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0.1 Second order equations

The general form of 2nd order equation is

y′′ = f(t, y, y′).

We call them linear non-homogeneous if the equation can be written in the form

y′′ + p(t)y′ + q(t)y = g(t)

and linear homogeneous if, in addition to being linear non-homogeneous, g(t) = 0

y′′ + p(t)y′ + q(t)y = 0.

The method of characteristic equations is for homogeneous equations and the methods of
undetermined coefficients and of variation of parameters for homogeneous equations.

0.2 Method 1: Characteristic equation

If the equation is linear homogeneous and further p(t), q(t) are constant, then the equation is
referred to as a constant-coefficients equation:

ay′′ + by′ + cy = 0

and we can apply the method of characteristic equations to solve such an equation. Note that a
is assumed to be non-zero since we are working with a second order equation.

1



2 CONTENTS

Method formal steps

1. We assume that the solution is of the form y(t) = ert (this is called making an ansatz).
This gives

(ar2 + br + c)ert = 0 =⇒ ar2 + br + c = 0,

which equation is called the characteristic equation.

2. So to solve the above ODE, it suffices to find the two roots r1, r2.

3. Then the general solution is of the form:

y(t) = c1e
r1t + c2e

r2t.

Example-presenting the method

Consider a mass m hanging at rest on the end of a vertical spring of length l, spring constant k
and damping constant γ (as depicted in Figure 0.2.1).

Figure 0.2.1: Spring mass

Let u(t) denote the displacement, in units of feet, from the equilibrium position. Note
that since u(t) represents the amount of displacement from the spring’s equilibrium position
(the position obtained when the downward force of gravity is matched by the will of the spring
to not allow the mass to stretch the spring further) then u(t) should increase downward. Then
by Newton’s Third Law one can obtain the equation

mu′′(t) + γu′(t) + ku(t) = F (t),

where F (t) is any external force, which for simplicity we will assume to be zero.

1. First we obtain the characteristic equation:

mr2 + γr + k = 0.

2. Suppose that m = 1lb, γ = 5lb/ft/s and k = 6lb/ft then we obtain the roots r1 = −2,
r2 = −3.
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3. Therefore, the general solution will be

u(t) = c1e
−2t + c2e

−3t.

4. Further if u(0) = 0, u′(0) = 1 we obtain c1 = 1, c2 = −1:

u(t) = e−2t − e−3t.

Examples

• Consider the IVP
4y′′ − y = 0, y(−2) = 1, y′(−2) = −1.

1. We obtain the characteristic equation 4r2 − 1 = 0 ⇒ r = ±1
2
and so the general

solution will be
y(t) = c1e

t
2 + c2e

− t
2 .

2. Using the initial conditions we obtain:

1 = c1e
−1 + c2e and − 1 =

1

2
(c1e

−1 − c2e).

3. Solving these two equations gives: c1 = −1
2
e, c2 =

3
2
e−1 and so the solution for our

IVP is:
y(t) = −1

2
e1+

t
2 +

3

2
e−

t
2
−1.

4. Therefore, as t→ +∞ we obtain y → −∞.

• Consider the IVP
y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = β

1. The characteristic equation is r2 + 5r + 6 = 0 ⇒ r = −2,−3 and so the general
solution will be:

y(t) = c1e
−2t + c2e

−3t

2. Using the initial conditions we obtain:

2 = c1 + c2 and β = −2c1 − 3c2.

3. Solving these two equations gives: c1 = (6 + β), c2 = −(4 + β) and so the solution
for our IVP is:

y(t) = (6 + β)e−2t − (4 + β)e−3t.

4. Therefore, as t→ +∞ we obtain y → 0.

0.2.1 Wronskian

Now we will show that the general solution of linear homogeneous ode is always of the form:

y(t) = c1y1 + c2y2,

where the yi are solutions for the differential equation that satisfy a linear independence condition
that is called theWronskian. Then {y1, y2} will be called the fundamental solutions because
they can be used to generate all other solutions.
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Method formal steps

Consider arbitrary initial conditions y(t0) = y0 and y′(t0) = y′0.

1. Assuming that y = c1y1 + c2y2 holds for some choice of c1, c2 then we certainly expect
that the follow equations will hold:

y0 = y(t0) = c1y1(t0) + c2y2(t0)

y′0 = y′(t0) = c1y
′
1(t0) + c2y

′
2(t0)

which can be rewritten in matrix form as:[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

](
c1
c2

)
=

(
y0
y′0

)
.

This leads us to studying the matrix

Wmatrix =

[
y1(t0) y2(t0)

y′1(t0) y′2(t0)

]
.

2. Then we compute the determinant of this matrix, referred to as the Wronskian,

W = det(Wmatrix) = y1(t0)y
′
2(t0)− y2(t0)y′1(t0).

3. If it is not zero, then the general solution will be of the form y = c1y1 + c2y2 (Although
we only found coefficients that allow c1y1 + c2y2 to match y when t = t0 it will turn out
that both functions agree for all t).

4. If it is zero then these y1, y2 will not generate all solutions (In this case it is possible to
choose y0 and y′0 to make the system have no solutions at t0. If we can’t solve it at t0
there is no hope for general t).

Example-presenting the method

Going back to the spring example, the characteristic equation is

mr2 + γr + k = 0.

Assume that it has two distinct real roots r1, r2 and so we can easily check that y1(t) =
er1t, y2(t) = er2t are both solutions for this ODE. Now by computing the Wronskian we will
check whether all possible solutions are of that form:

W
(
er1t, er2t, t

)
= e(r1+r2)t (r2 − r1)︸ ︷︷ ︸

distinct roots

6= 0.

Therefore, all solutions will be of the form: y = c1e
r1t + c2e

r2t for some choice of c1 and c2.

