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Figure: Phase portrait and
solutions for undamped
oscillating pendulum.



We will study systems
x = f(x),

where the components of f are C 1 functions so that we are able to Taylor
expand them.

The following system

x = Ax + g(x)

is called locally linear around a critical point x0 if

‖g(x)‖
‖x‖

→ 0 and asx→ x0.
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Presenting the method: oscillating pendulum

Consider the following oscillating pendulum: a mass m is attached to one
end of a rigid, but weightless, rod of length L which hangs from the pivot
point.

θ

L sin θ

mg
θ

m

L

Figure: oscillating pendulum
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Presenting the method: oscillating pendulum
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Figure: oscillating pendulum

The gravitational force mg acts downward and the damping force c|dθdt | is
always opposite to the direction of motion. A rotational analog of
Newton’s second law of motion might be written in terms of torques:

mg · Lsin(θ) +
dθ

dt
· L + m

d2θ

d2t
L2 = 0⇒ d2θ

d2t
+ γ

dθ

dt
+ ω2sin(θ) = 0.
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Presenting the method: oscillating pendulum

mg · Lsin(θ) +
dθ

dt
· L + m

d2θ

d2t
L2 = 0⇒ d2θ

d2t
+ γ

dθ

dt
+ ω2sin(θ) = 0.

This is a nonhomogeneous second order equation, but we can also view it
as a system of equations by letting x := θ and y := dθ

dt :

dx

dt
= y ,

dy

dt
= −γy − ω2sin(x),

where γ is called the damping constant and as in the spring problem it is
responsible for removing energy. This is an autonomous system.
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Presenting the method: oscillating pendulum

(1) we find the critical points:

dx

dt
= 0,

dy

dt
= 0⇒ y = 0, sin(x) = 0⇒ (kπ, 0) for k ∈ Z.

(2) we set F =
( dx

dt
dy
dt

)
=
( y
−γy−ω2sin(x)

)
and 2D-Taylor expand around

arbitrary critical point (x0, y0):

F (x , y) = F (x0, y0) + JF (x0, y0) +

(
x − x0

y − y0

)
+ O(‖(x − x0, y − y0)‖2)

=

(
0 1

−ω2cos(x0) −γ

)(
x − x0

y − y0

)
+ O(‖(x − x0, y − y0)‖2).
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Presenting the method: oscillating pendulum

(3) The linearization around (x0, y0) = (n · π, 0) for even integer n (the
downward equilibrium position) is:

d

dt

(
x

y

)
=

(
0 1
−ω2 −γ

)(
x − n · π

y

)
+ O(‖(x − n · π, y)‖2).

(4) The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 − 4ω2

2
.
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Presenting the method: oscillating pendulum

If γ2 − 4ω2 > 0, then the eigenvalues are real,distinct and negative.
Therefore, the critical points will be stable nodes.

Figure: Stable nodes at even integer n critical points (nπ, 0) for n=0,2,-2.
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Presenting the method: oscillating pendulum

If γ2 − 4ω2 = 0, then the eigenvalues are repeated, real and negative.
Therefore, the critical points will be stable nodes.

Figure: Stable nodes at even integer n critical points (nπ, 0).
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Presenting the method: oscillating pendulum

If γ2 − 4ω2 < 0, then the eigenvalues are complex with negative real part.
Therefore, the critical points will be stable spiral sinks.

Figure: Stable spiral sinks at even integer n critical points (nπ, 0).
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Presenting the method: oscillating pendulum

The linearization around (x0, y0) = (n · π, 0) for odd integer n is:

d

dt

(
x

y

)
=

(
0 1
ω2 −γ

)(
x − n · π

y

)
+ O(‖(x − n · π, y)‖2).

The eigenvalues of that matrix are:

λ1, λ2 =
−γ ±

√
γ2 + 4ω2

2
.

Therefore, it has one negative eigenvalue λ1 < 0 and one positive
eigenvalue λ2 > 0, and so the critical points will be unstable saddle points.
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Presenting the method: oscillating pendulum

Figure: Phase portrait and solutions for undamped oscillating pendulum.
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In class example

Consider the system (Duffing’s equation)

dx

dt
= y ,

dy

dt
= −x +

x3

6
.

Find critical points and linearize.

identify stability behaviour.
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In class example

Consider the system
dx

dt
= y ,

dy

dt
= x + 2x3.

Find critical points and linearize.

identify stability behaviour.

find implicit solution.
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The End
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