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Figure: competing species
separatrix



As in the 1D case we will study the following system:

dx

dt
= F (x , y),

dy

dt
= G (x , y),

where F ,G are continuously differentiable functions. Here again we might
not be able to obtain explicit solutions, but we can provide a qualitative
analysis.
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1 First, we find the critical points by setting

F (x , y) = 0 and G (x , y) = 0.

2 Sometimes we can even solve such systems by taking their ratio:

dy

dx
=

dy
dt
dx
dt

=
G (x , y)

F (x , y)
.

This ratio depends only on x and y (and not t), so methods from the
first order section could be used.
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presenting the method

Consider the system

dx

dt
= y ,

dy

dt
= −ω2sin(x).

(1) First we find the critical points. We have (kπ, 0) for integer k.

(2) next we find the parametric solutions. The equation

dy

dx
=
−ω2sin(x)

y

is separable and so we obtain:

y2 = ω2cos(x) + c.
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presenting the method

(3) Next we do a detailed nullcline analysis (see handnotes) take ω2 = 1.

(4) The linearized system around the origin is

x′ =

[
0 1
−ω2 0

]
x,

which indeed has concentric circles as its phase portrait.
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In class example

Consider the system

dx

dt
= 2y ,

dy

dt
= 8x .

1 (5 minutes) Find parametric solution.

2 (10 minutes) Do nullcline analysis around the origin.

3 (10 minutes) For the linearized system

x′ =

[
0 2
8 0

]
x

find general solution and phase portrait.
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In class example

Consider the system

dx

dt
= −x + y ,

dy

dt
= −x − y .

1 (5 minutes) Find parametric solution.

2 (10 minutes) Do nullcline analysis around the origin.

3 (10 minutes) For the linearized system

x′ =

[
−1 1
−1 −1

]
x

find general solution and phase portrait.
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In class example

Consider the system (Duffing’s equation)

dx

dt
= y ,

dy

dt
= −x +

x3

6
.

1 (5 minutes) Find parametric solution.

2 (10 minutes) Do nullcline analysis around the origin.

3 (10 minutes) For the linearized system

x′ =

[
0 1
−1 0

]
x

find general solution and phase portrait.
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Competing species: absence of competition

Suppose that in some closed environment there are two similar species
competing for a limited food supply—

for example, two species of fish in a
pond that do not prey on each other but do compete for the available
food.

Let x and y be the populations of the two species at time t.

As discussed before, we assume that the population of each of the
species, in the absence of the other, is governed by a logistic equation

dx

dt
= x(ε1 − σ1x)

dy

dt
= y(ε2 − σ2y)
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Competing species: including competition

However, when both species are present, each will tend to diminish the
available food supply for the other.

In effect, they reduce each others growth rates and saturation
populations:

dx

dt
= x(ε1 − σ1x − α1y)

dy

dt
= y(ε2 − σ2y − α2x)

The α1 is a measure of the degree to which species y interferes with
species x and similarly for α2.
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First we find the critical points

{
x(ε1 − σ1x − α1y) = 0
y(ε2 − σ2y − α2x) = 0

⇒

(0, 0), (
ε1

σ1
, 0), (0,

ε2

σ2
), and (

ε1σ2 − ε2α1

σ1σ2 − α1α2
,
ε2σ1 − ε1α2

σ1σ2 − α1α2
).

For the last critical point to be a realistic steady state we require that both
components are positive.
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Competing species: linearize

We linearize the system by 2D-Taylor expanding

F (x , y) =

(
x(ε1 − σ1x − α1y)

y(ε2 − σ2y − α2x)

)
around critical point (x0, y0):

d

dt

(
x

y

)
= F (x , y) = JF (x0, y0) +

(
x − x0

y − y0

)
+ O(‖(x − x0, y − y0)‖2)

=

(
ε1 − 2σ1x0 − α1y0 −α1x0

−α2y0 ε2 − α2x0 − 2σ2y0

)(
x − x0

y − y0

)
+ O(‖(x − x0, y − y0)‖2).
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Competing species: around critical points

We determine the stability behaviour around each of the critical points.

(1) At (x0, y0) = (0, 0) we have

d

dt

(
x

y

)
=

(
ε1 0
0 ε2

)(
x

y

)
+ O(‖(x , y)‖2).
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The End
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