General results:

Generalized solution

Suppose that y1, y2 are solutions of

y′′ + p(t)y′ + q(t)y = 0.
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Then the family of solutions
y = c1y1 + c2y2

for arbitrary c1, c2, includes all possible solutions if and only if there is a t∗ where the
Wronskian of y1(t∗), y2(t∗) is not zero.

Proof. Consider general solution ϕ(t) of the above ODE. We will show that there are constants
a, b s.t. ϕ(t) = ay1+by2. Let t∗ be the time for whichW (y1, y2, t∗) 6= 0 and let K0 = ϕ(t∗), K1 =
ϕ′(t∗). Then [

y1(t∗) y2(t∗)

y′1(t∗) y′2(t∗)

](
a

b

)
=

(
K0

K1

)
has a solution

(
a
b

)
because the matrix is invertible. So if ζ(t) := ay1(t) + by2(t) we have

ζ(t∗) = K0, ζ
′(t∗) = K1. Therefore, the existence and uniqueness theorem for 2nd order ODEs

gives us ϕ(t) = ζ(t) = ay1(t) + by2(t) for all t.

In fact if W (y1, y2, t∗) 6= 0 for one t∗ , then the Wronskian is actually never zero for all
t s.t. W (y1, y2, t) 6= 0. This is proved via Abel’s identity:

Proposition 0.2.1 (Abel’s identity). Let y1, y2 be solutions to

y′′ + p(t)y′ + q(t)y = 0

then for any t∗ we can write

W (y1, y2, t) = W (y1, y2, t∗)exp

{
−
∫ t

t∗

p(s)ds.

}
Proof. Next we prove Abel’s identity which will imply W (y1, y2, t∗) 6= 0⇒ W (y1, y2, t) 6= 0.
Differentiating the Wronskian we obtain

W ′ = y1y
′′
2 − y′′1y2.

Plugging in the ODE for y′′1 and y′′2 gives

W ′ = y1(−py′2 − q(t)y2)− (−py′1 − q(t)y1)y2
= −p(y1y′2 − y′1y2)
= −pW.

Therefore, we obtain the first order ODE W ′ = −p(t)W which is solved by

W (t) = W (t∗)exp

{
−
∫ t

t∗

p(s)ds

}
.

One application of this is in disproving that two functions y1, y2 are the fundamental
solutions for some second order linear non-homogeneous constant coefficient ODE. For example,
let y1 = 1− t, y2 = t3 then their Wronskian is

W (y1, y2, t) = t2(3− 2t)

and so W (y1, y2, 0) = 0 and W (y1, y2, 1) = 1. Therefore, these y1, y2 cannot be solutions to any
such ODE (If such an ODE existed then since the Wronskian is non-zero at t = 1 then by Abel’s
identity the Wronskian is nowhere zero. However, the Wronskian is 0 at t = 0).
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Examples

• Consider the equation y′′ − 2y′ + y = 0 and functions y1 := et, y2 := tet

1. One can easily check that both y1, y2 solve the above ODE, so now we will check if
they are fundamental solutions.

2. The Wronskian is

W
(
et, tet, t

)
= et

(
et + tet

)
− te2t = e2t 6= 0

3. So indeed a general solution for the above ODE is y = aet + btet.

• Consider the ODE y′′ − y′ − 2y = 0 and functions y1 := e2t, y2 := −2e2t.

1. One can easily check that both solve the ODE.
2. Their Wronskian is

W
(
e2t,−2e2t, t

)
= −2e4t −

(
−4e2te2t

)
= 0

and so they do not form a linearly independent set and in turn a fundamental solution.

0.2.2 Complex roots

In some cases the roots are complex (when b2− 4ac < 0). For example, suppose that there is no
damping in the above spring example (γ = 0), then the equation will be:

mu′′ + ku = 0.

Therefore, the roots will be r = ±
√
−k/m = ±i

√
k/m =: ±iω, where we define i :=

√
−1

called the imaginary unit as well as ω =
√

k
m
. The main result we will need is Euler’s formula

eiωt = cos (ωt) + i sin (ωt).

Here we can easily check that y1(t) = cos (ωt) and y2(t) = sin (ωt) are both solutions for this
ODE. Now by computing the Wronskian we will check whether all possible solutions are of that
form:

W (cos (ωt), sin (ωt), t) = ω cos2 (ωt) + ω sin2 (ωt) = ω 6= 0.

This is to be expected since we don’t imagine that the imaginary part of this solution (i.e sin (ωt))
interferes with the real part of this solution (i.e cos (ωt) and so they should be independent.
Therefore, all solutions will be of the form: y = c1 cos (ωt) + c2 sin (ωt) , where ci could be
complex constants. Physically this periodicity is expected because there is no external force or
damping to remove energy from the spring and so it can keep oscillating forever.

Examples

• Consider the equation y′′ + y = 0, y(π/3) = 2, y′(π/3) = −4

1. The roots are r2 + 1 = 0⇒ r = ±i and so the general solution is (with a1 = c1 + c2
and a2 = i(c1 − c2))

y(t) = c1e
it + c2e

−it = a1 cos (t) + a2 sin (t).

2. Using the initial conditions we obtain:

2 = a1
1

2
+ a2

√
3

2
and − 4 = −a1

√
3

2
+ a2

1

2
.
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3. Solving these two equations gives: a1 = (1+2
√
3), a2 = −(2−

√
3) and so the solution

for our IVP is:
y(t) = (1 + 2

√
3) cos(t)− (2−

√
3) sin(t).

Figure 0.2.2: Spring mass

4. So as t→∞ the system simply keeps oscillating steadily (depicted in Figure 0.2.2).
Physically this is because it is damping free γ = 0.

