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Introduction

Introduction

Firms have uncertainty about future demand, costs, or behavior of
competitors.

They may learn about these elements over time, and this learning
process can have substantial implications for their profits and market
effi ciency.

The importance of firms’heterogeneous expectations and the
implications on firms’performance and market outcomes have been
long recognized in economics, at least since the work of Herbert
Simon (1958, 1959).

However, the assumption of rational expectations has been the status
quo to represent agents’beliefs in many areas in economics, and in
particular in IO.

It has not been until recently that firms’biased beliefs and learning
has received substantial attention in structural models in empirical IO.
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Introduction

Introduction / Outline

[1] I present a dynamic game of oligopoly competition that allows for
biased beliefs and learning, but it is agnostic about the source of the
biased beliefs and the form of learning (if any).

[2] We study nonparametric identification of firms’belief functions in
this model.

[3] Given estimated beliefs, we use them identify different possible
forms of firms’learning.
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Model

Model: Dynamic Game

N players indexed by i . Every period t, each player takes an action
ait ∈ {0, 1, ..., J}.

One-period payoff function is:

Πit = πit (ait , a−it , xt ) + εit (xit )

xt is a vector of common knowledge state variables with transition
ft (xt+1 | ait , a−it , xt ).

ε′its are private info of player i and unobservable to researcher. It is
i.i.d. over time and players.
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Model

Basic Assumptions

We maintain some of the assumptions in the concept of Markov
Perfect Equilibrium (MPE).

ASSUMPTION 1 (Payoff relevant state variables): Players’strategy
functions depend only on payoff relevant state variables: xt and εit .

ASSUMPTION 2 (Maximization of expected payoffs): Players are
forward looking and maximize expected intertemporal payoffs.

ASSUMPTION 3 (Rational beliefs on own future behavior): Players
have rational expectations on their own behavior in the future.
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Model

Strategies, Choice Probabilities, and Beliefs

Let σit (xt , εit ) be the strategy function for player i at period t.

Pit (ai |xt ) ≡ Pr(σit (xt , εit ) = ai |xt ) choice probability of player i .

B (t)it+s (a−i |xt+s ) of player i at period t about the behavior of other
players at period t + s.

The model allows the belief functions B (t)it+s to vary freely both over t
(i.e., over the period when these beliefs are formed) and over t + s
(i.e., over the period of the other players’behavior).

In particular, the model allows players to update their beliefs and
learn (or not) over time t.
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Model

Sequence of Beliefs B (t)it+s

Beliefs Period of the opponents’behavior (t + s)
formed (t) t + s = 1 t + s = 2 t + s = 3 ... t + s = T − 1 t + s = T

t = 1 B (1)i1 B (1)i2 B (1)i3 ... B (1)i ,T−1 B (1)iT

t = 2 - B (2)i2 B (2)i3 ... B (2)i ,T−1 B (2)iT

...
...

...
...

...
...

...

t = T − 1 - - - ... B (T−1)i ,T−1 B (T−1)iT

t = T - - - ... - B (T )iT
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Model

Best Response Functions

Given her beliefs at period t, Bi (t) =
{
B (t)i ,t+s : s ≥ 0

}
, a player best

response at period t is the solution of a single-agent Dynamic
Programming problem.

This DP problem can be described in terms of: (1) a discount factor;
(2) a sequence of expected one-period payoff functions:

π
B(t)
it+s (ait+s , xt+s ) ≡∑

a−i
B (t)it+s (a−i |xt+s ) πit+s (ait+s , a−i , xt+s )

And (3) a sequence of transition probability functions:

f B(t)it+s (xt+s+1|ait+s , xt+s ) ≡∑
a−i
B (t)it+s (a−i |xt+s ) ft+s (xt+s+1|ait+s , a−i , xt+s )
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Model

Best Response Functions (2)

The solution of this DP problem implies the vector of conditional
choice value functions at period t:

vB(t)it (xt ) =
{
vB(t)it (ai , xt ) : ai = 0, 1, ..., J

}
And the best response choice probabilities:

Pit (ai |xt ) = Pr
(
vB(t)it (ai , xt ) + εit (ai ) ≥ vB(t)it (a′i , xt ) + εit (a′i ) ∀a′i 6= ai

)
= Λi

(
ai ; v

B(t)
it (xt )

)
For instance, in a logit model:

Pit (ai |xt ) =
exp

{
vB(t)it (ai , xt )

}
∑J
j=0 exp

{
vB(t)it (j , xt )

}
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Model

Restrictions on Beliefs

In this model, the sequence of beliefs Bi (t) =
{
B (t)i ,t+s : s ≥ 0

}
are

completely unrestricted.

