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1 Laplace transform for 1D ODEs

The Laplace transform of continuous functions f(t) with at most exponential growth, that is
|f(t)| ≤ ceat for a ≥ 0 and c ≥ 0, is defined as:

L{f}(s) :=

∫ ∞
0

e−stf(t)dt,

where s > a. In future, we denote continuous functions such that |f(t)| ≤ ceat for a ≥ 0,
c ≥ 0, and for all t ≥ 0 as C([0,∞), eat), where if a = 0 we understand this as the space of
bounded continuous functions on [0,∞). Note that we have dropped the constant c from the
definition of C([0,∞), eat) since only a affects the region of definition of the Laplace transform.
By integrating by parts we can easily check that we have:

L{f ′}(s) = sL{f} − f(0)

so for the second derivative we have, by iterating the previous observation,

L{f ′′}(s) = sL{f ′} − f ′(0) = s2L{f} − f ′(0)− sf(0).

Continuing with the above observation we see that

L{f (m)}(s) = smL{f} −
m−1∑
j=0

sjfm−j−1(0)

where f (m) denotes themth derivative of f . Another useful property is that the Laplace transform
is linear on continuous function of exponential growth. First observe that if f, g ∈ C([0,∞), eat)

then linear combination of f, g also belong to C([0,∞), eat). Thus, the Laplace transform is
defined on f + g, for f, g ∈ C([0,∞), eat), and satisfies:

L{f + g}(s) = L{f}(s) + L{g}(s)

for s > a.

Method formal steps

1. Starting from the equation ay′′(t) + by′(t) + cy(t) = g(t) we compute the laplace transform
of both sides, assuming an exponential growth condition on y and g, to obtain:

aL{y′′}(s) + bL{y′}(s) + cL{y}(s) = L{g}(s)
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we obtain from above:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c
.

2. So by inverting the laplace transform (using linearity and known inversions) we can obtain
solution y(t) back. Note that inverting the laplce transform is permitted by Lerch’s
theorem (3) which says that if two functions, f1 and f2, have the same laplace transform
then they are "essentially” equal.

3. The main computational aspect of this is splitting partial fractions to get the known
relations. But Heaviside motivated by the same problem when computing the Laplace
transform, came up with the cover-up method. In computing the coefficients below

p(s)

(s− a1) · · · (s− an)
=

A1

s− a1

+ ...+
An

s− an
,

for polynomial p(s), we see by rearranging that:

p(s)

(s− a1) · · · (s− ai−1)(s− ai+1) · · · (s− an)
=
A1(s− ai)
s− a1

+ ...+ Ai + ...+
An(s− ai)
s− an

,

and by setting s = ai we obtain the ith coefficient Ai:

Ai =
p(ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

Here is a table of known Laplace transforms (see section 3 for proofs):
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function f(t) = L−1{g}(t) Laplace transform g(s) = L{f}(s) Region of definition

constant a
a

s
s > 0

sin(at)
a

s2 + a2
s > 0

cos(at)
s

s2 + a2
s > 0

eat
1

s− a
s > a

sin(bt)eat
b

(s− a)2 + b2
s > a

cos(bt)eat
s− a

(s− a)2 + b2
s > a

fstep(t, a) :=

{
1, 0 ≤ t ≤ a

0, t > a

1− e−as

s
s > 0

ea(t−b)fheavy(t, b) := ea(t−b)(1− fstep(t, b)
) e−bs

s− a
s > a

tn
n!

sn+1
s > 0

tp, p > −1
Γ(p+ 1)

sp+1
s > 0

tneat
n!

(s− a)n+1
s > a

Examples

• Consider the equation

y′′(t)− y′(t)− 6y(t) = 0, y(0) = 1, y′(0) = −1.

1. By taking the Laplace transform of both sides we obtain:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation we have

=
y(0)(s− 1) + y′(0)

s2 − s− 6

for our IC we have

=
(s− 1)− 1

s2 − s− 6

=
s− 2

(s− 3)(s+ 2)
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2. Next we split it into partial fractions

L{y}(s) =
s− 2

(s− 3)(s+ 2)

=
1/5

s− 3
+

4/5

s+ 2

So we use L{eat} = 1
s−a ⇐⇒ eat = L{ 1

s−a}
−1

y(t) = L−1
{ 1/5

s− 3
+

4/5

s− (−2)

}
(t)

=
1

5
e3t +

4

5
e−2t.