• Consider the equation y′′ − 2y′ + 5y = 0, y(π/2) = 0, y′(π/2) = 2

1. The roots are r2 − 2r + 5 = 0⇒ r = 1± 2i and so the general solution is (with a1 =
c1 + c2 and a2 = i(c1 − c2))

y(t) = c1e
t(1+2i) + c2e

t(1−2i) = et(a1 cos (2t) + a2 sin (2t)).

2. Using the initial conditions we obtain:

0 = e
π
2 (a1 · (−1) + a2 · 0) and 2 = e

π
2 (a1 · (−1) + a2 · (−2)).

3. Solving these two equations gives: a1 = 0, a2 = −e−π/2 and so the solution for our
IVP is:

y(t) = −et−π/2 sin (2t).
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Figure 0.2.3: Spring mass

4. So as t→∞ the system simply keeps oscillating with increasing amplitude. Physically
this is because the damping is negeative γ = −2 < 0 and so instead of removing
energy, it adds.

0.2.3 Repeated roots

In some cases the roots are equal (when b2 − 4ac = 0). For example, suppose that γ2 ≈ 4km
(called critically damped), then the roots will be

r1 = r2 = −
γ

2m
=: r.

This only gives one solution y1 = ert, but to find the general one we require a second
solution y2 that is linearly independent: W (y1, y2, t∗) 6= 0 for some t∗. It turns out (proved
below) that y2(t) := tert is such a function:

W (y1, y2, t) = ert
(
ert + rtert

)
− rerttert = e2rt 6= 0.

Example

• Consider the IVP
y′′ − 2y + 2 = 0, y(0) = 1, y′(0) = 2

1. The root of the characteristic equation is r = 1 and so the two solutions are
y1 = et, y2 = tet. Thus, the general solution will be of the form

y = aet + btet.

2. The initial conditions give 1 = a, 2 = a + b ⇒ a = 1, b = 1 and so the solution
satisfying these conditions is

y = et + tet.

3. This solution goes to infinity as t→ +∞.

• Consider the IVP
y′′ − 6y′ + 9y = 0, y(0) = 0, y′(0) = 2
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1. The root is r = 3 and so the independent solutions are y1 = e3t, y2 = te3t. Thus, the
general solution will be

y = ae3t + bte3t.

2. The initial conditions give 0 = a, 2 = 3a + b ⇒ a = 0, b = 2 and so the solution
satisfying these conditions is

y = 2tet.

3. This solution goes to infinity as t→ +∞.

General result

Repeated root

If the ODE ay′′ + by′ + cy = 0 has a characteristic equation with repeated root r := −b
2a
,

then its general solution is of the form:

y = c1e
rt + c2te

rt.

Proof. For y2 := g(t)y1 we will first find which ODE g(t) must satisfy in order that y2 is a
solution of our ODE.

a(g(t)y1)
′′ + b(g(t)y1)

′ + c = 0

⇒a
(
g′′(t)ert + 2g′(t)rert

)
+ bg′ert = 0

where we used that y1 satisfies the ODE ay′′ + by” + cy = 0

0 = a(g′′(t) + g′(t)(2ar + b)) = ag′′(t) + g′(t)

(
2a
−b
2a

+ b

)
= ag′′

⇒ag′′ = 0
⇒g = c1 + c2t.

We conclude that
y2(t) = (c1 + c2t)e

rt = c1e
rt + c2te

rt.

Since we are interested in finding an independent solution (so that we can find the general
solution) we may as well take c1 = 0 and c2 = 1 since for any a, b ∈ R we have

aert + b
(
c1e

rt + c2te
rt
)
= (a+ bc1)e

rt + bc2te
rt.

That is, any linear combination of the solutions ert and c1ert + c2te
rt can be generated by ert

and tert by a different set of coefficients. The opposite is also true. We conclude that the
candidates for fundamental solutions are ert and tert. As shown earlier, by means of a Wronskian
computation, these solutions are independent. Thus, the general solution is of the form

y = d1e
rt + d2te

rt

0.2.4 Stability

Consider nonhomogeneous equation of the form

y′′ + ay′ + by = c,
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where a, b, c are constants. If we have a solution yh for the homogeneous problem, then we can
construct a solution for the nonhomogeneous problem:

y = yh +
c

b
.

The solution ys := c
b
is called globally stable when for all solutions y we have y → ys as

t→ +∞, which is equivalent to saying yh → 0 as t→ +∞.

Method formal steps

1. If the characteristic equation has two real distinct roots r1, r2 then the general solution is

yh = c1e
r1 + c2e

r2t

and so ys is stable iff r1, r2 < 0.

2. If the characteristic equation has two complex roots r1, r2 then
(
if we let β =

√
4b−a2
2

)
)

yh = e−
at
2 (c1 cos(βt) + c2 sin(βt))

and so ys is stable iff a > 0.

3. If the characteristic equation has a double root r = r1 = r2 then

yh = ert(c1 + c2t)

and so ys is stable iff r < 0.

In fact, as we will prove below it suffices to check whether the coefficients a, b are
positive.

Example-Presenting the method

• [CW] In the price adjustment example (from the section on linear integrating factor and
autonomous dynamics), we assumed that the demand and supply are functions of the
price alone:

D(P ) = a− bP and S(P ) = α + βP.

However, buyers may also base their behavior on whether the price is increasing or
decreasing. For example, if the price of newer versions of a phone brand have been
increasing steadily or in an accelerating manner, they may decide to switch to another
brand. So the demand will also be a function of the derivative of the price P ′ (growth)
and the second derivative of the price P ′′ (steady or accelerating growth).
To keep things simple we will consider the following updated models:

D(P ) = a− bP +mP ′ + nP ′′ and S(P ) = α + βP + uP ′ + wP ′′,

where a, b, α, β > 0 and m,n, u, w can be any sign. For now we will study it from the
buyers perspective and set u = w = 0. To obtain an ODE for it, we assume that the
market is cleared and thus D(P ) = S(P ).

a− bP +mP ′ + nP ′′ = α + βP ⇒ P ′′ +
m

n
P ′ − b+ β

n
P =

α− a
n

.
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1. Once we obtain the solution yh of the homogeneous problem:

P ′′ +
m

n
P ′ − b+ β

n
P = 0

then for the above unhomogeneous ode the solution will simply be

y := yh +

(
−b+ β

n

)−1
(
α− a
n

) = yh +
a− α
b+ β

.

