Outline

(1) Locally linear systems

Figure: Phase portrait and solutions for undamped oscillating pendulum.

We will study systems

$$
\mathbf{x}=\mathbf{f}(\mathbf{x})
$$

where the components of \mathbf{f} are C^{1} functions so that we are able to Taylor expand them.

We will study systems

$$
\mathbf{x}=\mathbf{f}(\mathbf{x})
$$

where the components of \mathbf{f} are C^{1} functions so that we are able to Taylor expand them. The following system

$$
\mathbf{x}=\mathbf{A x}+\mathbf{g}(\mathbf{x})
$$

is called locally linear around a critical point \mathbf{x}_{0} if

$$
\frac{\|\mathbf{g}(\mathrm{x})\|}{\|\mathrm{x}\|} \rightarrow 0 \text { and } \text { as } \mathrm{x} \rightarrow \mathrm{x}_{0} .
$$

Presenting the method: oscillating pendulum

Consider the following oscillating pendulum: a mass m is attached to one end of a rigid, but weightless, rod of length L which hangs from the pivot point.

Figure: oscillating pendulum

Presenting the method: oscillating pendulum

Figure: oscillating pendulum

The gravitational force mg acts downward and the damping force $c\left|\frac{d \theta}{d t}\right|$ is always opposite to the direction of motion. A rotational analog of Newton's second law of motion might be written in terms of torques:

$$
m g \cdot L \sin (\theta)+\frac{\mathrm{d} \theta}{\mathrm{dt}} \cdot L+m \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}} L^{2}=0 \Rightarrow \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}}+\gamma \frac{\mathrm{d} \theta}{\mathrm{dt}}+\omega^{2} \sin (\theta)=0
$$

Presenting the method: oscillating pendulum

$$
m g \cdot L \sin (\theta)+\frac{\mathrm{d} \theta}{\mathrm{dt}} \cdot L+m \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}} L^{2}=0 \Rightarrow \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}}+\gamma \frac{\mathrm{d} \theta}{\mathrm{dt}}+\omega^{2} \sin (\theta)=0
$$

This is a nonhomogeneous second order equation, but we can also view it as a system of equations by letting $x:=\theta$ and $y:=\frac{\mathrm{d} \theta}{\mathrm{dt}}$:

Presenting the method: oscillating pendulum

$$
m g \cdot L \sin (\theta)+\frac{\mathrm{d} \theta}{\mathrm{dt}} \cdot L+m \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}} L^{2}=0 \Rightarrow \frac{\mathrm{~d}^{2} \theta}{\mathrm{~d}^{2} \mathrm{t}}+\gamma \frac{\mathrm{d} \theta}{\mathrm{dt}}+\omega^{2} \sin (\theta)=0
$$

This is a nonhomogeneous second order equation, but we can also view it as a system of equations by letting $x:=\theta$ and $y:=\frac{\mathrm{d} \theta}{\mathrm{dt}}$:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-\gamma y-\omega^{2} \sin (x)
$$

where γ is called the damping constant and as in the spring problem it is responsible for removing energy. This is an autonomous system.

Presenting the method: oscillating pendulum

(1) we find the critical points:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=0, \frac{\mathrm{~d} y}{\mathrm{dt}}=0 \Rightarrow y=0, \sin (x)=0 \Rightarrow(k \pi, 0) \text { for } k \in \mathbb{Z}
$$

Presenting the method: oscillating pendulum

(1) we find the critical points:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=0, \frac{\mathrm{~d} y}{\mathrm{dt}}=0 \Rightarrow y=0, \sin (x)=0 \Rightarrow(k \pi, 0) \text { for } k \in \mathbb{Z}
$$

(2) we set $F=\binom{\frac{\mathrm{dx}}{\mathrm{dt}}}{\frac{\mathrm{d}}{\mathrm{dt}}}=\binom{-{ }^{2}}{-\gamma y-\omega^{2} \sin (x)}$ and 2D-Taylor expand around arbitrary critical point $\left(x_{0}, y_{0}\right)$:

Presenting the method: oscillating pendulum

(1) we find the critical points:

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=0, \frac{\mathrm{~d} y}{\mathrm{dt}}=0 \Rightarrow y=0, \sin (x)=0 \Rightarrow(k \pi, 0) \text { for } k \in \mathbb{Z}
$$