3. Indeed, using the method of characteristic equations for second order equations we
obtain

y(t) = c1e
3t + c2e

−2t.

Therefore, by using the IC we have{
1 = y(0) = c1 + c2

−1 = y′(0) = 3c1 − 2c2

=⇒

{
c1 = 1

5

c2 = 4
5

.

4. So for homogeneous equations it is clearly much faster and less error prone to use
the method of characteristics.

• Consider the nonhomogeneous equation

y′′(t)− 2y′(t) + 2y(t) = e−t, y(0) = 0, y′(0) = 1

1. First we take the Laplace transform of both sides to obtain:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation it becomes

=
1
s+1

+ y′(0) + y(0)(s− 2)

s2 − 2s+ 2

=
1
s+1

+ 1

s2 − 2s+ 2

=
s+ 2

(s+ 1)(s2 − 2s+ 2)

by partial fractions we obtain

=
1

5(s+ 1)
+

8− s
5(s2 − 2s+ 2)

=
1

5(s+ 1)
+

8− s
5(s− (1− i))(s− (1 + i))

repeating partial fractions for the last term we have

=
1

5(s+ 1)
+

7
2
i− 1

2

5(s− (1− i))
+

−7
2
i− 1

2

5(s− (1 + i))
.
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So by inverting the Laplace transform we have

y(t) = L−1

{
1

5(s+ 1)

}
+ L−1

{ 7
2
i− 1

2

5(s− (1− i))

}
+ L−1

{ −7
2
i− 1

2

5(s− (1 + i))

}
=

1

5
e−t +

( 7

10
i− 1

10

)
e(1+i)t +

(−7

10
i− 1

10

)
e(1−i)t.

2. Let’s check this with the method of undetermined coefficients.
(a) First we solve the homogeneous problem. The method of characteristics gives:

xh(t) = c1e
(1+i)t + c2e

(1−i)t.

(b) We make the ansatz xnh(t) = ce−t (here s = 0 because r∗ = −1 is not a root).
Plugging in we have

ce−t + 2ce−t + 2ce−t = e−t =⇒ c+ 2c+ 2c = 1 =⇒ c = 1/5,

which is the same nonhomogeneous solution as in the Laplace transform.
(c) Next we evaluate the coefficients.{

0 = y(0) = c1 + c2 + 1
5

1 = y′(0) = (1 + i)c1 + (1− i)c2 − 1
5

=⇒

{
c1 = 7

10
i− 1

10

c2 = − 7
10
i− 1

10

.

• Consider the equation

y′′(t) + 4y(t) =

{
1, 0 ≤ t < π

0, π ≤ t <∞
with initial data y(0) = 1, y′(0) = 0.

1. The Laplace transform of the above step function1 is

1− e−πs

s
.

2. We take the Laplace transform of both sides:

L{y}(s) =
L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c

for our equation the above becomes

L{g}(s) + ay′(0) + y(0)(as+ b)

as2 + bs+ c
=

1−e−πs
s

+ y′(0) + sy(0)

s2 + 4

=
1− e−πs + s2

s(s2 + 4)

=
s

s2 + 4
+

1

s(s2 + 4)
− e−πs

s(s2 + 4)

=
s

s2 + 4
+
( 1

4s
− 1

8(s+ 2i)
− 1

8(s− 2i)

)
(1− e−πs).

1Technically we have defined the Laplace transform only for continuous functions of controlled growth.
However, the Laplace transform is extendable to Riemann integrable functions of controlled growth. In particular,
for this example, one computes the Laplace transform by splitting the function into the two regions where it is
understood. For more information see this exercises at the end of this section.
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We will use the following Laplace transforms:

L{cos(2t)}(s) =
s

s2 + 4

L
{1

4

}
(s) =

1

4s

L
{1

8
e−2it

}
(s) =

1

8(s+ 2i)

L
{1

8
e2it
}

(s) =
1

8(s− 2i)

L
{
e−πs

}
(s) =

1

s− (−π)
=

1

s+ π

L
{
e−a(t−b)(1− fstep(t, b)

)}
=

e−bs

s+ a
.