2. The characteristic equation is:

r2 +
m

n
r − b+ β

n
= 0.

Its roots are:

r1,2 = −
m

2n
±
√(m

n

)2
+ 4

b+ β

n
.

(a) If
(
m
n

)2
+ 4 b+β

n
> 0 then we obtain two distinct real roots r1, r2 and the solution

will be
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P = c1exp

{(
−m
2n
− 1

2

√(m
n

)2
+ 4

b+ β

n

)
t

}

+ c2exp

{(
−m
2n

+
1

2

√(m
n

)2
+ 4

b+ β

n

)
t

}
+
a− α
b+ β

.

Since b+β
n
< 0⇔ n < 0, then if n < 0 and m < 0 then both roots are negative

and thus as t→ +∞ we obtain:

P = c1e
r1t + c1e

r2t +
a− α
b+ β

t→+∞−−−−→ a− α
b+ β

.

Intuitively this means that when the demand D(P ) depends negatively on P ′′
(n < 0), the buyer will be averse to accelerating prices and so demand will not
rise but simply converge to the equilibrium price a−α

b+β
.

For example, suppose a = 42, b = 1, α = −6, β = 1,m = −4, n = −1, then our
ODE will be:

P ′′ + 4P ′ + 2P = 48

and the equilibrium will be a−α
b+β

= 24. Solving this ODE with P (0) = 1, P ′(0) = 0
gives us:

Figure 0.2.4: The solution stabilizes around the equilibrium price α−a
b+β

= 24

This agrees with the result below, namely the coefficients m
n
,− b+β

n
are both

positive and so the ys is globally stable.
(b) If

(
m
n

)2
+ 4 b+β

n
< 0 then we obtain two distinct complex roots r1, r2 and the

solution will be (with a1 = c1 + c2 and a2 = i(c1 − c2))

P = c1e
− m

2n
texp

{
− i
2

√∣∣∣∣(mn )2 + 4
b+ β

n

∣∣∣∣)t
}

+ c2e
− m

2n
texp

{
i

2

√∣∣∣∣(mn )2 + 4
b+ β

n

∣∣∣∣)t
}

+
α− a
b+ β

= e−
m
2n
t

[
a1 cos

(
t

2

√∣∣∣∣(mn )2 + 4
b+ β

n

∣∣∣∣
)
+ a2 sin

(
t

2

√∣∣∣∣(mn )2 + 4
b+ β

n

∣∣∣∣
)]

+
a− α
b+ β

.
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So this solution will diverge or go to zero depending on whether m
n
> 0 or m

n
< 0

respectively. For example, suppose a = 40, b = 2,m = −2, α = −5, β = 3, n = −1
then our ODE will be:

P ′′ + 2P ′ + 5P = 45

and for m = 2
P ′′ − 2P ′ + 5P = 45.

The corresponding solutions will be

P (t) = e−t[a1 cos(2t) + a2 sin(2t)] + 9

and
P (t) = et[a1 cos(2t) + a2 sin(2t)] + 9.

(a) The solution stabilizes around
the equilibrium price a−α

b+β = 9
(b) The solution oscillates with

increasing amplitude.

As expected from the result below the first ODE has globally stable solution due
to the positivity of the coefficients whereas the second ODE does not.
Intuitively, when m = −2 < 0, the demand D(P ) will depend negatively on
growing price P ′ and so the price will have to drop to market equilibrium. When
m = 2 > 0, the buyer will not stop even if the price is growing eg. for vital goods
such as bread, and so the price is free to keep growing. But why is it oscillating?
This is because the condition (m

n
)2+4 b+β

n
< 0 forces that n < 0 and so the buyer

will always be averse to accelerating growth in the price, which in turn causes
the downturns in price.

(c) If (m
n
)2 + 4 b+β

n
= 0 then we obtain one double root r = r1 = r2 and the solution

will be
P = c1e

− m
2n
t + c2te

− m
2n
t +

a− α
b+ β

.

Similarly, depending on the sign of m, the solutions will either diverge (m > 0)
or converge to market equilibrium price (m < 0).
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General solution for non-homogeneous and Stability for second order

Stability criterion for second order nonhomogeneous ODEs

Consider non-homogeneous equation

y′′ + ay′ + by = f(t).

Then the solution is of the form y = yh + ys, where yh solves the homogeneous problem
and ys is any solution of the nonhomogeneous problem. We have that

lim
t→∞

y = ys iff a > 0, b > 0.

In other words, ys is globally stable iff a > 0, b > 0 iff the real parts of the roots of the
characteristic equation are both negative.

Proof. As with constant f(t), we again obtain that the generalized solution is of the form

y = c1y1 + c2y2 + ys =: yh + ys.

So by studying when yh → 0, we can identify when ys is the globally stable solution.

1. If the characteristic equation has two real distinct roots r1, r2 then

yh = c1e
r1t+ c2e

r2t

and so ys is stable iff r1, r2 < 0. The roots are

r1 =
−a+

√
a2 − 4b

2
, r2 =

−a−
√
a2 − 4b

2
.

We have r1 < 0⇔ a > 0, b > 0 and r2 < 0⇔ a > 0. So to have both conditions we must
require a > 0 and b > 0.

2. If the characteristic equation has two complex roots r1, r2 then
(
for β =

√
4b−a2
2

)
yh = e−

at
2 (c1 cos(βt) + c2 sin(βt))

and so ys is stable iff a > 0. The condition b > 0 follows from a2 < 4b.