(2) we set $F=\binom{\frac{\mathrm{dx}}{\mathrm{dt}}}{\frac{\mathrm{dy}}{\mathrm{dt}}}=\left(\begin{array}{c}-\gamma y-\omega^{2} \sin (x)\end{array}\right)$ and 2D-Taylor expand around arbitrary critical point $\left(x_{0}, y_{0}\right)$:

$$
\begin{aligned}
& F(x, y)=F\left(x_{0}, y_{0}\right)+J_{F}\left(x_{0}, y_{0}\right)+\binom{x-x_{0}}{y-y_{0}}+O\left(\left\|\left(x-x_{0}, y-y_{0}\right)\right\|^{2}\right) \\
& =\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} \cos \left(x_{0}\right) & -\gamma
\end{array}\right)\binom{x-x_{0}}{y-y_{0}}+O\left(\left\|\left(x-x_{0}, y-y_{0}\right)\right\|^{2}\right)
\end{aligned}
$$

Presenting the method: oscillating pendulum

(3) The linearization around $\left(x_{0}, y_{0}\right)=(n \cdot \pi, 0)$ for even integer n (the downward equilibrium position) is:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -\gamma
\end{array}\right)\binom{x-n \cdot \pi}{y}+O\left(\|(x-n \cdot \pi, y)\|^{2}\right)
$$

Presenting the method: oscillating pendulum

(3) The linearization around $\left(x_{0}, y_{0}\right)=(n \cdot \pi, 0)$ for even integer n (the downward equilibrium position) is:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
-\omega^{2} & -\gamma
\end{array}\right)\binom{x-n \cdot \pi}{y}+O\left(\|(x-n \cdot \pi, y)\|^{2}\right)
$$

(4) The eigenvalues of that matrix are:

$$
\lambda_{1}, \lambda_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 \omega^{2}}}{2}
$$

Presenting the method: oscillating pendulum

If $\gamma^{2}-4 \omega^{2}>0$, then the eigenvalues are real, distinct and negative. Therefore, the critical points will be stable nodes.

Figure: Stable nodes at even integer n critical points $(n \pi, 0)$ for $\mathrm{n}=0,2,-2$.

Presenting the method: oscillating pendulum

If $\gamma^{2}-4 \omega^{2}=0$, then the eigenvalues are repeated, real and negative. Therefore, the critical points will be stable nodes.

Figure: Stable nodes at even integer n critical points ($n \pi, 0$).

Presenting the method: oscillating pendulum

If $\gamma^{2}-4 \omega^{2}<0$, then the eigenvalues are complex with negative real part. Therefore, the critical points will be stable spiral sinks.

Figure: Stable spiral sinks at even integer n critical points ($n \pi, 0$).

Presenting the method: oscillating pendulum

The linearization around $\left(x_{0}, y_{0}\right)=(n \cdot \pi, 0)$ for odd integer n is:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
\omega^{2} & -\gamma
\end{array}\right)\binom{x-n \cdot \pi}{y}+O\left(\|(x-n \cdot \pi, y)\|^{2}\right) .
$$

Presenting the method: oscillating pendulum

The linearization around $\left(x_{0}, y_{0}\right)=(n \cdot \pi, 0)$ for odd integer n is:

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{x}{y}=\left(\begin{array}{cc}
0 & 1 \\
\omega^{2} & -\gamma
\end{array}\right)\binom{x-n \cdot \pi}{y}+O\left(\|(x-n \cdot \pi, y)\|^{2}\right)
$$

The eigenvalues of that matrix are:

$$
\lambda_{1}, \lambda_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}+4 \omega^{2}}}{2}
$$

Therefore, it has one negative eigenvalue $\lambda_{1}<0$ and one positive eigenvalue $\lambda_{2}>0$, and so the critical points will be unstable saddle points.

Presenting the method: oscillating pendulum

In class example

Consider the system (Duffing's equation)

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=-x+\frac{x^{3}}{6} .
$$

- Find critical points and linearize.
- identify stability behaviour.

In class example

Consider the system

$$
\frac{\mathrm{d} x}{\mathrm{dt}}=y, \frac{\mathrm{~d} y}{\mathrm{dt}}=x+2 x^{3}
$$

- Find critical points and linearize.
- identify stability behaviour.
- find implicit solution.

The End