So we have

y(t) = L−1
{ s

s2 + 4

}
+ L−1

{ 1

4s

}
+ L−1

{
− 1

8(s+ 2i)

}
+ L−1

{
− 1

8(s− 2i)

}
+ L−1

{
e−πs

1

4s

}
+ L−1

{
− 1

8(s+ 2i)
e−πs

}
+ L−1

{
− 1

8(s− 2i)
e−πs

}
= cos(2t) +

1

4
− 1

8
e−2it − 1

8
e2it

+
1

4

(
1− fstep(t, π)

)
+

1

8
e−2i(t−π)(1− fstep(t, π)) +

1

8
e2i(t−π)(1− fstep(t, π))

2 Laplace transform for systems

Consider the Laplace transform of vectors L{x}(s) defined componentwise2

L{x}(s) :=


L{x1}(s)

...

L{xn}(s)

.

Therefore, as with the usual Laplace transform we obtain, by repeatedly using the scalar version
of this identity, that:

L{x′}(s) = sL{x}(s)− x(0).

2.1 Method formal steps

Consider the nonhomogeneous system

x′(t) = Ax(t) + g(t).

2Recall that integration extends to vectors by integration componentwise. Since this transform is defined by
integration it too extends to vectors by acting componentwise.
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1. Taking the Laplace transform of each term in the above equation we have:

sL{x}(s)− x(0) = AL{x}(s) + L{g}(s).

2. For simplicity we assume that x(0) = 0n×1.

3. We then obtain the system:

(sIn −A)L{x}(s) = L{g}(s).

4. By inverting the matrix, assuming s is not an eigenvalue of A, we obtain:

L{x}(s) = (sIn −A)−1L{g}(s).

5. Then we do inverse Laplace transform of each component using known Laplace transform
relations.

6. The main computational aspect of this is splitting partial fractions to get the known
relations. But Heaviside motivated by the same problem when computing the Laplace
transform, came up with the cover-up method. In computing the coefficients below

p(s)

(s− a1) · · · (s− an)
=

A1

s− a1

+ ...+
An

s− an
,

for polynomial p(s), we see by rearranging that:

p(s)

(s− a1) · · · (s− ai−1)(s− ai+1) · · · (s− an)
=
A1(s− ai)
s− a1

+ ...+ Ai + ...+
An(s− ai)
s− an

,

and by setting s = ai we obtain the ith coefficient Ai:

Ai =
p(ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

2.2 Examples

• Consider the system

dx

dt
=

2 1

0 1

x +

(
2e−t

3t

)
.

1. We take Laplace transform of both sides

(sI−A)L
{
x
}

(s) =

s− 2 1

0 s− 1

L{x}(s) =

( 2
s+1

3
s2

)
.

2. We simplify

L
{
x
}

(s) =

s− 2 1

0 s− 1


−1( 2

s+1
3
s2

)

7



=
1

(s− 2)(s− 1)

s− 1 −1

0 s− 2

( 2
s+1

3
s2

)

=

( 2
(s+1)(s−2)

− 3
(s−1)(s−2)s2

3
(s−1)s2

)
.

By partial fractions we get

=

( 2
3(s−2)

− 2
3(s+1)

−
(

3
2s2
− 3

s−1
+ 9

4
1
s

+ 3
4

1
s−2

)
−3
s2
− 3

s
+ 3

s−1

)

=

( −1
12(s−2)

− 2
3(s+1)

− 3
2s2

+ 3
s−1
− 9

4
1
s

−3
s2
− 3

s
+ 3

s−1

)
.

3. We use known Laplace transform relations to obtain x by inverting:

x(t) =

(L−1
{

−1
12(s−2)

− 2
3(s+1)

− 3
2s2

+ 3 1
s−1
− 9

4
1
s

}
(t)

L−1
{
−3
s2
− 3

s
+ 3

s−1

}
(t)

)
.

For the first component we have

x1(t) =
−1

12
L−1

{ 1

s− 2

}
(t)− 2

3
L−1

{ 1

s+ 1

}
(t)− 3

2
L−1

{ 1

s2

}
(t)

+ 3L−1
{ 1

s− 1

}
(t)− 9

4
L−1

{1

s

}
(t)

=
−1

12
e2t − 2

3
e−t − 3

2
t+ 3et − 9

4
.

