Outline

(1) Autonomous systems and nullcli

Figure: competing species separatrix
(2) Competing species

As in the 1D case we will study the following system:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=F(x, y), \frac{\mathrm{d} y}{\mathrm{dt}}=G(x, y),
$$

where F, G are continuously differentiable functions. Here again we might not be able to obtain explicit solutions, but we can provide a qualitative analysis.
(1) First, we find the critical points by setting

$$
F(x, y)=0 \text { and } G(x, y)=0
$$

(2) Sometimes we can even solve such systems by taking their ratio:

$$
\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{\frac{\mathrm{d} y}{\mathrm{dt}}}{\frac{\mathrm{~d} x}{\mathrm{dt}}}=\frac{G(x, y)}{F(x, y)}
$$

This ratio depends only on x and y (and not t), so methods from the first order section could be used.

presenting the method

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-\omega^{2} \sin (x) .
$$

(1) First we find the critical points. We have $(k \pi, 0)$ for integer k.
(2) next we find the parametric solutions. The equation

$$
\frac{d y}{d x}=\frac{-\omega^{2} \sin (x)}{y}
$$

is separable and so we obtain:

$$
y^{2}=\omega^{2} \cos (x)+c
$$

presenting the method

(3) Next we do a detailed nullcline analysis (see handnotes) take $\omega^{2}=1$.
(4) The linearized system around the origin is

$$
x^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-\omega^{2} & 0
\end{array}\right] \mathbf{x},
$$

which indeed has concentric circles as its phase portrait.

In class example

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=2 y, \frac{\mathrm{~d} y}{\mathrm{dt}}=8 x
$$

(1) (5 minutes) Find parametric solution.
(2) (10 minutes) Do nullcline analysis around the origin.
(3) (10 minutes) For the linearized system

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
0 & 2 \\
8 & 0
\end{array}\right] \mathrm{x}
$$

find general solution and phase portrait.

In class example

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=-x+y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-x-y
$$

(1) (5 minutes) Find parametric solution.
(2) (10 minutes) Do nullcline analysis around the origin.
(3) (10 minutes) For the linearized system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-1 & 1 \\
-1 & -1
\end{array}\right] \mathbf{x}
$$

find general solution and phase portrait.

In class example

Consider the system (Duffing's equation)

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-x+\frac{x^{3}}{6}
$$

(1) (5 minutes) Find parametric solution.
(2) (10 minutes) Do nullcline analysis around the origin.
(3) (10 minutes) For the linearized system

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{x}
$$

find general solution and phase portrait.

Competing species: absence of competition

Suppose that in some closed environment there are two similar species competing for a limited food supply-

Competing species: absence of competition

Suppose that in some closed environment there are two similar species competing for a limited food supply- for example, two species of fish in a pond that do not prey on each other but do compete for the available food.

Competing species: absence of competition

Suppose that in some closed environment there are two similar species competing for a limited food supply- for example, two species of fish in a pond that do not prey on each other but do compete for the available food.

- Let x and y be the populations of the two species at time t.

Competing species: absence of competition

Suppose that in some closed environment there are two similar species competing for a limited food supply- for example, two species of fish in a pond that do not prey on each other but do compete for the available food.

- Let x and y be the populations of the two species at time t.
- As discussed before, we assume that the population of each of the species, in the absence of the other, is governed by a logistic equation

Competing species: absence of competition

Suppose that in some closed environment there are two similar species competing for a limited food supply- for example, two species of fish in a pond that do not prey on each other but do compete for the available food.

- Let x and y be the populations of the two species at time t.
- As discussed before, we assume that the population of each of the species, in the absence of the other, is governed by a logistic equation

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{dt}}=x\left(\varepsilon_{1}-\sigma_{1} x\right) \\
& \frac{\mathrm{d} y}{\mathrm{dt}}=y\left(\varepsilon_{2}-\sigma_{2} y\right)
\end{aligned}
$$

Competing species: including competition

However, when both species are present, each will tend to diminish the available food supply for the other.

