

)
is a saddle point

5. This is reasonable because if the amount of distrust is negative e1 = −1, e2 = −1 < 0
(i.e. positive trust), then for appropriate initial conditions the solutions will converge
to peaceful coexistence (x(t), y(t))→ (1, 1).

6. To make sense of the special role c1 = 0 plays we have to study the critical level
sets. We have x′(t) ≥ 0 and y′(t) ≥ 0 when −x + 2y − 1 ≥ 0 and 4x − 3y − 1 ≥ 0
respectively; call these lines as L1, L2. The first inequality happens when we are
above L1 and the second when we are below L2. This is the region enclosed between
the lines on the right. So in the direction of ξ1 both countries are increasing their
rate without stop . On the other hand, in the direction of ξ2, which is above or below
both lines, the rates will have opposite signs (In this case, one country is increasing
their amount of weaponry while the other is decreasing it. The effect of one country
decreasing their stock of weaponry interferes with the other countries desire to have
more weapons. This is because the country that was originally increasing its stock of
weapons will see the other country deplete its stock and so will have less incentive to
create more.).
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Figure 2.9: The lines L1, L2 separate into regions of stability and instability.

As a reference the general solution for

dx

dt
=

[−a b

c −d

]
x +

(
1

1

)
. (2.1)

is

x(t) = c1

(
1

λ1+a
b

)
eλ1t + c2

(
1

λ2+a
b

)
eλ2t +

( e1d+e2b
ad−bc
e1a+e2c
ad−bc

)
. (2.2)
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• Consider the parallel circuit displayed in Figure 2.10 capacitance C (eg. battery), resistance
R (eg. light bulb) and inductance L (eg. coil used for storing energy). Note that there is
no voltage source.

Figure 2.10: Parallel LRC circuit.

Let V be the voltage drop and I the current passing through the circuit. Here is a quick
summary of the laws governing such systems:

– Ohm’s law(OL): For the resistance we have V = R · I.
– For the capacitance we have I3 = C · dV3

dt
.

– Faraday’s law and Lenz’s law(FLL): For the inductance we have V4 = L · dI2
dt
.

– Kirchhoff’s current law(KCL): −I3 = I = I1 − I2 ; this is the conservation of
energy law for circuits.

– Kirchhoff’s Voltage law(KV L): The sum of voltages in a loop is zero. Thus, in
the upper loop V3 = V1 and in the lower loop V2 + V4 + V1 = 0.

We can express all these relations in a system of odes that will describe the above circuit
system. We have

CV ′1
(KV L)
= CV ′3 = I3

(KCL)
= −I (KCL)

= −I1 + I2
(OL)
= − V1

R1

+ I2

13



where we first applied Kirchhoff’s voltage law and then current law. We also have

LI ′2
(FLL)
= V4

(KV L)
= −V1 − V2

(OL)
= −V1 −R2I2.

Therefore, we have a system for I2, V1:

CV ′1 = I2 −
V1
R1

LI ′2 = −R2I2 − V1.

We rewrite this in matrix form:(
V ′1
I ′2

)
=

[
− 1
CR1

1
C

−1
L

−R2

L

](
V1
I2

)
.

Suppose, for example, R1 =
3
5
, R2 = 1, L = 1, C = 1

3
then(

V ′1
I ′2

)
=

[−5 3

−1 −1

](
V1
I2

)
.

1. First we find the eigenvalues. λ1 = −4, λ2 = −2.
2. Second we find the eigenvectors. By solving the system or using the formulas we

obtain
ξ1 =

(
3

1

)
and ξ2 =

(
1

1

)
.

3. Therefore, the general solution is(
V1
I2

)
= c1

(
3

1

)
e−4t + c2

(
1

1

)
e−2t.

4. Therefore the current and voltage will go to zero as t → +∞. This is reasonable
because there is no voltage source and so eventually electricity will dissipate by
passing through the light bulbs.

2.1 Complex eigenvalues

Consider the system
x′(t) = Ax(t),

where now matrix A will have at least one pair of complex eigenvalues.

2.1.1 Example - Presenting the method

Consider the following parallel circuit with capacitance C (eg. battery), resistance R (eg. light
bulb) and inductance L (eg. coil used for storing energy).
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Figure 2.11: Parallel LRC circuit.

Let V be the voltage drop and I the current passing through the circuit. We also
define the counterclockwise orientation as the positive one. Here is a quick summary of the laws
governing such systems:

• Ohm’s law(OL): V = R · I.

• C · dV
dt

= I.

• Faraday’s law and Lenz’s law(FLL): L · dI
dt

= V.

• Kirchhoff’s current law(KCL): I = I2 + I3 ; this is the conservation of energy law for
circuits.

• Kirchhoff’s Voltage law(KV L): sum of voltages in a loop is zero. Thus, V1 = V3 and
V3 + V2 + V4 = 0.

We can express all these relations in a system of odes that will describe the circuit
system depicted in Figure 2.11. We have

CV ′1
(KV L)
= CV ′3 = −I3 = −I1 + I2 = −

V2
R

+ I2 = −
V1
R1

+ I2
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where we first applied Kirchhoff’s voltage and current law and then Ohm’s law. Note that we
used C(−V3)′ = I3 because V3 is in the clockwise direction. We also have LI ′2 = V4 = −V2−V1 =
−R2I2 − V1. Therefore, we have a system for I2, V1:

CV ′ = I − V

R1

LI ′ = −V +R2I.

We rewrite this in matrix form:(
V ′

I ′

)
=

[
− 1
CR1

− 1
C

1
L

R2

L

](
V

I

)
.

Let R1 = R2 = 4, L = 8, C = 1
2
then(

V ′

I ′

)
=

[
−1

2
2

−1/8 −1
2

](
V

I

)
.

1. First we find the eigenvalues. λ1 = −1+i
2
, λ2 =

−1−i
2

.

2. Second we find the eigenvectors. By solving the system or using the formulas we obtain

ξ1 =

(
−4i
1

)
and ξ2 =

(
4i

1

)
.

3. Therefore, the general solution is

(
I

V

)
= c1

(
−4i
1

)
e(
−1+i

2
)t + c2

(
4i

1

)
e(
−1−i

2
)t.

To obtain a real valued general solution it suffices to take real and imaginary parts of one
of the basis elements:(−1+i

2

1

)
e(
−1+i

2
)t = e−t/2

(
−4ieit/2

eit/2

)
)

= e−t/2
(
−4i(cos(t/2) + isin(t/2)

(cos(t/2) + isin(t/2)

)
)

= e−t/2(

(
4sin(t/2)

cos(t/2)

)
+ i

(
−4cos(t/2)
sin(t/2)

)
).

So we take

u(t) = e−t/2(

(
4sin(t/2)

cos(t/2)

)
and v(t) = e−t/2

(
−4cos(t/2)
sin(t/2)

)
.

Indeed by computing their wronskian we get

W (u, v) =

[
e−t/24sin(t/2) −e−t/24cos(t/2)
e−t/2cos(t/2) e−t/2sin(t/2)

]
= 4e−t/2(cos2(t/2) + sin2(t/2)) = 4e−t/2 6= 0.