We can think in different type of restrictions on beliefs:
- Markov Perfect equilibrium, or other equilibrium concepts;
- Level-K Rationality at each period t (with or without learning);
- Bayesian Learning about true CCPs of other players;
- Other forms of learning: Adaptive learning, Reinforced learning,

etc.

Here we consider the following two-step approach:
[1] identification/estimation of (some) beliefs in Bi (t) without

imposing any restriction;
[2] testing for different forms of learning.
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Identification of Beliefs

Data

We have a random sample of M markets, indexed by m, where we
observe

{aimt , xmt : i = 1, 2, ...,N; t = 1, 2, ...,T data}

N and T data are small and M is large.

The payoff functions πit (ait , a−it , xt ) and the beliefs functions
B (t)it+s (a−i |xt+s ) are nonparametrically specified.

The distribution of the unobservables Λ is assumed known. This can
be relaxed if there is a "special" state variable zit (ait ) that enters
additively in πit .

I focus here in a model with two players, i and j , but the results can
be extended to N players.
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Identification of Beliefs

Inversion of CCPs

The model is described by the conditions:

Pit (ai |xt ) = Λ
(
ai ; v

B(t)
it (xt )

)
The CCPs Pit (ai |xt ) are identified using data from M markets.

Hotz-Miller inversion theorem implies that we can invert the best
response mapping to obtain value differences
ṽB(t)it (ai , xt ) ≡ vB(t)it (ai , xt )− vB(t)it (ai , xt ) as functions of CCPs:

ṽB(t)it (ai , xt ) = Λ−1 (ai ;Pit (xt ))

The identification problem is to obtain beliefs and payoff functions
given that Λ−1 (ai ;Pit (xt )) are known.
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Identification of Beliefs

Structure of the restrictions

By definition the value differences ṽB(t)it (ai , xt ) have the following
structure:

ṽB(t)it (ai , xt ) = B(t)it (xt )
′
[
π̃ it (ait , xt ) + c̃

B(t)
it (ait , xt )

]
where B(t)it (xt ) is the vector of beliefs [B

(t)
it (a−i |xt ) for any value

a−i ].

π̃ it (ait , xt ) is the vector of payoff differences
[πit (ait , a−i , xt )− πit (0, a−i , xt ) for any value a−i ].

c̃B(t)it (ait , xt ) is the vector of differences of continuation values
[cB(t)it (ait , a−i , xt )− cB(t)it (0, a−i , xt ) for any value a−i ] where:

cB(t)it (ait , a−i , xt ) = β ∑V B(t)it+1 (xt+1) ft (xt+1|ait , a−i , xt )
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Identification of Beliefs

Identification Assumptions

ASSUMPTION ID-1. A player has the same beliefs in markets with
the same x variables.

B (t)imt+s (.|x) = B
(t)
it+s (.|x) for any market m

ASSUMPTION ID-2 (Exclusion Restriction 1): xt = (sit , sjt ,wt )
such that sit enters in the payoff function of player i but not in the
payoff of the other player.

πit (ait , ajt , sit , sjt ,wt ) = πit (ait , ajt , sit ,wt )

ASSUMPTION ID-3 (Exclusion Restriction 2): The transition
probability of the state variable sit is such that the value of sit+1 does
not depend on (sit , sjt ):

ft (sit+1 | ait , sit , sjt ,wt ) = ft (sit+1 | ait , sit ,wt )
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Identification of Beliefs

Exclusion restriction in the payoff function (ID-2)

The exclusion restriction ID-2 in the payoff function πit appears
naturally in many applications of dynamic games of oligopoly
competition.

