Outline

(1) nonhomogeneous linear first ord
(2) Autonomous systems

Figure: competing species separatrix

Consider nonhomogeneous linear first order systems:

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)
$$

where $\mathbf{g}(t)$ is a vector of continuous functions and \mathbf{A} is a diagonalizable $n \times n$ matrix with eigenvalues $\left\{\lambda_{i}\right\}_{i=1, \ldots, n}$. The latter assumption means that if \mathbf{T} has the eigenvectors of \mathbf{A} as columns, then $\mathbf{T}^{-1} \mathbf{A} \mathbf{T}=\mathbf{D}$ is a diagonal matrix.

Using diagonalization

Plugging in $\mathbf{x}=\mathbf{T y}$ for some yet unknown \mathbf{y} we obtain

$$
\begin{aligned}
\mathbf{T} \mathbf{y}^{\prime} & =\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+\mathbf{g}(t)=\mathbf{A} \mathbf{T} \mathbf{y}+\mathbf{g}(t) \\
\Longrightarrow \mathbf{y}^{\prime} & =\mathbf{T}^{-1} \mathbf{A} \mathbf{T} \mathbf{y}+\mathbf{T}^{-1} \mathbf{g}(t)=\mathbf{D} \mathbf{y}+\mathbf{T}^{-1} \mathbf{g}(t)
\end{aligned}
$$

As a result, we decoupled the system. From this decoupled system we obtain the first order equations:

$$
y_{i}^{\prime}=\lambda_{i} y_{i}(t)+\left(\mathbf{T}^{-1} \mathbf{g}(t)\right)_{i} \quad \text { for } i=1, \ldots, n
$$

For $h_{i}(t):=\left(\mathbf{T}^{-1} \mathbf{g}(t)\right)_{i}$ we have (by the method of integrating factors)

$$
y_{i}(t)=e^{\lambda_{i} t}\left[\int_{0}^{t} e^{-\lambda_{i} s} h_{i}(s) d s+c_{i}\right] .
$$

Therefore, we found the solution $\mathbf{x}=\mathbf{T y}$.

Presenting the method

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \mathbf{x}+\binom{1}{-1} e^{t}
$$

The eigenpairs (λ, v) are $\left(-1,\binom{1}{3}\right)$ and $\left(1,\binom{1}{1}\right)$.
The inverse is $\frac{-1}{2}\left[\begin{array}{cc}1 & -1 \\ -3 & 1\end{array}\right]$. That gives $T^{-1}\binom{1}{-1} e^{t}=\binom{-1}{2} e^{t}$.

Presenting the method

$$
\mathbf{y}=e^{t}\binom{-1 / 2}{t / 2}
$$

Thus,

$$
\mathbf{v}(t)=\frac{e^{t}}{2}\binom{t-1}{t-3}
$$

In-class example

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-2 & 1 \\
0 & -1
\end{array}\right] \mathbf{x}+\binom{1}{0} e^{t}
$$

The eigenpairs (λ, v) are $\left(-2,\binom{1}{0}\right)$ and $\left(-1,\binom{1}{1}\right)$.
The inverse of a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

You should get $T^{-1}\binom{1}{0} e^{t}=\binom{1}{0} e^{t}$.

Presenting the method

$$
\mathbf{y}=e^{t}\binom{-1 / 3}{0}
$$

Thus,

$$
\mathbf{v}(t)=e^{t}\binom{-1 / 3}{0}
$$

In-class example

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
-2 & 1 \\
0 & -1
\end{array}\right] \mathbf{x}+\binom{1}{0} e^{t}
$$

The eigenpairs (λ, v) are $\left(-2,\binom{1}{0}\right)$ and $\left(-1,\binom{1}{1}\right)$.
The inverse of a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

You should get $T^{-1}\binom{1}{0} e^{t}=\binom{1}{0} e^{t}$.

In-class example

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \mathbf{x}+\binom{4}{-2} e^{t}
$$

The eigenpairs (λ, v) are $\left(3,\binom{1}{2}\right)$ and $\left(-1,\binom{-1}{2}\right)$.
The inverse of a matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

You should get $T^{-1}\binom{4}{-2} e^{t}=\binom{3}{1 / 2} e^{t}$. The $\mathrm{v}(\mathrm{t})$ should be $e^{t}\binom{1 / 2}{-4}$.

As in the 1D case we will study the following system:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=F(x, y), \frac{\mathrm{d} y}{\mathrm{dt}}=G(x, y),
$$

where F, G are continuously differentiable functions. Here again we might not be able to obtain explicit solutions, but we can provide a qualitative analysis.
(1) First, we find the critical points by setting

$$
F(x, y)=0 \text { and } G(x, y)=0
$$

(2) Sometimes we can even solve such systems by taking their ratio:

$$
\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{\frac{\mathrm{d} y}{\mathrm{dt}}}{\frac{\mathrm{~d} x}{\mathrm{dt}}}=\frac{G(x, y)}{F(x, y)}
$$

This ratio depends only on x and y (and not t), so methods from the first order section could be used.

presenting the method

The gravitational force mg acts downward and the damping force $c\left|\frac{d \theta}{d t}\right|$ is always opposite to the direction of motion. A rotational analog of Newton's second law of motion might be written in terms of torques:

$$
m g \cdot L \sin (\theta)+\frac{\mathrm{d} \theta}{\mathrm{dt}} \cdot L+m \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}} L^{2}=0 \Rightarrow \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}}+\gamma \frac{\mathrm{d} \theta}{\mathrm{dt}}+\omega^{2} \sin (\theta)=0 .
$$

This is a nonhomogeneous second order equation, but we can also view it as a system of equations by letting $x:=\theta$ and $y:=\frac{\mathrm{d} \theta}{\mathrm{dt}}$:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-\gamma y-\omega^{2} \sin (x)
$$

where γ is called the damping constant and as in the spring problem it is responsible for removing energy. This is an autonomous system.

In class example

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=2 y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-8 x .
$$

In class example

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-\gamma y-\omega^{2} \sin (x)
$$

Consider the system (Duffing's equation)

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-x+\frac{x^{3}}{6}
$$

The End