3. If the characteristic equation has a double root r = r1 = r2 then

yh = ert(c1 + c2t)

and so ys is stable iff r = −a
2
< 0⇒ a > 0. The condition b > 0 follows from a2 = 4b.

Examples

• Solve the IVP and determine long term behaviour

y′′ + y = 9, y(π/3) = 2, y′(π/3) = −4

1. As showed in the complex roots section the solution to the homogeneous problem is:

yh(t) =
(
1 + 2

√
3
)
cos(t)−

(
2−
√
3
)
sin(t).
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2. So the solution to our problem is:

y = yh + 9.

3. However, yh will keep oscillating steadily around the constant solution 9.

• Solve the IVP and determine long term behaviour

y′′ + 5y′ + 6y = 3, y(0) = 2, y′(0) = 1

1. The solution to the homogeneous problem is:

yh(t) = c1e
−2t + c2e

−3t.

2. The general solution to our problem is:

y = yh +
3

6
= yh +

1

2
.

3. So the particular one for our IC is:

y =
11

2
e−2t − 8e−3t +

1

2

4. Therefore, y will converge to the constant solution ys ≡ 1
2
.

0.3 Method 2: Undetermined coefficients
We will now consider non-homogeneous equations with constant coefficients of the form

ay′′ + by′ + cy = f(t).

By managing to find a particular solution ynh, then we can generate every other one. Let v be
any another solution, then

a(v − ynh)′′ + b(v − ynh)′ + c(v − ynh) = f(t)− f(t) = 0.

Therefore, by finding the fundamental set of solutions y1, y2 for the homogeneous problem we
have

v − ynh = c1y1 + c2y2 ⇒ v = ynh + c1y1 + c2y2.

So we managed to generate any solution starting from ynh, y1, y2. Here we will find ynh for f(t)
of the following possible forms:

f1(t) := Ctmer∗t, f2(t) := Ctmeα cos (βt), f3(t) := Ctmeαt sin (βt).

In fact once we obtain solutions yi, i = 1, 2, 3 for them, we also obtain solutions for their sums.
For example, consider the equation

ay′′ + by′ + cy = tmer∗t + sin (βt).

Observe that if y1, y2 solve

ay′′ + by′ + cy = tmer∗t

ay′′by′ + cy = sin (βt)

respectively then their sum, y1 + y2, solves

a(y1 + y2)
′′ + b(y1 + y2)

′ + c(y1 + y2) = tmer∗t + sin (βt).
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Method formal steps

1. If f = Ctmer∗t then we make the ansatz (assume the solution to be of the form)

ynh(t) = ts(a0 + a1t+ ...+ amt
m)er∗t.

Now the way we pick the exponent s, depends on whether or not r∗ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof 0.3below.

(a) If r∗ is not a root, then we set s := 0.
(b) If r∗ is a simple root, then we set s := 1.
(c) If r∗ is a double root, then we set s := 2.

2. If f = Ctmeα cos (βt) or ctmeαt sin (t) then we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)].

Now the way we pick the exponent s, depends on whether or not α+ iβ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof below.

(a) If α + iβ is not a root, then we set s := 0.
(b) If α + iβ is a root, then we set s := 1.

Example-presenting the method

Resuming the spring example, let u(t) denote the displacement from the equilibrium position.
Then by Newton’s Third Law one can obtain the equation

mu′′(t) + γu′(t) + ku(t) = F (t),

where F (t) is any external force. Above we assumed that F (t) = 0, and now we will take it to
be any of the above mentioned functions. For example, consider the equation

y′′ + 3y′ + 2y = sin (t).

Here we are shaking the spring system periodically in time.

1. First we are in the second case and so we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)]

which simplifies because m = 0, α = 0 and β = 1:

ynh(t) = ts(a0 cos(t) + b0 sin(t)).

2. Next we pick s, depending on whether a+ iβ = i is a root of our ODE’s characteristic
equation:

r2 + 3r + 2 = 0.

3. Its roots are r1 = −2, r2 = −1 and so we set s = 0 and have

ynh(t) = a0 cos (t) + b0 sin (t).

4. Plugging into our ODE we obtain

y′′ + 3y′ + 2y = −(a0 cos (t) + b0 sin (t)) + 3(−a0 sin (t) + b0 cos (t)) + 2(a0 cos (t) + b0 sin (t))
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= (a0 + 3b0) cos (t) + (−3a0 + b0) sin (t)

and so to have this be equal to sin (t) we require{
a0 + 3b0 = 0
−3a0 + b0 = 1 =⇒ a0 = −0.3, b0 = 0.1.

5. So the solution will be
ynh(t) = −0.3 cos (t) + 0.1 sin (t).

6. Therefore, the general solution will be:

y = ynh + c1e
−2t + c2e

−t.

7. But why is it periodic given that damping is involved (γ 6= 0)? The sinusoidal external
force keeps pumping energy into the system.

General result:

Method of Undetermined coefficients

Consider equations
ay′′ + by′ + cy = f(t),

where f(t) has the following possible forms:

f1(t) := Ctmer∗t, f2(t) := Ctmeα cos (βt), f3(t) := Ctmeαt sin (βt).

Then their corresponding solutions are of the form:

• If f = Ctmer∗t then we make the ansatz (assume the solution to be of the form)

ynh(t) = ts(a0 + a1t+ ...+ amt
m)er∗t.

Now the way we pick the exponent s, depends on whether or not r∗ is a root of the
characteristic equation of our ODE. The reason for this can be seen in the proof
below.

1. If r∗ is not a root, then we set s := 0.
2. If r∗ is a simple root, then we set s := 1.
3. If r∗ is a double root, then we set s := 2.