For the second component we have

x2(t) = −3L−1
{ 1

s2

}
(t)− 3L−1

{1

s

}
(t) + 3L−1

{ 1

s− 1

}
(t)

= −3t− 3 + 3et.

Therefore, together give

xnh(t) =

(−1
12
e2t − 2

3
e−t − 3

2
t+ 3et − 9

4

−3t− 3 + 3et

)

= e2t

(−1
12

0

)
− 2

3
e−t
(

1

0

)
− 3t

(
1
2

1

)
− 3

(
3
4

1

)
+ 3et

(
1

1

)
.

4. Therefore, the general solution is

x(t) = c1e
2t

(
1

0

)
+ c2e

t

(
1

−1

)
+ e2t

(−1
12

0

)
− 2

3
e−t
(

1

0

)
− 3t

(
1
2

1

)
− 3

(
3
4

1

)
+ 3et

(
1

1

)
.

• Consider the second order equation
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w′′(t) + w(t) =

{
1, 0 ≤ t ≤ 1

0, t > 1

with zero initial data. By setting x = w, y = w′ we obtain x′ = y, y′ + x = fstep(t) or in
system form

d

dt

(
x

y

)
=

 0, 1

−1 0

(xy
)

+

(
0

fstep(t)

)
.

1. We take Laplace transform of both sides

(sIn −A)L{x}(s) =

s −1

1 s

L{x}(s) =

(
0

L{fstep}(s)

)
.

2. The Laplace transform of the RHS is

L{fstep}(s) =

∫ ∞
0

e−stfstep(t)dt =

∫ 1

0

e−stdt =
1− e−s

s
.

3. We simplify

L{x}(s) =

s −1

1 s


−1(

0
1−e−s
s

)

=
1

s2 + 1

 s 1

−1 s

( 0
1−e−s
s

)

=

( 1−e−s
s(s2+1)

1−e−s
s2+1

)

=

(−i
2

1−e−s
s+i
− i

2
1−e−s
s−i + 1−e−s

s

−i
2

1−e−s
s+i

+ i
2

1−e−s
s−i

)
.

4. We use known Laplace transform relations to invert

For the first component we have

x1(t) = L−1
{1− e−s

s

}−1

(t) + L−1
{−i

2

1− e−s

s+ i
− i

2

1− e−s

s− i

}−1

(t)

= fstep(t, 1) +
−i
2

[
L−1

{ 1

s+ i

}
(t)− L−1

{ e−s

s+ i

}
(t)
]

+
−i
2

[
L−1

{ 1

s− i

}−1

(t)− L−1
{ e−s

s− i

}−1

(t)
]

= fstep(t, 1) +
−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.
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For the second component we have

x2(t) = L−1
{−i

2

1− e−s

s+ i
+
i

2

1− e−s

s− i

}−1

(t)

=
−i
2

[
L−1

{ 1

s+ i

}
(t)− L−1

{ e−s

s+ i

}
(t)
]

+
i

2

[
L−1

{ 1

s− i

}−1

(t)− L−1
{ e−s

s− i

}−1

(t)
]

=
−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

Therefore, together we obtain

xnh(t) =fstep(t, 1)

(
1

0

)
+

(
1

1

)
−i
2

[
e−it − e−i(t−(−1))fstep(t, 1)

]
+

(
1

−1

)
i

2

[
eit − ei(t+1)fstep(t, 1)

]
.

5. The general solution will be:

x(t) = c1e
it

(
i

1

)
+ c1e

−it
(
−i
1

)
+ fstep(t, 1)

(
1

0

)
+

(
1

1

)
−i
2

[
e−it − e−i(t−(−1))(1− fstep(t, 1))

]
+

(
1

−1

)
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

6. For comparison we also compute the solution of the second order equation:

w′′(t) + w(t) =


1, 0 ≤ t ≤ 1

0, t > 1

.

7. By taking the Laplace transform of both sides we obtain

s2L
{
w
}
− sw(0)− w′(0) + L

{
w
}

= L
{
fstep(·, 1)

}
(s)

using that w(0) = w′(0) = 0 we obtain

L
{
w
}

=
L
{
fstep(·, 1)

}
(s)

s2 + 1

=
1− e−s

s(s2 + 1)

=
1− e−s

s(s2 + 1)

=
1− e−s

s
+
−i
2

1− e−s

s+ i
− i

2

1− e−s

s− i
.

