Week 9

Variations of these exercises will appear on the final. Most of the exercises are in the main textbook.

Complex eigenvalues

- Find the general solution of the system. Describe the asymptotic behaviour. Are the trajectories forming a spiral source, a spiral sink or concentric circles?

1.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
4 & -3 \\
3 & 4
\end{array}\right) \mathbf{x} .
$$

2.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & -4 \\
1 & 1
\end{array}\right) \mathbf{x} .
$$

3.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 2 \\
-5 & -1
\end{array}\right) \mathbf{x} .
$$

- $\left.{ }^{*}\right)$ Find the general solution of the system. Find the bifurcation value or values of α where the qualitative nature of the phase portrait for the system changes. Draw a phase portrait for a value of α slightly below, and for another value slightly above, each bifurcation value.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
\alpha & 1 \\
-1 & \alpha
\end{array}\right) \mathbf{x} .
$$

- $\left.{ }^{*}\right)$ Consider the circuit

$$
\frac{\mathrm{d}}{\mathrm{dt}}\binom{I}{V}=\left(\begin{array}{cc}
-\frac{1}{2}-\frac{1}{8} \\
2 & \frac{-1}{2}
\end{array}\right)\binom{I}{V} .
$$

Solve and determine long term behaviour. Is it asymptotically stable?

Figure 0.1: The circuit with complex eigenvalues.

Repeated eigenvalues

- Find the general solution of the system. Describe the asymptotic behaviour. Are the trajectories forming a source or sink behaviour wrt the origin?

1.

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \mathbf{x} .
$$

2.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \mathbf{x} .
$$

3. Find the particular solution and determine the asymptotic behaviour as above:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & -4 \\
4 & -7
\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{3}{2} .
$$