4. Since there is no voltage source, as expected the solutions will converge to the origin.
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Figure 2.12: Phase portrait for (V, I).

5. To understand the periodicity we will describe the circuit’s analogy with a mass spring.

(a) When the spring is compressed we are storing energy in the form of atomic-bond
energy or potential energy (i.e. the spring tries to regain its original position).

(b) Then that energy is released into kinetic energy.
(c) When the spring mass returns, it compress the springs and so the cycle begins again.

In a circuit, a charged capacitor (battery) is analogous to a compressed spring and an
inductor is analogous to the inertia mass.

(a) The charged capacitor releases the electrical energy into the circuit which the inductor
converts into magnetic field energy (analogous to kinetic energy).

(b) When the capacitor is fully discharged, the magnetic field energy creates a counter
current (by Faraday’s law), which then charges the capacitor in the opposite direction.

(c) The oppositely charged capacitor starts releasing a current in the opposite direction
and so the cycle starts again.

Method formal steps

1. Let λ1 = a+ ib, λ2 = a− ib be the complex eigenvalues and ξ1 =
(
r1eiθ1

r2eiθ2

)
, ξ2 =

(
%1eiϕ1

%2eiϕ2

)
the

corresponding eigenvectors. Then the solution is

x = e−at(c1ξ1e
ibt + c2ξ2e

−ibt).

2. To obtain a real-valued solution (not all) it suffices to pick one of the terms above, say
e−atξ1e

ibt. Then its real and imaginary parts will also be solutions:

e−atξ1e
ibt = e−at

(
r1e

i(θ1+b)

r2ei(θ2+b)

)
= e−at

(
r1cos(θ1 + b)

r2cos(θ2 + b)

)
+ ie−at

(
r1sin(θ1 + b)

r2sin(θ2 + b)

)
=: u+ iv.
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3. Sometimes we can even obtain a general solution. By computing the wronskian we obtain:

W [u, v] = e−atr1r2(cos(θ1 + b)sin(θ2 + b)− cos(θ2 + b)sin(θ1 + b)).

So as we see depending on the choice of θ1, θ2, the solutions u,v might be linearly
independent or dependent.

4. Stability results. We note that the crucial role of stability is played by the factor e−at.

• If a < 0, then the solutions will converge to the node sink (0, 0) and the spiral will
be inward.
• If a > 0, then the solutions will diverge away from the node source (0, 0) and the

spiral will be outward.
• If a = 0, then the solutions will be concentric circles centered at (0, 0).

2.2 Examples

• Consider the system

x′ =
[
a 1
−1 0

]
x.

1. We first compute its eigenvalues: λ2 − aλ+ 1 = 0⇒ λ = a±
√
a2−4
2

. So to explore the
complex case we assume that a2 < 4.

2. Let ξ1, ξ2 be the corresponding eigenvectors: ξ1 =
(
λ1
−1

)
, ξ2 =

(
λ2
−1

)
– Assume α = −1 < 0, then λ = −2±i

√
3

2
and so the general solution will be

x = e−t(c1ξ1e
i
√

3
2
t + c2ξ2e

−i
√
3
2
t).

Figure 2.13: The solutions are converging towards the node sink (0,0).
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– Assume α = 1 > 0, then the general solution will be

x = et(c1ξ1e
i
√
3
2
t + c2ξ2e

−i
√
3

2
t).

Figure 2.14: The solutions are spiraling outward from the node source (0, 0).

– Assume α = 0, then the general solution will be

x = c1ξ1e
i
√

3
2
t + c2ξ2e

−i
√
3

2
t.
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Figure 2.15: The solutions are concentric circles centered at (0, 0).

2.3 Repeated eigenvalues

Consider the system
x′(t) = Ax(t),

where now matrix A will have at least two duplicated eigenvalues.

Example-presenting the method

Consider the following LRC circuit.
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Figure 2.16: Parallel LRC circuit.

We have CV ′1 = −I = −I1 − I2 = −V2
R
− I2 and LI ′2 = V3 = V2 = V1. Therefore, the

matrix system is: (
V ′

I ′

)
=

[
− 1
CR

− 1
C

1
L

0

](
V

I

)
.

1. The eigenvalues are λ = − 1
2CR
± 1

2

√
( 1
CR

)2 − 4 1
CL

and so if ( 1
CR

)2−4 1
CL

= 0⇔ L = 4R2C,
we get a repeated eigenvalue λ1 = λ2 = − 1

2CR
. So assume R = C = 1 and L = 4, then the

system is (
V ′

I ′

)
=
[−1 −1
1/4 0

](V
I

)
.

2. Then the eigenvalue is λ = −1
2

and the eigenvector is ξ =
(−2

1

)
. So we obtain the first

term of the solution x1 := ξe
λt.

3. Similarly to second order odes with repeated roots, we make the ansatz

x = c1x1 + c2x2 = c1ξe
λt + c2(ξe

λt · t+ ηeλt),

where η is a yet undetermined vector.
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4. Plugging in x2 := ξe
λt · t+ ηeλt into our system x′(t) = Ax we obtain:

λξeλtt+ (ξ + λη)eλt = A(ξeλtt+ ηeλt).

5. Equating the coefficients of eλtt and eλt we get

λξ = Aξ
ξ + λη = Aη.

6. The first equation is always true by virtue of ξ being an eigenvector. We will use the
second system to determine η. In other words, we must solve the system

(A− λI)η = ξ.

7. In our case we have[−1 −1
1/4 −0

]
+

1

2
I)

(
η1
η2

)
=

(
−2
1

)
⇒
[
−1

2
−1

1/4 1
2

](
η1
η2

)
=

(
−2
1

)
8. By solving the system we obtain

η2 = 2− η1
2
.

Therefore, for any η1 = k we obtain

η =

(
k

2− k
2

)
=

(
0

2

)
+ k

(
1

−1
2

)
.

9. Returning above the ansatz solution will be:

x = c1

(
−2
1

)
e−t/2 + c2

[(
−2
1

)
e−t/2 · t+

{(
0

2

)
+ k

(
1

−1
2

)}
e−t/2

]
= a1

(
−2
1

)
e−t/2 + c2

[(
−2
1

)
e−t/2 · t+

(
0

2

)
e−t/2

]
,

where a1 := c1 − k/2.

10. Therefore, the (Voltage,Current) pair presents no periodicity and it simply goes to (0, 0).
However, for as t → +∞ the term

(−2
1

)
e−t/2 · t will dominate and so the solutions will

converge to the linear span of
(−2

1

)
and then along that line to the node sink (0, 0).
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Figure 2.17: The linear span of
(−2

1

)
is a node and the origin will be the node sink.

Method formal steps

1. We first find the repeated eigenvalue λ and its eigenvector ξ. So the first term of the
solution will be x1 := ξe

λt.

2. For the second term we make the ansatz

x2 := ξe
λt · t+ ηeλt.