• If f = ctmeα cos (βt) or ctmeαt sin (βt) then we make the ansatz

ynh(t) = tseαt[(a0 + a1t+ ...+ amt
m) cos (βt) + (b0 + a1t+ ...+ bmt

m) sin (βt)].

Now the way we pick the exponent s, depends on whether or not α + iβ is a root of
the characteristic equation of our ODE. The reason for this can be seen in the proof
below.

1. If α + iβ is not a root, then we set s := 0.
2. If α + iβ is a root, then we set s := 1.

Proof. First we will work with

ay′′ + by′ + cy = Ctmer∗t.
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We assume the solution is of the form:

ynh(t) = (a0 + a1t+ ...+ ant
n)ert.

for some yet undetermined n. Then plugging it into our ODE we obtain:

ay′′nh + by′nh + cynh = an
(
ar2 + br + c

)
tnert +

(
ann(2ar + b) + an−1

(
ar2 + br + c

))
tn−1ert

+
[
ann(n− 1)a+ an−1(n− 1)(2ar + b) + an−2

(
ar2 + br + c

)]
tn−2ert

+ lower order terms

Case 1: If r is not a root of the characteristic equation ar2 + br + c, then the leading term tnert

remains and so to obtain tmert we must set n := m giving:

ynh(t) = (a0 + a1t+ ...+ ant
m)ert.

Case 2: If r is a simple root, then ar2 + br + cy = 0 and we are left with tn−1ert being the
leading order term and so we set n− 1 := m giving:

ynh(t) =
(
a0 + a1t+ ...+ ant

m+1
)
ert.

Moreover, since r is a root, then y0 := a0e
rt will solve the homogeneous equation ay′′+by′+cy = 0

and so we can ignore it (due to additivity of solutions of the homogeneous equation). Thus,

ynh(t) =
(
a1t+ ...+ ant

m+1
)
ert = t(a1 + ...+ ant

m)ert.

Case 3: If r is a double root, then ar2 + br + cy = 0, 2ar + b = 0 and we are left with tn−2ert
being the leading term and so we set n− 2 := m giving:

ynh = (a0 + a1t+ ...+ ant
m+2)ert.

Moreover, since r is a repeated root, then ert, tert are both solutions of the homogeneous equation
ay′′ + by′ + cy = 0 and so we can ignore. Thus,

ynh = (a2t
2 + ...+ ant

m+2)ert = t2(a2 + ...+ ant
m)ert.

Next we will work with

ay′′ + by′ + cy = Ctmeαt sin (βt) =
1

2i
Ctmeαt+iβt − 1

2i
Ctmeαt−iβt.

where we used that

sin (βt) =
eiβt − e−iβt

2i
.

Therefore, from the previous we make the guess

ynh = (a0 + a1t+ ...+ ant
n)e(α+iβ)t + (b0 + b1t+ ...+ bnt

n)e(α−iβ)t.

= eαt(c0 + c1t+ ...+ cnt
n) cos (βt) + (d0 + d1t+ ...+ dnt

n)eαt sin (βt).

So as above we check whether r∗ = α + iβ is a root and the same analysis shows the result.
Note that α + iβ cannot occur as a double root since the characteristic equation, ar2 + br + c,
has real coefficients. In fact, if α + iβ is a root then the other root must be α− iβ.

By representing cos (βt) as eiβt+e−iβt

2
and applying similar logic to the sin (βt) case we

complete the proof.
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Examples

• Consider the spring system governed by

y′′ + 2y′ − 3y = 3tet.

Find the solution and its asymptotic behaviour.

1. For this equation we have m = 1, r∗ = 1 and so our guess is:

y = ts(a0 + a1t)e
t.

2. To decide on the value of s, we have to check whether 1 is a root and what kind. The
characteristic equation is

r2 + 2r − 3 = 0 =⇒ r = −3, 1.

3. Therefore, we set s = 1 and our guess is:

ynh = t(a0 + a1t)e
t.

4. Next we determine ai by plugging them into the equation and equating to 3tet:

3tet = y′′ + 2y′ − 3y =
(
t(a0 + a1t)e

r∗t
)′′

+ 2
(
t(a0 + a1t)e

r∗t
)′ − 3

(
t(a0 + a1t)e

r∗t
)

=⇒2et(2a0 + 4a1t+ a1) = 3tet.

This implies the following equation

2(2a0 + 4a1t+ a1) = 3t

=⇒ a1 = 3/8 and 4a0 + 2a1 = 0

=⇒ a1 = 3/8 and a0 = −
3

16
.

Therefore, the general solution is

y = c1e
−3t + c2e

t + ynh = c1e
−3t + c2e

t + t

(
− 3

16
+

3

8
t

)
et.

5. Therefore, as t→ +∞, we have y(t)→ +∞. Physically this means that the mass
will get displaced towards the positive direction because of the external force 3tet.

• Consider the spring system governed by

y′′ + 2y′ − 3y = 2tet sin (t).

Determine what form the solution will take.

1. For this equation we have m = 1 and α = β = 1, so our ansatz will be

ynh = tset[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

2. To decide on s, we have to check whether 1+ i is a root for our characteristic equation:

r2 + 2r − 3 = 0 =⇒ r = −3, 1.
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3. So we put s = 0:

ynh = et[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

4. Therefore, the general solution is

y = c1e
−3t + c2e

t + ynh = c1e
−3t + c2e

t + et[(a0 + a1t) cos (t) + (b0 + b1t) sin (t)].

0.4 Method 3: Variation of parameters

We will now consider non-homogeneous equations with coefficients of the form

ay′′ + by′ + cy = f(t),

where f(t) is any continuous function and a, b, c are also functions with a(t) 6= 0.

Method formal steps

1. First, we obtain two linearly independent solutions y1, y2 for the homogeneous problem

ay′′ + by′ + cy = 0.