Therefore, by inverting we obtain

w(t) = fstep(t, 1) +
−i
2

[
e−it − e−i(t+1)(1− fstep(t, 1))

]
+
i

2

[
eit − ei(t+1)(1− fstep(t, 1))

]
.

8. This is indeed the solution we obtained for the first component x1(t) := w(t).
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3 Properties of Laplace Transform

We begin by demonstrating the following commonly used identities for the Laplace transform:

Proposition 1. The Laplace transform satisfies the following identities:

1. If f, g ∈ C([0,∞), eat) then for b, c ∈ R L{bf + cg}(s) = bL{f}(s) + c}(s) for s > a.

2. If f ∈ C([0,∞), eat) and b > −a then ebt · f ∈ C([0,∞), e(a+b)t) and L{ebtf}(s) =
L{f}(s− b) for s > a+ b.

3. Suppose f ∈ C([0,∞), eat) for a 6= 0 and define F : [0,∞)→ R by F (t) =
∫ t

0
f(s)ds. Then

F ∈ C([0,∞), eat) and for s > a we have L{F}(s) = 1
s
L{f}(s).

4. Suppose F : [0,∞) → R is defined by F (t) =
∫ t

0
f(s)ds for f ∈ C([0,∞), eat) and we

assume that F ∈ C([0,∞), eat) then for s > a we have L{F}(s) = 1
s
L{f}(s).

5. For a ∈ R we have L{a}(s) = a
s
for s > 0.

6. For a ∈ R we have L{sin(at)}(s) = a
s2+a2

for s > 0.

7. For a ∈ R we have L{cos(at)}(s) = s
s2+a2

for s > 0.

8. For a ∈ R we have L{eat}(s) = 1
s−a for s > a.

9. For a, b ∈ R we have L{sin(at)ebt}(s) = a
(s−b)2+a2

for s > b.

10. For a, b ∈ R we have L{cos(at)ebt}(s) = s−b
(s−b)2+a2

for s > b.

Proof.

1. Suppose f, g ∈ C([0,∞), eat) and b, c ∈ R. Observe that

|bf(t) + cg(t)| ≤ |b| · |f(t)|+ |c| · |g(t)| ≤ |b| · Cfeat + |c|Cgeat = (|b|Cf + |c|Cg)eat

for t ≥ 0 where Cf and Cg are non-negative constants. We conclude that bf + cg ∈
C([0,∞), eat). Thus, the Laplace transform of bf + cg, f , and g are all defined for s > a.
Computing gives, for s > a, that:

L{bf + cg}(s) =

∫ ∞
0

e−st(bf(s) + cg(s))ds

= b

∫ ∞
0

e−stf(s)ds+ c

∫ ∞
0

e−stg(s)ds

= bL{f}+ cL{g}.

2. Suppose f ∈ C([0,∞), eat) and b > −a. Then for t ≥ 0 we have:

|f(t)ebt| = ebt|f(t)| ≤ Cfe
bt · eat = Cfe

(a+b)t.

Thus, ebtf ∈ C([0,∞), e(a+b)t) which means the Laplace transform of ebtf is defined for
s > a+ b. Observe that, for s > a+ b

L{ebtf}(s) =

∫ ∞
0

e−stebtf(t)dt =

∫ ∞
0

e−(s−b)tf(t)dt = L{f}(s− b).

11



3. Suppose f ∈ C([0,∞), eat) and F (t) =
∫ t

0
f(s)ds for t ≥ 0. Then for t ≥ 0 we have, if

a 6= 0

|F (t)| =
∣∣∣∣∫ t

0

f(s)ds

∣∣∣∣ ≤ ∫ t

0

|f(s)|ds ≤ Cf

∫ t

0

easds = Cf ·
ee
at − 1

a
≤ Cf

a
· eat.

Thus, for a 6= 0 the Laplace transform is defined for f for s > a. In particular, by
integrating by parts, which is permitted since f is continuous, we get:

L{F}(s) =

∫ ∞
0

e−stF (t)dt =
−e−stF (t)

s

∣∣∣∞
0

+
1

s

∫ ∞
0

e−stf(t)dt =
1

s
L{f}(s).