3. Plugging this into our system x′(t) = Ax(t) we obtain the stystem:

(A− λI2)η = ξ.

4. By determining η we obtain:

x = c1x1 + c2x2 = c1ξe
λt + c2(ξe

λt · t+ ηeλt).

Examples

• Consider system

x′ =

[
1 −1
1 3

]
x

1. We first find the eigenvalues:

λ =
Tr(A)

2
± 1

2

√
Tr(A)2 − 4 det(A) = 2

and so we have a repeated eigenvalue.
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2. Second, we find the corresponding eigenvector:[
1− λ −1
1 3− λ

](
ξ1
ξ2

)
=

(
0

0

)
=⇒ ξ =

(
ξ1
ξ2

)
=

(
1

−1

)
.

3. Assuming the solution is of the form x2 := ξe
λt · t+ ηeλt and plugging into our ODE

we obtain:
(A− λI2)η = ξ =⇒

[
1− λ −1
1 3− λ

](
η1
η2

)
=

(
1

−1

)
.

Solving this system gives us:

η1 + η2 = −1 =⇒ η =

(
k

−k − 1

)
= k

(
1

−1

)
+

(
0

−1

)
,

where k is any real number. We can rewrite η as:

η = kξ +

(
0

−1

)
4. Therefore, the general solution is:

x = c1x1 + c2x2

= c1e
2tξ + c2(ξe

2t · t+ ηe2t)

= c1e
2tξ + c2

[
ξe2t · t+

{
kξ +

(
0

−1

)}
e2t
]

= e2t
[
(c1 + kc2)

(
1

−1

)
+ c2

{(
1

−1

)
t+

(
0

−1

)}]
.

5. The vector ξ1 =
(

1
−1

)
dominates the long term behaviour due to the extra term

(
1
−1

)
t

(provided we do not choose c2 = 0). So we see that, essentially, all solutions are
diverging away from the linear span of

(
1
−1

)
.

Figure 2.18: The phase portrait for x = (x1, x2) with ξ1 =
(

1
−1

)
, ξ2 =

(
0
−1

)
.
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• Consider the system

x′ =

[
2 1

2

−1
2

1

]
x

with x(0) =
(
1
3

)
.

1. First we find the eigenvalues:

λ =
Tr(A)

2
± 1

2

√
Tr(A)2 − 4 det(A) =

3

2

and so we have a repeated eigenvalue.
2. Second, we find a corresponding eigenvector:[

2− 3
2

1
2

−1
2

1− 3
2

](
ξ1
ξ2

)
=

(
0

0

)
=⇒ ξ =

(
ξ1
ξ2

)
=

(
1

−1

)
.

3. Assuming the solution is of the form x2 := ξe
λt · t+ ηeλt and plugging into our ODE

we obtain:

(A− λI2)η = ξ =⇒

[
2− 3

2
1
2

−1
2

1− 3
2

](
η1
η2

)
=

(
1

−1

)
.

Solving this system gives us:

η1 + η2 = 2 =⇒ η =

(
k

−k + 2

)
= k

(
1

−1

)
+

(
0

2

)
,

where k is any real number. We can rewrite η as:

η = kξ +

(
0

2

)
.

Therefore, the general solution is:

x = c1x1 + c2x2

= c1e
3t
2 ξ + c2(ξe

3t
2 · t+ ηe

3t
2 )

= c1e
3t
2 ξ + c2

[
ξe

3t
2 · t+

{
kξ +

(
0

2

)}
e

3t
2

]
= e

3t
2

[
(c1 + kc2)

(
1

−1

)
+ c2

{(
1

−1

)
t+

(
0

2

)}]
.

If we now use the initial condition we obtain the system of equations(
1

3

)
= (c1 + kc2)

(
1

−1

)
+ c2

(
0

2

)
which can be solved to obtain that c1 = 1− 2k and c2 = 2.

4. The vector ξ1 =
(

1
−1

)
dominates the long term behaviour due to the extra term

(
1
−1

)
t.

So we see that all solutions to the IVP are diverging away from the linear span of(
1
−1

)
.
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Figure 2.19: The phase portrait for x = (x1, x2) with ξ1 =
(

1
−1

)
, ξ2 =

(
0
2

)
.
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2.4 Stability

Summary of the stability results.

Eigenvalues Type of criti-
cal point Stability Sample phase portrait

λ1 > λ2 > 0 Nodal source Unstable

v2

v1

λ1 > 0 > λ2 Saddle point Unstable

v2

v1

0 > λ1 > λ2 Nodal sink Asymptotically stable

v2

v1

λ1 = 0, λ2 > 0 v0 line Unstable and source

v0

v2

λ1 = 0, λ2 < 0 v0 line Unstable and sink

v0

v2
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λ = λ1 = λ2 > 0

and A =
(
λ
λ

) Proper node Unstable

λ1 = λ2 > 0

and A is not diagonal
Improper node Asymptotically unstable

λ = λ1 = λ2 < 0

and A =
(
λ
λ

) Proper node Stable

λ1 = λ2 < 0

and A is not diagonal
Improper node Asymptotically stable

λ1 = a+ ib, λ2 = a− ib Spiral

a>0 Unstable

0>a Stable

λ1 = ib, λ2 = −ib Center Unstable
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detA

Classification of Phase Portraits in the (detA,TrA)-plane

TrA

∆=0 ∆=0: detA= 1
4 (TrA)2

saddle

sink source

spiral sink spiral source

center

line of stable fixed points line of unstable fixed points

degenerate sink degenerate source

uniform
motion

Figure 2.20: Classification of phase portraits.

2.4.1 Stability of Eigenvalue Dependence

In this section we study the limiting behaviour of solutions as distinct eigenvalues of A become
repeated. Specifically, we demonstrate that the solutions of x′ = Ax when A has distinct
eigenvalues converges pointwise, after being suitably prepared, to the solution of x′ = Ax when
A has repeated eigenvalues. We focus our analysis on the 2× 2 case. Consider the problem

x′(t) =

(
λ 1

0 λ

)
x(t) (2.3)

where λ ∈ R as well as the perturbed problem

x′(t) =

(
λ+ ε 1

0 λ− ε

)
x(t) (2.4)

where ε > 0. Notice that the perturbed problem has a matrix with distinct eigenvalues λ+ ε
and λ− ε. One might hope that if we take a sequence of solutions to the perturbed problems as
ε→ 0+ then, in the limit, we obtain a solution to the limiting problem (2.3). As we will see,
this only works if we choose the sequence of solutions appropriately. To begin, we note that the
solution xε(t) to the perturbed problem (2.4) is

xε(t) = c1(ε)e
(λ+ε)t

(
1

0

)
+ c2(ε)e

(λ−ε)t
(

1

−2ε

)
for each ε > 0, where c1(ε) and c2(ε) are constants that may depend on ε (note that we are
considering a sequence of solutions with no initial conditions and so we are free to choose these
constants as we please). We now wish to show that as ε → 0+ the above family of solutions
tends to the solution of (2.3). Observe that we can write this solution as

xε(t) =

(
c1(ε)e

(λ+ε)t + c2(ε)e
(λ−ε)t

−2εc2(ε)e(λ−ε)t

)
= eλt

(
c1(ε)e

εt + c2(ε)e
−εt

−2εc2(ε)e−εt

)
.
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To ensure that the second component converges to an interesting value, k ∈ R, of our choosing
we see that we must require that c2(ε) = −k

2ε
. Updating the family of solutions with this choice

of c2(ε) we obtain

xε(t) = eλt
(
c1(ε)e

εt − k
2ε
e−εt

ke−εt

)
.