2. Second, we make a guess
yg = v1(t)y1 + v2(t)y2

and plug it into our ODE. This will gives one equation for v1, v2.

3. Third; we have two unknowns, so we will need one more equation in order to solve for
both. So we impose another condition for v1, v2 to obtain another equation:

v′1y1 + v′2y2 = 0.

This equation is helpful because it simplifies the first equation (proved in detail below )

y′g = y′1v1 + y′2v2 + 0 ⇒ ay′′g + by′g + cyg = a(y′1v
′
1 + y′2v

′
2).

4. Therefore, we can obtain v1, v2 from the system{
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 =

f
a

Example-presenting the method

Returning to the spring example, suppose that it is damping free γ = 0 and the exernal force is
f(t) = tan (t):

y′′ + y = tan (t).

1. First we find independent solutions for the homogeneous problem:

y′′ + y = 0.

2. One can easily check that cos (t), sin (t) are solutions for it and computing their Wronskian
gives:

W (cos (t), sin (t), t) = cos2 (t) + sin2 (t) = 1 6= 0.
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3. Therefore, we make a guess

yg = v1 cos (t) + v2 sin (t).

4. Using our system of equations {
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 =

f
a

we obtain

{
v′1 cos (t) + v′2 sin (t) = 0

− cos (t)v′1 + cos (t)v′2 = tan (t)

=⇒
{

v′1 = − tan (t) sin (t)
v′2 = tan (t) cos (t) = sin (t)

Therefore, by integrating we obtain

v1 = −
∫

tan (t) sin (t)dt = −
∫

sin2 (t)

cos (t)
dt

=

∫ (
cos (t)− 1

cos (t)

)
dt

= sin (t)− ln

∣∣∣∣1 + sin (t)

cos (t)

∣∣∣∣+ c1

and

v2 =

∫
sin (t)dt = − cos (t) + c2

For simplicity we take c1 = c2 = 0 and we get:

yg =

(
sin (t)− ln

∣∣∣∣1 + sin (t)

cos (t)

∣∣∣∣) cos (t)− cos (t) sin (t)

= cos (t) ln

∣∣∣∣ cos (t)

1 + sin (t)

∣∣∣∣.
General result:

The equations y′′ + p(t)y′ + q(t)y = g(t) for continuous p, q, g have solutions of the form

Y = y1v1 + y2v2,

where y1, y2 are fundamental solutions for the homogeneous problem y′′+p(t)y′+ q(t)y = 0
and

v1 := −
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds and v2 :=

∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds.

Proof. We start by making the guess

yg := y1v1 + y2v2.
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We have
y′g = v′1y1 + v′2y2 + v1y

′
1 + v2y

′
2.

So we note that if we set
v′1y1 + v′2y2 = 0

then the second derivative will not contain any v′′1 , v′′2 terms:

y′g = 0 + v1y
′
1 + v2y

′
2

=⇒ y′′g = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 .

Therefore, the ODE for yg becomes

y′′g + py′g + qyg = v′1y
′
1 + v1y

′′
1 + v′2y

′
2 + v2y

′′
2 + p(v1y

′
1 + v2y

′
2)

+ q(y1v1 + y2v2)

= v1(y
′′
1 + p(t)y′1 + q(t)y1) + v2(y

′′
2 + p(t)y′2 + q(t)y2)

+ v′1y
′
1 + v′2y

′
2

= 0 + v′1y
′
1 + v′2y

′
2

because y1, y2 are solutions to the homogeneous problem. Therefore, for yg to be a solution we
need

v′1y
′
1 + v′2y

′
2 = g(t).

Our second equation was
v′1y1 + v′2y2 = 0.

Together they give

v′1 =
−y2g

W (y1, y2, t)
and v′2 =

y1g

W (y1, y2, t)

v1 := C1 −
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds and v2 := C2 +

∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds.

Observe that the constants of integration can be ignored since including them leads to

v1(t)y1 + v2y2 =

(
−
∫ t

t0

y2(s)g(s)

W (y1, y2, s)
ds

)
y1 +

(∫ t

t0

y1(s)g(s)

W (y1, y2, s)
ds

)
y2 + C1y1 + C2y2︸ ︷︷ ︸

solution to homogeneous

.

Examples

• Consider the equation
ty′′ − (1 + t)y′ + y = t2e2t

with given fundamental solutions y1 = 1 + t, y2 = et for the homogeneous problem
ty′′ − (1 + t)y′ + y = 0.

• We have the system {
v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 =

f
a

=⇒
{
v′1(1 + t) + v′2e

t = 0
v′1 + etv′2 = te2t

=⇒ v′1 = −e2t and v′2 = (1 + t)et
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=⇒ v1 = −
1

2
e2t and v2 = tet.

Therefore, the solution for the nonhomogeneous problem will be

y = v1y1 + v2y2 =

(
−1

2
e2t
)
(1 + t) +

(
tet
)
et =

1

2
(t− 1)e2t.

• Consider the equation
x2y′′ − 3xy′ + 4y = x2 ln (x)

with given fundamental solutions y1 = x2, y2 = x2 ln (x) for the homogeneous problem
x2y′′ − 3xy′ + 4y = 0.
We have the system {

v′1y1 + v′2y2 = 0
y′1v
′
1 + y′2v

′
2 =

f
a

=⇒
{

v′1x
2 + v′2x

2 ln (x) = 0

2xv′1 + (2x ln (x) + x)v′2 = ln (x)

=⇒ v′1 = − ln2 (x)/x and v′2 = ln(x)/x

=⇒ v1 = −
ln3(x)

3
and v2 =

ln2(x)

2
.

Therefore, the solution for the nonhomogeneous problem will be

y = v1y1 + v2y2 = −
ln3(x)

3
x2 +

ln2(x)

2
x2 ln(x).