4. By assumption the Laplace transform of both f and F is defined for s > a. Thus, for
s > a we have, by integrating by parts.

L{F}(s) =

∫ ∞
0

e−stF (t)dt =
−e−stF (t)

s

∣∣∣∞
0

+
1

s

∫ ∞
0

e−stf(t)dt =
1

s
L{f}(s).

5. Suppose a ∈ R. Then the constant function defined by f(t) = a for t ≥ 0 is bounded and
hence f ∈ C([0,∞), e0·t). Thus, the Laplace transform is defined for s > 0. Computing
this we obtain, for s > 0:

L{a}(s) =

∫ ∞
0

e−stadt = a

∫ ∞
0

e−stdt =
a

s

6. For a ∈ R we have sin(at) ∈ C([0,∞), e0·t) since this function is bounded. Thus, the
Laplace transform is defined for s > 0. Computing the transform we get, for s > 0:

L{sin(at)}(s) =

∫ ∞
0

e−st sin(at)dt = −e
−st sin(at)

s

∣∣∣∞
0

+
a

s

∫ ∞
0

e−st cos(at)dt

= −ae
−st cos(at)

s2

∣∣∣∞
0
− a2

s2

∫ ∞
0

e−st sin(at)dt

=
a

s2
− a2

s2
L{sin(at)}(s).

Thus, we obtain, for s > 0 (
s2 + a2

s2

)
L{sin(at)}(s) =

a

s2

and so
L{sin(at)}(s) =

a

s2 + a2

7. Observe that, for a 6= 0, cos(at) = 1 − a
∫ t

0
sin(as)ds and that cos(at), sin(at), and the

constant function −1 are all bounded functions. In particular, we see that∫ t

0

sin(as)ds =
1− cos(at)

a

is bounded for t ≥ 0. Thus, the Laplace transform of all functions involved is defined for
s > 0. Applying properties 1, 4, and 6 we obtain for s > 0

L{cos(at)}(s) =
1

s
− a

s
· a

s2 + a2
=

1

s
· s

2 + a2 − a2

s2 + a2
=

s

s2 + a2
.
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8. By properties 2 and 5 we have

L{eat} =
1

s− a
for s > a since 1 is bounded.

9. By properties 2 and 6 we have

L{sin(at)ebt} =
a

(s− b)2 + a2

for s > b since sin(at) is bounded.

10. By properties 2 and 7 we have

L{cos(at)ebt} =
s− b

(s− b)2 + a2

for s > b since sin(at) is bounded.

The spaces C([0,∞), eat) for a ≥ 0, while large enough to deal with simple functions we
encounter in the wild, are not large enough to deal with some of the obstacles we may run into. In
particular, these spaces are not suited to dealing with "modestly” growing functions like x 7→ xn

for n ∈ N which grows slower at infinity then any function of the form eat for a > 0 but is not
bounded. To get around this obstacle we define the spaces Lp((0,∞), e−at) consisting of functions,
f , such that

∫∞
0
e−at|f(t)|pdt <∞ for a ≥ 0 and 1 ≤ p <∞. Observe that such functions have

laplace transform defined for s > a and if a = 0 then Lp((0,∞), e−at) = Lp((0,∞)). We will,
in particular, consider the case p = 1 as this allows an immediate extension to the Laplace
transform. With this new definition we will demonstrate some properties of the extended Laplace
transform. We will also show that the properties demonstrated in proposition 1 remain true for
the extended Laplace transform.

Proposition 2. The generalized Laplace transform satisfies the following identities:

1. Suppose f ∈ C([0,∞), e−at). Then f ∈ L1((0,∞), e−at) and so the laplace transform is
defined, by the same formula, for s > a.

2. If p ≥ 0 then f(s) = sp is an element of L1((0,∞)) and satisfies L{f}(s) = Γ(p+1)
sp+1 for

s > 0.

Proof. 1. Observe that for s > a we have

Theorem 3. (Lerch’s theorem) Suppose f1, f2 ∈ Lp((0,∞), e−at) and L{f1}(s) = L{f2}(s) for
all s > a. Then f1 = f2 almost everywhere on (0,∞).

4 Problems
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