Observe that the first component now has a term that diverges as ε → 0+. Thus, we must
choose c1(ε) in a way that combats this divergent term. In accordance with the above logic we
choose c1(ε) = k

2ε
+ c3(ε) where we will decide later how to choose c3(ε). Updating our family of

solutions we obtain

eλt
((

k
2ε
+ c3(ε)

)
eεt − k

2ε
e−εt

ke−εt

)
= eλt

(
c3(ε)e

εt + k
(
eεt−e−εt

2ε

)
ke−εt

)
= eλt

(
c3(ε)e

εt + kt
(
eεt−e−εt

2εt

)
ke−εt

)
.

We now choose c3(ε) = a for some constant a ∈ R so that the first term in the first component
converges. Observe also that, by L’Hôpital’s rule we have

lim
ε→0+

eεt − e−εt

2εt
= lim

ε→0+

2ε

2ε
= 1.

Thus, we conclude that by letting ε tend to 0 from the right we obtain, for each t ∈ R

lim
ε→0+

xε(t) = eλt
(
a+ kt

k

)
= aet

(
1

0

)
+ ket

(
t

1

)
which is a solution to (2.3). Notice that a and k were arbitrary choices and so we can obtain any
such solution. Notice, however, that we had to choose very specific behaviour for the coefficients
to get this convergence.

30



3 Nonhomogeneous linear systems

In this section we study nonhomogeneous first order systems of equations building off of the
previous work on homogeneous first order systems.

3.1 Diagonalization Method

Consider nonhomogeneous linear first order systems:

x′ = Ax + g(t),

where g(t) is a vector of continuous functions and A is a diagonalizable n × n matrix with
eigenvalues {λi}i=1,...,n. The latter assumption means that if T has the eigenvectors of A as
columns, then T−1AT = D is a diagonal matrix.

Using diagonalization Plugging in x = Ty for some yet unknown y we obtain

Ty′ = x′ = Ax + g(t) = ATy + g(t)

=⇒ y′ = T−1ATy + T−1g(t) = Dy + T−1g(t).

As a result, we decoupled the system. From this decoupled system we obtain the first order
equations:

y′i = λiyi(t) + (T−1g(t))i for i = 1, ..., n.

For hi(t) := (T−1g(t))i we have (by the method of integrating factors)

yi(t) = eλit
[∫ t

0

e−λishi(s)ds+ ci

]
.

Therefore, we found the solution x = Ty.

3.1.1 Method formal steps

1. As usual we first find the eigenvalues λ1, λ2 and corresponding eigenvectors ξ1, ξ2 of the
homogeneous system x′ = Ax.

2. Form the change of basis matrix T := [ξ1, ξ2] and find the solution to the following two
first order odes

y′1 = λ1y1(t) + (T−1g(t))1

y′2 = λ2y2(t) + (T−1g(t))2.

3. By integrating factor the solutions are

y1(t) = eλ1t
[∫ t

0

e−λ1s(T−1g(s))1ds+ c1

]
y2(t) = eλ1t

[∫ t

0

e−λ2s(T−1g(s))2ds+ c2

]
.

4. We obtain the original solution by undoing the change of basis:

x = Ty.
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Example-Presenting the method Consider the system

x′ =

(
2 −1
3 −2

)
x +

(
et

t

)
.

1. First we find the eigenvalues

λ =
Tr(A)

2
± 1

2

√(
Tr(A)

)2 − 4 det(A) =⇒ λ1 = −1, λ2 = 1.

2. The corresponding eigenvectors are, respectively, v1 = (1, 3)T, v2 = (1, 1)T and so the
change of basis matrix T that diagonalizes our matrix is:

T =

(
1 1

3 1

)
.

3. Therefore, as argued above, the solution will be

x = Ty,

where

y1(t) = e−t
∫ t

0

esh1(s)ds+ c1e
−t and y2(t) = et

∫ t

0

e−sh2(s)ds+ c2e
t

with
h1(t) :=

1

2
(t− et) and h2(t) :=

1

2
(3et − t).

First we find the yi (note that sinh(t) is et−e−t
2

):

y1 = c1e
−t +

1

2
e−t
[
et{t− sinh(t)− 1}+ 1

]
and y2 = c2e

t +
1

2
et
[
3t+ e−t(t+ 1)− 1

]
.

4. Therefore, we obtain, since x = Ty

{
x1 = c1e

−t + c2e
t + 1

2
e−t[1 + et{−1 + t− sinh(t)}] + 1

2
et[−1 + 3t+ e−t(1 + t)]

x2 = 3c1e
−t + c2e

t + 3
2
e−t[1 + et{−1 + t− sinh(t)}] + 1

2
et[−1 + 3t+ e−t(1 + t)]

=⇒ x =

[
c1e
−t +

1

2
e−t
{
1 + et(−1 + t− sinh(t))

}](1
3

)
+

[
c2e

t +
1

2
et
{
−1 + 3t+ e−t(1 + t)

}](1
1

)

Examples

• Consider the system

x′ =

(
2 −5
1 −2

)
x +

(
0

cos(t)

)
.

1. First we find the eigenvalues

λ =
Tr(A)

2
± 1

2

√(
Tr(A)

)2 − 4 det(A) =⇒ λ1 = −2 + i
√
5, λ2 = −2− i

√
5.
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2. The corresponding eigenvectors are, respectively, v1 = (i
√
5, 1)T, v2 = (−i

√
5, 1)T

and so the change of basis matrix T that diagonalizes our matrix is:

T =

(
i
√
5 −i

√
5

1 1

)
.

3. Therefore, as argued above, the solution will be

x = Ty,

where

y1(t) = e(−2+i
√
5)t

∫ t

0

e−(−2+i
√
5)sh1(s)ds+c1e

(−2+i
√
5)t and y2(t) = e(−2−i

√
5)t

∫ t

0

e−(−2−i
√
5)sh2(s)ds+c2e

(−2−i
√
5)t

with
h1(t) := −2icos(t) and h2(t) := cos(t).

