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© Locally linear systems

dtheta(t)/dt solution
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Figure: Phase portrait and
solutions for undamped
oscillating pendulum.
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We will study systems
x = £(x),

where the components of f are C! functions so that we are able to Taylor
expand them.
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We will study systems
x = £(x),

where the components of f are C! functions so that we are able to Taylor
expand them. The following system

x = Ax + g(x)

is called locally linear around a critical point xgq if

I8l

Il

— 0 and asx — Xg.
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Presenting the method: oscillating pendulum

Consider the following oscillating pendulum: a mass m is attached to one

end of a rigid, but weightless, rod of length L which hangs from the pivot
point.

| Lsin 0

Figure: oscillating pendulum
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Presenting the method: oscillating pendulum

Figure: oscillating pendulum

The gravitational force mg acts downward and the damping force c| | is
always opposite to the direction of motion. A rotational analog of
Newton’s second law of motion might be written in terms of torques:

d26 d26

do
mg - Lsin(0) + — - L+ m—- 1> =0 =

dé
It th 2t +7dt + w sm(@) 0.

MAT?244 Ordinary Differential Equations 4 /15



Presenting the method: oscillating pendulum

) dé d%0 , d?6 dé
mg-Lsm(H)—Fa‘L—i- thL =0= 2 gty %sin(#) = 0.

This is a nonhomogeneous second order equation, but we can also view it

as a system of equations by letting x := @ and y := ‘éf
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Presenting the method: oscillating pendulum

de d?6 d?6 dé
mg-Lsin(H)—Fa‘L—i- d2tL2_O 2 gty %sin(#) = 0.
This is a nonhomogeneous second order equation, but we can also view it
as a system of equations by letting x := @ and y := %:

d d
df: d{ —7y — wsin(x),

where v is called the damping constant and as in the spring problem it is
responsible for removing energy. This is an autonomous system.
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Presenting the method: oscillating pendulum

(1) we find the critical points:

dx dy .
E—O,a—0:>y—0,sm(x)—0:>(k7r,0) for k € Z.

MAT?244 Ordinary Differential Equations 6 /15



Presenting the method: oscillating pendulum

(1) we find the critical points:

d dy

dt dt

dx
(2) we set F = (37;) = (_w_j:zsin(x)) and 2D-Taylor expand around
dt

arbitrary critical point (xo, ¥0):
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o0, Y 0=y =0,sin(x) = 0= (kr,0) for k € Z.
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Presenting the method: oscillating pendulum

(1) we find the critical points:

dx dy .
E—O,a—0:>y—0,sm(x)—0:>(k7r,0) for k € Z.

dx
(2) we set F = (37;) = (_w_j:zsin(x)) and 2D-Taylor expand around
dt

arbitrary critical point (xo, ¥0):

— Y0

N (_wzC(()JS(XO) _1/7> <;:;2> " O(||(X_X07y_y0)||2)‘

F(x,y) = F(x010) -+ Jr (0, y0) + (j ) L 0((x — 0y — o)1)
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Presenting the method: oscillating pendulum

(3) The linearization around (xp, yo) = (n - ,0) for even integer n (the
downward equilibrium position) is:

H0)-(5 () ewenenn
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Presenting the method: oscillating pendulum

(3) The linearization around (xp, yo) = (n - ,0) for even integer n (the
downward equilibrium position) is:

H0)-(5 () ewenenn

(4) The eigenvalues of that matrix are:

kAR
AL, A2 = > .
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If 42 — 4w? > 0, then the eigenvalues are real,distinct and negative.

Therefore, the critical points will be stable nodes.
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Figure: Stable nodes at even integer n critical points
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If 42 — 4w? = 0, then the eigenvalues are repeated, real and negative.

Therefore, the critical points will be stable nodes.
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Figure: Stable nodes at even integer n critical points
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If 42 — 4w? < 0, then the eigenvalues are complex with negative real part.

Therefore, the critical points will be stable spiral sinks.
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Figure: Stable spiral sinks at even integer n critical points



Presenting the method: oscillating pendulum

The linearization around (xg, yo) = (n - m,0) for odd integer n is:

i(;) - (fz _17) (X ‘y”'”) + O(l[(x = -7 y)?).
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Presenting the method: oscillating pendulum

The linearization around (xg, yo) = (n - m,0) for odd integer n is:

i(;) - (fz _17) (X ‘y”'”) + O(l[(x = -7 y)?).

The eigenvalues of that matrix are:

—y £ /7% + dw?
AL dg = . .

Therefore, it has one negative eigenvalue A1 < 0 and one positive
eigenvalue A\ > 0, and so the critical points will be unstable saddle points.
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dtheta(t)/dt solution
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In class example

Consider the system (Duffing's equation)

dx dy x3

x YT Ty

@ Find critical points and linearize.

@ identify stability behaviour.
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In class example

Consider the system
dx dy

=y, =x+2x
ATl T
@ Find critical points and linearize.

@ identify stability behaviour.

o find implicit solution.
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The End
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