0.5 Method 4: Reduction of order
For homogeneous equations of the form

y′′ + p(t)y′ + q(t)y = 0 (0.5.1)

if we have one solution y1, we can obtain a second one by setting

y2 := v(t)y1

and identifying an ODE for v. Plugging in y2 into our ODE we obtain

y1v
′′ + (2y′1 + py1)v

′ = 0

where we have used that y1 satisfies (0.5.1).

Example-presenting the method

Consider the equation

x2y′′ − 5xy′ + 9y = 0 =⇒ y′′ − 5x−1y′ + 9x−2 = 0.

1. One solution is y1 = x3. One would guess this solution by observing that this equation
preserves the "order” of monomials. That is y′′ decreases the power of x by 2 but in the
equation y′′ is multiplied by x2. The same phenomenon occurs for xy′. As a result, we
obtain a characteristic equation if we guess y = xr for an r to be determined.
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2. Assuming a second solution of the form y2 = v(x)x3 we obtain

0 = y1v
′′ + (2y′1 + py1)v

′ = x3v′′ +
(
6x2 − 5x−1x3

)
v′ = x2(xv′′ + v′) ⇒ xv′′ + v′ = 0.

3. This gives us
v(x) = c ln (x).

So the general solution will be

y = ax3 + b ln (x)x3.

0.6 Nonlinear into second order

0.6.1 Riccati

The non-linear Riccati equation can always be reduced to a second order linear ordinary
differential equation (ODE): If y satisfies

y′ = q0(x) + q1(x)y + q2(x)y
2

then, wherever q2 is never zero and differentiable,

v = yq2

satisfies a Riccati equation of the form

v′ = v2 +R(x)v + S(x),

where
S = q2q0 and R = q1 +

q′2
q2

because

v′ = (yq2)
′ = y′q2 + yq′2

=
(
q0 + q1y + q2y

2
)
q2 + yq′2

= q0q2 +

(
q1 +

q′2
q2

)
q2y + (q2y)

2

= q0q2 +

(
q1 +

q′2
q2

)
v + v2.

Substituting

v = −u
′

u
,

it follows that u satisfies the linear 2nd order ODE

u′′ +R(x)u′ − S(x)u = 0

since

u′′ = (uv)′ = u′v + uv′

= u′v + u
(
v2 +R(x)v + S(x)

)
= u′

(
−u′

u

)
+ u

((
−u′

u

)2

+R(x)

(
−u′

u

)
+ S(x)

)
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= −(u′)2

u
+

(u′)2

u
−R(x)u′ + S(x)u

= −R(x)u′ + S(x)u

and hence
u′′ +Ru′ − Su = 0.

A solution of this equation will lead to a solution

y =
−u′

q2u

of the original Riccati equation.

0.7 Problems
• Real distinct roots

1. Find the solution, do a rough sketch, and describe its asymptotic behaviour
(a) y′′ + y′ − 2y = 0, y(0) = 1, y′(0) = 1,

(b) y′′ + 3y′ = 0, y(0) = −2, y′(0) = 3.
2. Solve

y′′ − y′ − 2y = 0, y(0) = a, y′(0) = 2

and determine for which a, the solution goes to zero as t→ +∞.

• Wronskian

1. Consider the equation y′′ − y′ − 2y = 0

(a) Show that y1(t) := e−t, y2(t) := e2t form a set of fundamental solutions.
(b) Show that each of y3(t) := −2e2t, y4(t) := y1(t) + 2y2(t), and y5(t) := 2y1(t)−

2y3(t) are solutions to the above ode.
(c) Which of the following pairs give rise to a fundamental pair of solutions:

{y1, y3}, {y2, y3}, {y1, y4}, {y4, y5}

• Complex roots

1. Imagine a spring satisfying the following equations. Find the solution, do a rough
sketch, and describe its asymptotic behaviour (steady/growing/decaying oscillation).
Finally, explain the asymptotic behaviour based on the coefficients (see notes on
damping effect).
(a) y′′ + 4y = 0, y(0) = 0, y′(0) = 1,

(b) (*)y′′ + 2y′ + 2y = 0, y(π/4) = 2, y′(π/4) = −2.

• Repeated roots

1. Find the solution, do a rough sketch, and describe its asymptotic behaviour
(a) 9y′′ − 12y′ + 4y = 0, y(0) = 2, y′(0) = −1,
(b) y′′ + 4y′ + 4y = 0, y(−1) = 2, y′(−1) = 1.

2. Consider the problem

y′′ − y′ + y

4
= 0, y(0) = 2, y′(0) = b

Find the solution and determine for which b, the solution remains positive for all
t > 0.
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• Demand and Supply Problems
Let the demand and supply functions be, respectively,

D(P ) = 9− P + P ′ + 3P ′′ and S(P ) = −1 + 4P + 2P ′ + 5P ′′

with P (0) = 4, P ′(0) = 4.
1. Derive the price ODE (, and find the price solution.
2. Does it have a globally stable solution as t→ +∞? What does the stability result

tell you?

• Method of undetermined coefficients
Find the general form of the solution (with abstract coefficients) and use the stability
result to determine whether they will have a globally stable solution.

1. y′′ − 2y′ − 3y = 3e2t,

2. y′′ − y′ − 2y = −2t+ 4t2,

3. y′′ + 2y′ = 3 + 4 sin(2t)

• Find the solution of the given IVP:

y′′ + y′ − 2y = 2t, y(0) = 0, y′(0) = 1.

• Variation of parameters
Below you are given the fundamental solutions y1, y2 of the homogeneous problem. Use
them to find a solution of the nonhomogeneous one.

1. t2y′′ − 2y = 3t2 − 1 with y1 = t2, y2 = t−1,

2. t2y′′ − t(t+ 2)y′ + (t+ 2)y = 2t3 with y1 = t, y2 = tet.
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