4. First we find the yi. We will do y1 and y2 is similar.

∫ t

0

e−(−2+i
√
5)sh1(s)ds+ c1 = −2i

∫ t

0

e−(−2+i
√
5)scos(s)ds+ c1

=
−2i

1 + (2− i
√
5)2

{
(e−t(−2+i

√
5)(sin(t) + (2− i

√
5)cos(t))− (2− i

√
5)
}
+ c1,

where we used the formula∫
e(a+ib)tcos(s)ds =

1

1 + (a+ ib)2
(et(a+ib)(sin(t) + (a+ ib)cos(t))− (a+ ib)).

we simplify by setting c1 := −2i(2−i
√
5)

1+(2−i
√
5)2

to get

y1 = et(−2+i
√
5) −2i
1 + (2− i

√
5)2

{
e−t(−2+i

√
5)(sin(t) + (2− i

√
5)cos(t))

}
=

−2i
1 + (2− i

√
5)2

{
sin(t) + (2− i

√
5)cos(t)

}
=
−2i
−4i
√
5

{
2cos(t) + sin(t)− i

√
5cos(t)

}
=

1

2
√
5

{
2cos(t) + sin(t)− i

√
5cos(t)

}
=: u(t) + iv(t)

For y2 we have

y2(t) =
1

1 + (2 + i
√
5)2

{
sin(t) + (2 + i

√
5)cos(t)

}
=

1

4i
√
5

{
2cos(t) + sin(t) + i

√
5cos(t)

}
using that i−1 = −i we obtain

=
1

4
√
5

√
5cos(t)− i

4
√
5
(2cos(t) + sin(t))

=
1

4
cos(t)− i

4
√
5
(2cos(t) + sin(t))

=: ũ(t) + iṽ(t).
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5. Undoing the change of basis we obtain:

xnh = Ty

=

(
i
√
5 −i

√
5

1 1

)(
u+ iv

ũ+ iṽ

)

=

(√
5(ṽ − v + i(u− ũ))
ṽ − v + i(u− ũ)

)

=

(√
5(ṽ − v)
ṽ − v

)
+ i

(√
5(u− ũ)
u− ũ

)
we have that

ṽ − v =
−1
4
√
5
(2cos(t) + sin(t)) + cos(t)

1

2

= cos(t)
1

2
(1− 1√

5
) + sin(t)

−1
4
√
5

and

ũ− u =
1

4
cos(t)− 1

2
√
5
(2cos(t) + sin(t))

= cos(t)
1

2
(1− 1√

5
) + sin(t)

−1
2
√
5
.

As a result,

=

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√
5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√
5

)

+ i

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

2
√
5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

2
√
5

)

6. Since we are only looking for a particular solution we only take the real part:

xnh =

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√
5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√
5

)

7. Therefore, the general solution is:

x =

[
c1e

(−2+i
√
5)t

(
i
√
5

1

)
+ c2e

(−2−i
√
5)t

(
−i
√
5

1

)]

+

(√
5(cos(t)1

2
(1− 1√

5
) + sin(t) −1

4
√
5
)

cos(t)1
2
(1− 1√

5
) + sin(t) −1

4
√
5

)

3.2 Using method of undetermined coefficients

If the components of g(t) are linear combinations of polynomial, exponential, or sinusoidal
functions, then as before we assume that the solution x is a linear combination of the same type
of functions.
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3.2.1 Example-Presenting the method

Consider the system

x′ =

(
2 −1
3 −2

)
x + et

(
1

0

)
+ t

(
0

1

)
.

1. Given g(t) =
(
et

t

)
we assume that the solution is of the form:

x(t) = atet + bet + ct+ d.

for some vectors a, b, c, and d to be found.

2. Plugging this into our system we obtain

a(tet + et) + bet + c = x′ = A
(
atet + bet + ct+ d

)
+ et

(
1

0

)
+ t

(
0

1

)
.

Therefore, we obtain algebraic equations for a,b, c,d:

a = Aa,

a + b = Ab +

(
1

0

)
,

0 = Ac +

(
0

1

)
,

c = Ad.

The first equation implies that a is an eigenvector for A with associated double eigenvalue
λ1 = 1 and so we can assume that

a =
3

2

(
1

1

)
because it will solve the second equation:

b =

(
k

k − 1
2

)
= k

(
1

1

)
− 1

2

(
0

1

)
.

By solving the remaining systems we obtain

c =

(
1

2

)
, d =

(
0

−1

)
.

Therefore, the solution is

x = c1e
−t
(
1

3

)
+

3

2

(
1

1

)
tet +

{
c2

(
1

1

)
− 1

2

(
0

1

)}
et +

(
1

2

)
t−
(
0

1

)
.

3.3 Integrating Factor

We now present an alternative method for solving nonhomogeneous first order systems. Specifi-
cally, we wish to solve the first order system described by

x′(t) = Ax(t) + g(t)

where x : R→ Rn is a column vector, A is an n× n matrix, and g : R→ Rn is continuous.
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Observe that, by moving the term Ax(t) to the other side we obtain

x′(t)−Ax(t) = g(t). (3.1)

One might be reminded of the one-dimensional nonhomogeneous differential equation given by

x′(t)− ax(t) = g(t).

You may recall that to solve such an ODE we multiplied through by an integrating factor,
µ(t), chosen carefully so that we may view the left hand side as the derivative of a product of
functions. Specifically, we choose µ to satisfy µ′(t) = −aµ(t). Multiplying through by µ and
applying the above strategy leads to the solution, as one can check,

x(t) = eat
{
C +

∫ t

0

e−asg(s)ds

}
.

Motivated by the philosophy that ODEs that look similar are probably solved by similar
techniques we attempt to use a similar strategy for the first order system. Note that since we
are working with matrices we have to be careful with what we multiply through since not all
matrices can be multiplied together (recall that matrix multiplication only makes sense if the
row and column sizes are appropriate). After some consideration we may anticipate that the
function we desire is a function of the form µ : R→Mn×n(R). That is, a function such at each
time t we obtain an n× n matrix µ(t). Multiplying our equation on the left by µ(t) gives

µ(t)x′(t)− µ(t)Ax(t) = µ(t)g(t).

If we now choose µ such that µ′(t) = −µ(t)A, where this derivative is understood componentwise
as in the case of x′, then we could rewrite the equation as(

µx
)′
(t) = µ(t)g(t)

and then integrating1 we obtain

µ(t)x(t) = C +

∫ t

0

µ(s)g(s)ds

1It is worth pondering what integration would mean here since the product of µ and g is a column vector
and not a scalar. One is usually taught that integrating a continuous scalar function f is the result of taking a
limit of Riemann sums. That is ∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x.

In view of this, we notice that if f : [a, b]→ Rm is now a vector-valued function then f is simply a column of
scalar-valued functions

(
f1, . . . , fm

)T . Observe that in this case it makes sense to write

n∑
i=1

f(xi)∆x =

n∑
i=1



f1(xi)

...

fm(xi)


∆x =



∑n
i=1 f1(xi)∆x

...

∑n
i=1 fm(xi)∆x.


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where C is a vector of constants of integration. Finally, if we are lucky enough that µ(t) is
invertible for all t then we can solve for x to obtain

x(t) =
(
µ(t)

)−1(
C +

∫ t

0

µ(s)g(s)ds

)
. (3.2)

We now try to find our candidate µ. Recall that we needed to solve the equation

µ′(t) = −µ(t)A. (3.3)

Given that the one-dimensional case had A on the left hand side of the candidate function one
might find it odd to have the matrix A on the right for this computation. To fix this, we define
y(t) =

(
µ(t)

)T . Transposing equation (3.3) we obtain

y′(t) =
(
µ′(t)

)T
=
(
−µ(t)A

)T
= −AT

(
µ(t)

)T
= −ATy(t).