Incumbent status, capacity, capital stock, or product quality of a firm
at period t − 1 are state variables that enter in a firm’s payoff
function at period t, πit , because there are investment and
adjustment costs that depend on these lagged variables.

A firm’s payoff πit depends also on the competitors’values of these
variables at period t, but it does not depend on the competitors’
values of these variables at t − 1.

Importantly, the assumption does not mean that player i does not
condition her behavior on those excluded variables. Each player
conditions his behavior on all the (common knowledge) state variables
that affect the payoff of a player in the game, even if these variables
are excluded from his own payoff.Victor Aguirregabiria () Empirical IO March 28, 2019 20 / 33



Identification of Beliefs

Exclusion restriction in the transition probability (ID-3)

ft (sit+1 | ait , sit , sjt ,wt ) = ft (sit+1 | ait , sit ,wt )

An important class of models that satisfies this condition is when
sit = ai ,t−1, such that the transition rule is simply:

sit+1 = ait

Many dynamic games of oligopoly competition belong to this class,
e.g., market entry/exit, technology adoption, and some dynamic
games of quality or capacity competition, among others.
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Identification of Beliefs

Example: Quality competition

Quality ladder dynamic game (Pakes and McGuire, 1994).

sit is the firm’s quality at t − 1.

The decision variable ait is the firm’s quality at period t, such that:

sit+1 = ait

The model is dynamic because the payoff function includes a cost of
adjusting quality that depends on ait − sit :

ACi (ait − sit )

Given competitors quality at period t, ajt , firm i’s profit does not
depend on competitors’qualities at t − 1.
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Identification of Beliefs

Role of the Exclusion restrictions

ln
(
Pit (ai |sit , s−it )
Pit (0 |sit , s−it )

)
= B(t)it (sit , s−it )

′
[
π̃ it (ait , sit ) + c̃

B(t)
it (ait , sit )

]
Under the two exclusion restrictions, the state variables s−it (the
competitors sj ) do not enter in the payoffs π̃ it (ait , sit ) and on the

continuation values c̃B(t)it (ait , sit ).

Note: Though c̃B(t)it (ait , sit ) depends on beliefs, these are beliefs at
periods t + s > t and therefore depend on (sit+s , s−it+s ) for
t + s > t.

Therefore, the dependence of ln
(
Pit (ai |sit , s−it )
Pit (0 |sit , s−it )

)
with respect to

s−it captures the dependence of beliefs B
(t)
it (sit , s−it ) with respect to

s−it .
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Identification of Beliefs

Identification of Beliefs

For any player i , any period t in the data, any value of (a−i , sit ), and
any combination of three values s−it , say (s

(a)
−i , s

(b)
−i , s

(c )
−i ), the

following function of beliefs is identified:

B (t)it (a−i | sit , s
(c )
−i )− B

(t)
it (a−i | sit , s

(a)
−i )

B (t)it (a−i | sit , s
(b)
−i )− B

(t)
it (a−i | sit , s

(a)
−i )
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Identification of Beliefs

Identification of Beliefs [2]

For instance, in a binary choice logit with two-players:

B (t)it (1 | sit , s
(c )
−i )− B

(t)
it (1 | sit , s

(a)
−i )

B (t)it (1 | sit , s
(b)
−i )− B

(t)
it (1 | sit , s

(a)
−i )

=

ln

Pit (1 | sit , s
(c )
−i )

Pit (0 | sit , s(c )−i )

−ln
Pit (1 | sit , s

(a)
−i )

Pit (0 | sit , s(a)−i )


ln

Pit (1 | sit , s
(b)
−i )

Pit (0 | sit , s(b)−i )

−ln
Pit (1 | sit , s

(a)
−i )

Pit (0 | sit , s(a)−i )


Note that we cannot identify beliefs about competitors’behavior at
future periods: B (t)it+s for s > 0. However, B

(t)
it can provide substantial

information about learning.
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Testing learning models

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

4. Testing learning models
– – – – – – – – – – – – – – – – – – – – – – – – – – – –

Victor Aguirregabiria () Empirical IO March 28, 2019 26 / 33



Testing learning models

Testing learning models

Suppose that the researcher has identified the sequence of belief
functions B (t)it (a−it |xt ).