Competing species: including competition

However, when both species are present, each will tend to diminish the available food supply for the other.

- In effect, they reduce each others growth rates and saturation populations:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{dt}}=x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right) \\
& \frac{\mathrm{d} y}{\mathrm{dt}}=y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)
\end{aligned}
$$

Competing species: including competition

However, when both species are present, each will tend to diminish the available food supply for the other.

- In effect, they reduce each others growth rates and saturation populations:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{dt}}=x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right) \\
& \frac{\mathrm{d} y}{\mathrm{dt}}=y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)
\end{aligned}
$$

- The α_{1} is a measure of the degree to which species y interferes with species x and similarly for α_{2}.

First we find the critical points

$$
\begin{aligned}
& \left\{\begin{array}{l}
x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right)=0 \\
y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)=0
\end{array} \Rightarrow\right. \\
& (0,0),\left(\frac{\varepsilon_{1}}{\sigma_{1}}, 0\right),\left(0, \frac{\varepsilon_{2}}{\sigma_{2}}\right), \text { and }\left(\frac{\varepsilon_{1} \sigma_{2}-\varepsilon_{2} \alpha_{1}}{\sigma_{1} \sigma_{2}-\alpha_{1} \alpha_{2}}, \frac{\varepsilon_{2} \sigma_{1}-\varepsilon_{1} \alpha_{2}}{\sigma_{1} \sigma_{2}-\alpha_{1} \alpha_{2}}\right) .
\end{aligned}
$$

First we find the critical points

$$
\begin{aligned}
& \left\{\begin{array}{l}
x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right)=0 \\
y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)=0
\end{array} \Rightarrow\right. \\
& (0,0),\left(\frac{\varepsilon_{1}}{\sigma_{1}}, 0\right),\left(0, \frac{\varepsilon_{2}}{\sigma_{2}}\right), \text { and }\left(\frac{\varepsilon_{1} \sigma_{2}-\varepsilon_{2} \alpha_{1}}{\sigma_{1} \sigma_{2}-\alpha_{1} \alpha_{2}}, \frac{\varepsilon_{2} \sigma_{1}-\varepsilon_{1} \alpha_{2}}{\sigma_{1} \sigma_{2}-\alpha_{1} \alpha_{2}}\right)
\end{aligned}
$$

For the last critical point to be a realistic steady state we require that both components are positive.

Competing species: linearize

We linearize the system by 2D-Taylor expanding

$$
F(x, y)=\binom{x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right)}{y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)}
$$

around critical point $\left(x_{0}, y_{0}\right)$:

Competing species: linearize

We linearize the system by 2D-Taylor expanding

$$
F(x, y)=\binom{x\left(\varepsilon_{1}-\sigma_{1} x-\alpha_{1} y\right)}{y\left(\varepsilon_{2}-\sigma_{2} y-\alpha_{2} x\right)}
$$

around critical point $\left(x_{0}, y_{0}\right)$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y} & =F(x, y)=J_{F}\left(x_{0}, y_{0}\right)+\binom{x-x_{0}}{y-y_{0}}+O\left(\left\|\left(x-x_{0}, y-y_{0}\right)\right\|^{2}\right) \\
& =\left(\begin{array}{cc}
\varepsilon_{1}-2 \sigma_{1} x_{0}-\alpha_{1} y_{0} & -\alpha_{1} x_{0} \\
-\alpha_{2} y_{0} & \varepsilon_{2}-\alpha_{2} x_{0}-2 \sigma_{2} y_{0}
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}+O(\|(x-x
\end{aligned}
$$

Competing species: around critical points

We determine the stability behaviour around each of the critical points.
(1) At $\left(x_{0}, y_{0}\right)=(0,0)$ we have

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)\binom{x}{y}+O\left(\|(x, y)\|^{2}\right) .
$$

The End