Observe that if we write y is columns then the above can be understood as[
y′1(t) · · · y′n(t)

]
= AT

[
y1(t) · · · yn(t)

]
=
[
−ATy1(t) · · · −ATyn(t)

]
which means that each column yi satisfies the first order homogeneous system

y′i(t) = −ATyi(t).

Suppose now we choose the columns of y to be n-linearly independent solutions (i.e fundamental
solutions) of this first order homogeneous system. Then we will have found y which means
we have found µ by transposing. Specifically, choose y1 . . . ,yn to be n-linearly independent
solutions. Now we let y(t) =

[
y1(t) · · · yn(t)

]
. This tells us that

µ(t) =
(
y(t)

)T
=


(
y1(t)

)T
...(

yn(t)
)T
.

One can check that equation
(
3.3
)
is satisfied. Since we chose that the solutions yi are all linearly

independent then µ(t) is invertible for all t. In particular the formula given in equation
(
3.2
)
is

valid.2 Note that the above technique results in a more general answer than the technique given
by using diagonalization since we did not assume anything about the matrix A. However, we
can see that the cost of generality is that obtaining the solution is more challenging.

To make the above construction more notationally clear we use the concept of a

Now taking limits suggests the definition

∫ b

a

f(x)∆x :=



∫ b

a
f1(x)dx

...

∫ b

a
fm(x)dx.


2One might try to check that the formula for the solution given in equation

(
3.2
)
is in fact correct. Note,

however, that this computation is actually somewhat sophisticated since you have to differentiate the function(
µ(t)

)−1 which requires computing the derivative of the function that assigns the inverse of a matrix.
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matrix exponential in the following section outlining the steps to implementing the above
construction. The matrix exponential, etA, (whose formula for a 2 × 2 matrix depends on
whether its eigenvalues are complex, real and repeated, or real and distinct) is the matrix whose
columns are the fundamental solutions to the problem x′ = Ax and whose value at t = 0 is the
identity. Notice that the notation was deliberately chosen to remind you of the scalar ODE
x′ = ax whose solution (up to a constant) is eta.

3.3.1 Method formal steps

1. As usual we first find the eigenvalues λ1, λ2 of the homogeneous system x′ = Ax.

2. Identifying the exponential of A:

• If the eigenvalues are distinct then

etA := eλ1t
1

λ1 − λ2
(A− λ2I2)− eλ2t

1

λ1 − λ2
(A− λ1I2).

• If λ = λ1 = λ2 then
etA := eλtI2 + eλtt(A− λI2).

• If λ1 = a+ ib, λ2 = a− ib then

etA :=
eat

b
{b cos(bt)I2 + sin(bt)(A− aI2)}.

3. We compute e−tA by inverting the matrix etA (see the linear algebra appendix)

4. Finally we obtain the general solution for our system (using identities proven in the linear
algebra appendix):

x(t) =
(
µ(t)

)−1(
C +

∫ t

0

µ(s)g(s)ds

)
= exp

{
tA
}(

C +

∫ t

0

exp
{
− sA

}
g(s)ds

)
(3.4)

3.3.2 Example-Presenting the method

Consider the system

x′ =

(
1 1

0 1

)
x +

(
et

1

)
. (3.5)

Notice that the matrix A in equation
(
3.5
)
has only 1 as an eigenvalue but the only solution to(

1 1

0 1

)
v = v

is
v = a

(
1

0

)
for a ∈ R. So this matrix is not diagonalizable and hence the diagonalization method does not
apply. However, the integrating factor technique will still work. Following step 1 we notice that
we have a repeated eigenvalue λ = 1. By step 2 we obtain that

etA = etI2 + ett(A− I2) =

(
et tet

0 et

)
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By step 3 we learn that

(etA)−1 = e−tA =

[
e−t −te−t

0 e−t

]
.

Finally, by equation
(
3.4
)
we learn that the general solution is:

x(t) =

[
et tet

0 et

](
C +

∫ t

0

[
e−s −se−s

0 e−s

][
es

1

]
ds

)
=

[
et tet

0 et

](
C +

∫ t

0

[
1− se−s

e−s

]
ds

)

=

[
et tet

0 et

](
C +

[
t− 1 + e−t + te−t

1− e−t

])
=

[
et tet

0 et

]
C +

[
2tet − et + 1

et − 1

]

One can check that this solves equation
(
3.5
)
since

x′(t) =

[
et tet + et

0 et

]
C +

[
2tet + et

et

]

while

Ax(t) + g(t) =

[
et tet + et

0 et

]
C +

[
2tet

et − 1

]
+

[
et

1

]
=

[
et tet + et

0 et

]
C +

[
2tet + et

et

]
.

3.4 Variation of Parameters

Given the complexity of the process to solve the inhomogeneous first order system found in
section

(
3.3
)
one might wish to find a simpler way of obtaining the solution. This is possible if

one is more clever about how they proceed. Recall that for the scalar inhomogeneous equation
x′(t) = ax(t) + g(t) the general solution is

x(t) = eat
(
C +

∫ t

0

e−asg(s)ds

)
where C is a constant. Observe that the term Ceat actually solves the homogeneous equation
x′(t) = ax(t). Thus, the part of this solution that is needed to solve the inhomogeneous equation
is

eat
∫ t

0

e−asg(s)ds.

Observe that this looks like the solution to the homogeneous equation multiplied by a new
function. Inspired by this we might try to solve the system

x′(t) = Ax(t) + g(t). (3.6)

by using the ansatz
x(t) = X(t)y(t)

where X(t) is the n×n matrix consisting of n linearly independent solutions to the homogeneous
equation and y is to be determined. Note that X plays the role of eat from the scalar case.
Thus, we desire that

x′(t) = Ax(t) + g(t) = AX(t)y(t) + g(t)

but we have
x′(t) = X′(t)y(t) + X(t)y′(t) = AX(t)y(t) + X(t)y′(t).
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Comparing these two equations we see that we must demand

X(t)y′(t) = g(t)

which becomes after solving for y′(t), since X(t) is invertible,

y′(t) =
(
X(t)

)−1
g(t).

Integrating then gives

y(t) = C +

∫ t

0

(
X(s)

)−1
g(s)ds.

Thus, we have found the solution

x(t) = X(t)

(
C +

∫ t

0

(
X(s)

)−1
g(s)ds

)
.

There are a few of advantages to this solution over the one found in section
(
3.3
)
. First, notice

that it is not too hard to verify that this does in fact solve
(
3.6
)
. Second, unlike the solution

found in section
(
3.3
)
this formula makes reference directly to the matrix of fundamental

solutions to the homogeneous system. As a result of this, less computations are needed. In
particualr, exponential matrix identities are not needed to make this expression simpler.