B (t)it (a−it |xt ) : t = 1, 2, ...,T data

Given these data on beliefs, we can test for different hypothesis about
the evolution of beliefs.

For notational simplicity, we represent these beliefs as if they were
transition probabilities B (t)it (xt+1|xt )
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Testing learning models

Testing for Rational Beliefs

Let Pt (xt+1|xt ) be the actual distribution of xt+1 conditional on xt in
the data. Pt (xt+1|xt ) is identified.

Testing for Rational Beliefs is equivalent to testing for the restrictions:

B (t)it (xt+1|xt ) = Pt (xt+1|xt )
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Testing learning models

Testing for Bayesian Learning

Let Pi ≡ {ψ`,i (x′|x) : ` = 1, 2, ..., L} be a collection of L transition
probabilities.

The prior belief function for firm i at period t = 0 is a mixture of the
distributions in Pi , where {λ(0)`,i } are the mixing probabilities.

At any period t ≥ 1, firms observe the new state xt and use this
information to update their respective beliefs using Bayes rule.

B (t)it (xt+1|xt ) =
L

∑
`=1

λ
(t)
`,i (x

′, x) ψ`,i (x
′|x)

where Bayesian updating implies:

λ
(t)
`,i (x

′, x) =
ψ`,i (xt |xt−1) λ

(t−1)
`,i (x′, x)

∑L
`′=1 ψ`′,i (xt |xt−1) λ

(t−1)
`′,i (x′, x)
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Testing learning models

Testing for Adaptive Learning

At period t:

B (t)it (x
′|x) = (1− δi ) B

(t−1)
it−1 (x

′|x) + δit K ([xt , xt−1]− [x′, x])

δi ∈ (0, 1) is a parameter that determines the speed of learning.

K (.) is a Kernel function that establishes whether the new
information at period t is used to update beliefs only at that point or
also at nearby values.
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Testing learning models

Testing for Fictitious Play

Fictitious play is a learning rule where each firm believes that rivals’
actions are sampled from the empirical distribution of their past
actions.

The belief function of firm i about the choice probability of firm j is:

B (t)it (aj |x) =
∑t
s=1 ω(s ,t) 1{[ajt−s , xt−s ] = [aj , x]}

∑t
s=1 ω(s ,t) 1{xt−s = x}

{ω(s ,t) : s ≤ t} are weights non-increasing in the lag index s.

In its original version (Brown, 1951) the fictitious play model assumes
that the weights ω(s ,t) are the same at every period s such that belief

B (t)it (aj |x) is just the empirical frequency of action aj conditional on
state x during periods 1 to t.

Victor Aguirregabiria () Empirical IO March 28, 2019 31 / 33



Testing learning models

Testing for Rationalizability

Rationalizability (Bernheim, 1984; Pearce, 1984).

The concept of rationalizability imposes two simple restrictions on
firms’beliefs and behavior.

- [A.1] Every firm is rational in the sense that it maximizes its
own expected profit given beliefs.

- [A.2] This rationality is common knowledge, i.e., every firms
knows that all the firms know that it knows ... that all the firms are
rational.

We have impose [A.1] to identify beliefs, but we have not impose
[A.2]. We can test for [A.2].

The set of outcomes of the game that satisfy these conditions (the
set of rationalizable outcomes) includes all the MPE Nash equilibria
of the game, but it also includes many other outcomes too.
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Testing learning models

Testing for Level-K Rationality

Cognitive Hierarchy and Level-k Rationality. These models assume
that players have different levels of strategic sophistication.

Every firm (player) maximizes its subjective expected profit given its
beliefs.

Firms are heterogeneous in their beliefs and there is a finite number
of belief types.

Beliefs for each type are determined by a hierarchical structure.

Level-0 firms believe that strategic interactions are negligible and
therefore they behave as in a single-agent model, i.e., as if they were
monopolists.

Level-1 firms believe that the rest of the firms are level-0, and they
behave by best responding to these beliefs. And so on.
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