Method formal steps

1. Solve the homogeneous systems to find two linearly independent solutions x1(t) =
(
x1,1(t)
x1,2(t)

)
and x2(t) =

(
x2,1(t)
x2,2(t)

)
to form the fundamental matrix:

Ψ(t) :=

[
x1,1(t) x2,1(t)

x1,2(t) x2,2(t)

]
,

which satisfies Ψ′ = AΨ

2. We make the ansatz we have xnh(t) = Ψ(t) · v(t) = Ψ(t) ·
(
v1(t)
v2(t)

)
.

3. Plugging this guess to the equation we obtain the system:

Ψ(t) · v′(t) = g(t)⇒[
x1,1(t) x2,1(t)

x1,2(t) x2,2(t)

]
·
(
v′1(t)

v′2(t)

)
=

(
g1(t)

g2(t)

)
⇒

we obtain the system {
x1,1(t)v

′
1 + x1,2(t)v

′
2 = g1(t)

x2,1(t)v
′
1 + x2,2(t)v

′
2 = g2(t)

4. Solving this system for v′1, v′2 we then integrate to obtain v1, v2 and finally obtain the
xnh(t) = Ψ(t) · v(t).
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Examples

• Consider the system

x′(t) =

[
1 1

4 −2

]
x +

(
e−2t

−2et

)
.

1. First we find the fundamental matrix Ψ: the eigenpairs are (−3,
(−1

4

)
), (2,

(
1
1

)
) and

so the fundamental matrix is:

Ψ =

[
−e−3t e2t

4e−3t e2t

]
.

2. The system is

{
−e−3tv′1 + e2tv′2 = e−2t

4e−3tv′1 + e2tv′2 = −2et

and we obtain

v′(t) =

[
−e−3t e2t

4e−3t e2t

]−1(
e−2t

−2et

)
=

1

−5

(
et + 2e4t

−4e−4t + 2e−t

)
⇒

v(t) =
1

−5

(
et + e2t

e−4t − 2e−t

)
.

Therefore, the nonhomogeneous solution is

xnh(t) =
1

−5

(
−2et − e−t

−2et + 6e−2t + 4e−t

)
.

The general solution is

x(t) = c1e
−3t
(
−1
4

)
+ c2e

2t

(
1

1

)
+

1

−5

(
−2et − e−t

−2et + 6e−2t + 4e−t

)
.

3. From the above solution we note that the dominating term is e2t
(
1
1

)
and even the

second dominating term et
(
1
1

)
is along the same span. So since the rest of the terms

go to zer, we expect the solution to converge to the linear span of
(
1
1

)
.

Figure 3.1: Phase portrait
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• Consider the system

x′(t) =

[
−1 −1
1 −3

]
x +

(
e−2t

−2et

)
.

1. First we find the fundamental matrix Ψ: the eigenvalue is (−2,
(
1
1

)
) and η = k

(
1
1

)
−
(
0
1

)
,

therefore, the solution is

x(t) =c1e
−2t
(
1

1

)
+ c2(e

−2t
(
1

1

)
t−
(
0

1

)
e−2t)⇒

Ψ(t) =

[
e−2t te−2t

e−2t e−2t(t− 1)

]
.

2. The system is

{
e−2tv′1 + te−2tv′2 = e−2t

e−2tv′1 + e−2t(t− 1)v′2 = −2et

and we obtain

v′(t) =

(
1− t(1 + 2e3t)

1 + 2e3t

)
⇒

v(t) =

(
t− 1

2
t2 − 2

3
te3t + 1

9
e3t

t+ 2
3
e3t

)
.

Therefore, the nonhomogeneous solution is

xnh(t) =

(
e−2t(−t2/2− 2/3e3tt+ t+ e3t/9) + e−2tt(t+ (2e3t)/3)

e−2t(−t2/2− 2/3e3tt+ t+ e3t/9) + e−2t(t− 1)(t+ (2e3t)/3)

)
.

The general solution is

x(t) = c1e
−2t
(
1

1

)
+ c2(e

−2t
(
1

1

)
t−
(
0

1

)
e−2t) + xnh(t).

• Consider the system

x′(t) =

[
4 −2
8 −4

]
x +

(
t−3

−t−2

)
.

1. First we find the fundamental matrix Ψ: the eigenvalue is (0,
(
1
2

)
) and η = k

(
1
4

)
−
(
0
1

)
,

therefore, the solution is

x(t) =c1

(
1

4

)
+ c2(t

(
1

4

)
−
(
0

1

)
)⇒

Ψ(t) =

[
1 t

4 4t− 1

]
.

2. The system is

{
v′1 + tv′2 = t−3

4v′1 + (4t− 1)v′2 = −t−2
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and we obtain

a = −(t2 + 4t− 1)/t3andb = (t+ 4)/t3andt! = 0v′(t) =

(
−(t−1 + 4t−2 − t−3)

t−2 + 4t−3

)
⇒

v(t) =

(8t−1
2t2
− log(t)
− t+2

t3

)
.

Therefore, the nonhomogeneous solution is
xnh(t) = Ψ(t)v(t)

=

[
1 t

4 4t− 1

](8t−1
2t2
− log(t)
− t+2

t3

)
=

(
(−2+t

t2
+ −1+8t

2t2
− log(t)

− ((2+t)(−1+4t))
t3

+ 4((−1+8t)
2t2

− log(t)))

)
The general solution is

x(t) = c1e
−2t
(
1

1

)
+ c2(e

−2t
(
1

1

)
t−
(
0

1

)
e−2t) + xnh(t).
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4 Problems

4.1 Real eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour (what is
the dominating term and the limit). Draw the two eigenvector’s spans and draw arrows
towards the dominating term. Is it a saddle or a sink to the origin?

1.
x′ =

(
3 −2
2 −2

)
x.

2.
x′ =

(
1 −2
3 −4

)
x.

• Find the particular solution of the system. Describe the asymptotic behaviour (what is
the dominating term and the limit). Draw the two eigenvector’s spans and draw arrows
towards the dominating term.

1.
x′ =

(
5 −1
3 1

)
x, x(0) =

(
2

−1

)
,

2.
x′ =

(
4 −3
8 −6

)
x, x(0) =

(
1

1

)
.

• For some a ∈ [1
2
, 2] consider the system

x′ =
( −1 −1
−a −1

)
x.

Find the general solution in terms of a. Determine the asymptotic behaviour for a = 1
2
and

for 2, and find the a∗ ∈ [1
2
, 2],called the bifurcation value, where the asymptotic behaviour

changes.

• (*)The amounts of salt x1(t), x2(t) in the two tanks satisfy the equations

dx1
dt

= −k1x1,
dx2
dt

= k1x1 − k2x2 with x1(0) = 15, x2(0) = 0,

where k1 = r
V1

= 1
5
, k2 = r

V2
= 2

5
. Find the particular solution and determine the

asymptotic behaviour. What does it tell you about the tank’s salt concentration?

Figures/systems_tanks_real.PNG

Figure 4.1: The two brine tanks.

4.2 Complex eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour. Are the
trajectories forming a spiral source, a spiral sink or concentric circles?

1.
x′ =

(
4 −3
3 4

)
x.

44



2.
x′ =

(
1 −4
1 1

)
x.

3.
x′ =

(
1 2
−5 −1

)
x.

• (*) Find the general solution of the system. Find the bifurcation value or values of α where
the qualitative nature of the phase portrait for the system changes. Draw a phase portrait
for a value of α slightly below, and for another value slightly above, each bifurcation value.

x′ =
(
α 1
−1 α

)
x.

• (*)Consider the circuit

d

dt

(
I

V

)
=
( − 1

2
− 1

8

2 −1
2

)( I
V

)
.

Solve and determine long term behaviour. Is it asymptotically stable?

Figure 4.2: The circuit with complex eigenvalues.

4.3 Repeated eigenvalues

• Find the general solution of the system. Describe the asymptotic behaviour. Are the
trajectories forming a source or sink behaviour wrt the origin?

1.
x′ =

( −1 0
0 −1

)
x.

2.
x′ =

(
3 −4
1 −1

)
x.

3. Find the particular solution and determine the asymptotic behaviour as above:

x′ =
(
1 −4
4 −7

)
x, x(0) =

(
3

2

)
.

4.4 Differential inequalities

1. In this question we will show the following result: Suppose x : [a, b]→ Rn is a function
that is continuous on [a, b], differentiable on (a, b), and satisfies, for A ∈ Mn×n(R) a
diagonal matrix,

x′(t) ≤ Ax(t)

for all t ∈ (a, b), where the inequality means that each component of the left hand side is
smaller than the corresponding component on the right hand side. Then

x(t) ≤ e(t−a)Ax(a).3

3This is known as Grönwall’s inequality. The principle involved here is that if a function grows no quicker
than Ax(t) then the value of the function should not exceed the solution of x′(t) = Ax(t) which maximizes its
growth.
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(a) First show that if A ∈Mn×n(R) then Ax ≥ 0n×1 whenever x ≥ 0n×1 if and only if
A is a non-negative matrix (all entries in the matrix are non-negative).

(b) Next show that if t ≥ 0 then etA is a non-negative matrix if and only if A has
non-negative off diagonal entries.4

(c) Consider the function w : [a, b]→ R defined by5

w(t) = e(a−t)Ax(t).

Show, using (1b), that w′(t) ≤ 0n×1 for t ∈ (a, b).
(d) Conclude that each component of w is decreasing on [a, b].

(e) Finally, conclude that e(a−t)Ax(t) = w(t) ≤ w(a) = x(a) which can be rewritten as

x(a)− e(a−t)Ax(t) ≥ 0n×1.

Use (1b) to conclude the desired inequality.

2. In this question we show that solutions to the initial value problem x′(t) = Ax(t)
for t ∈ (a, b) with x(a) = x0 are unique using Grönwall type inequalities. Suppose
x,y : [a, b] → R are continuous on [a, b] and differentiable on (a, b). Suppose also that
they satisfy x′(t) = Ax(t) on (a, b) as well as y′(t) = Ay(t) on (a, b).

(a) First show that, for t ∈ (a, b)

1

2

d

dt

(
‖x(t)− y(t)‖2

)
=
(
x(t)− y(t)

)T
A
(
x(t)− y(t)

)
.

(b) Next use equation (4.1) and the previous step to conclude that

1

2

d

dt

(
‖x(t)− y(t)‖2

)
≤ λn(A)‖x(t)− y(t)‖2.

(c) Argue that we obtain, for t ∈ [a, b],

‖x(t)− y(t)‖2 ≤ e2tλn(A)‖x(a)− y(a)‖2.

(d) Deduce that if x(a) = y(a) then x(t) = y(t) for all t ∈ [a, b].

4.5 Systems of ODEs and Quadratic forms

1. (a) In this problem we show that if A has only positive eigenvalues, x(0) 6= 0n×1, and if
x′(t) = Ax(t) then ‖x(t)‖ → +∞ as t→ +∞.
i. First, show that

1

2

d

dt

(
‖x(t)‖2

)
=
(
x(t)

)T
Ax(t).

ii. Next, observe that
min
‖x‖=1

{
xTAx

}
= λ1(A)

where λ1(A) denotes the smallest eigenvalue of A. To see this, note that A is
diagonalizable and so we can represent x as a linear combination of orthonormal

4Such matrices are called Metzler matrices.
5Some properties of the matrix exponential will be used here. Please refer to the linear algebra appendix for

proofs of these properties.

46



eigenvectors u1, . . . ,un. So we have

Ax = A

(
n∑
i=1

c1ui

)
=

n∑
i=1

λi(A)ciui

which means

xTAx =
n∑
i=1

λic
2
i ≥ λ1(A)

n∑
i=1

c2i = λ1(A)‖x‖2 = λ1(A)

and observe that x was an arbitrary unit vector. Note that equality can be
obtained.

iii. Using the previous two questions observe that

1

2

d

dt

(
‖x(t)‖2

)
≥ λ1(A)‖x(t)‖2.

Using the integrating factor e−2tλ1(A) conclude that

d

dt

(
e−2tλ1(A)‖x(t)‖2

)
≥ 0.

iv. Conclude that
‖x(t)‖2 ≥ ‖x(0)‖2e2tλ1(A).

(b) In this problem we show that if A has all negative eigenvalues then ‖x(t)‖ → 0 as
t→ +∞ if x′(t) = Ax(t).
i. Show that, as in the previous question,

max
‖x‖=1

{
xTAx

}
= λn(A) (4.1)

and conclude that
1

2

d

dt

(
‖x(t)‖2

)
≤ λn(A)‖x(t)‖2.

ii. Conclude that
‖x(t)‖2 ≤ ‖x(0)‖2e2tλn(A).

2. In this problem we will demonstrate how to find a solution with perpendicular trajectories
in R2. Suppose x,y : R → R2 solve x′(t) = Ax(t) and y′(t) = By(t) respectively,
where A,B ∈ M2×2(R). Assume also that, for all a ∈ R2, that if x(0) = a = y(0) then
x′(0) ⊥ y′(0).

(a) Use the conditions given in the problem description to conclude that

a ·
(
ATBa

)
= 0

for all a ∈ R2.
(b) Conclude that there is a constant c ∈ R such that

ATB = c

(
0 1

−1 0

)
.

(c) If c = 0 conclude that either A = 02×2, B = 02×2, or ATB = 02×2 while A and B
are both not the zero matrix. In the event that ATB = 02×2 even though both A
and cB are both not the zero matrix show that im(A) ⊥ im(B).
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(d) Now we may assume that c 6= 0. By taking determinants show that both A and B
are invertible. Finally, conclude that either

ATB = cRπ
2

or
ATB = cR−π

2

for some c > 0 where R±π
2
denote rotation matrices at angles ±π

2
respectively. Use

this to conclude that
B = c

(
A−1

)T
R±π

2
.
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