ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

Lecture 6: Market entry and spatial competition

Victor Aguirregabiria (University of Toronto)

February 14th, 2019

Lecture 6: Models of Firms' Spatial Location: Outline

- **1.** Introduction
- **2.** Models with single-store (product) firms
- **3.** Models with multiple-store (product) firms

1. Firms' Spatial Location Introduction

3 / 44

Firms' Spatial Location: Introduction

- Consider the decision of a retail firm (e.g., coffee shop, restaurant, supermarket, apparel) of where to open a new store within a city.
- Different factors can play an important role:
 - Demand: what is the consumer traffic at different locations;
 - Rental prices
 - Location of competitors
- Geographic distance can be an important source of product differentiation. Ceteris paribus, a firm's profit increases with its distance to competitors.

Space: Beyond geographic location of stores

- Models for the geographic location of stores can be applied to study firms' decisions on product design.
- We only need to replace geographic space with the space of product characteristics.
- The following factors play an important role in firms' product location decisions:
 - Consumer demand at different locations;
 - Costs of entry and producing different bundles of characteristics;
 - Location of competitors in the product space.

5 / 44

Empirical questions

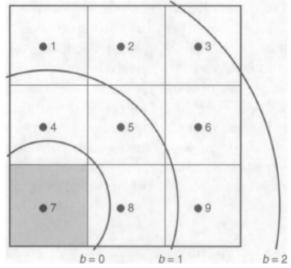
- How do profits decline when stores (products) get closer?
- Cannibalization: to what extend a multi-product firm is concerned with competition between its own products?
- **Economies of scope**: Do the costs of a new store/product decline with the number of other stores/products the firm has?
- Economies of density: Do the costs of a new store/product decline with the spatial proximity to other stores/products the firm has?
- Effect on competition of a change in the geography of the city,
 e.g., new neighborhoods. Similarly, effect of an expansion in the space of technologically feasible product characteristics.

2. Models of Firms' Spatial Location: Single product (store) firms

Space of feasible store locations (the city)

- From a geographical point of view, a market (city) is a set, for instance **a rectangle**, in the space \mathbb{R}^2 .
- Suppose that we divide this city/rectangle into L small squares, each one with its center.
- Each of these squares is a submarket (or neighborhood, or location).
- A market/city can have hundreds or thousands of these submarkets/locations.
- We index these locations by $\ell = \in \{1, 2, ..., L\}$

FIGURE 1
IMPACT ON PROFITS OF COMPETITORS' LOCATIONS: ILLUSTRATION



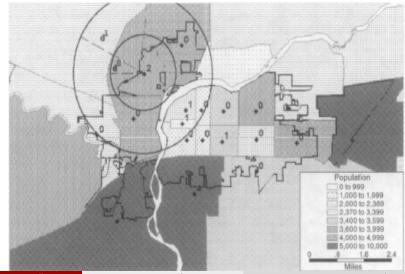
Product Space instead of Geographic Space

- Suppose that the spatial location refers to the location of products in the space of characteristics.
- Let $\mathbf{z} \in \mathbb{R}^K$ be a vector that describes the K observable (for the researcher) characteristics of a product.
 - For instance, for automobiles, horse power, max speed, physical dimensions, consumption, etc.
- ullet The space of feasible characteristics is compact set in $\mathbb{R}^{\mathcal{K}}$.
- We divide this space into L small hyper-squares in \mathbb{R}^K . Each of these hyper-squares is a submarket or product location.
- We index these product locations by $\ell = \in \{1, 2, ..., L\}$

Space of feasible store (product) locations

- Each location has some exogenous characteristics that can affect demand and costs of a firm in that location:
 - Population; demographic characteristics of the population; rental prices.
- We represent the exogenous characteristics of location ℓ using the vector \mathbf{x}_{ℓ} .
- Therefore, we can see a city as a landscape of the characteristics \mathbf{x}_{ℓ} over the L locations.

FIGURE 2 SAMPLE MARKET: GREAT FALLS, MONTANA



Model: Firms

- There are *N* potential entrants in this industry (e.g., supermarkets) and city (Toronto).
- In the simpler version of the model, each potential entrant has only one possible store: no multi-store firms (no chains).
- For the moment, we consider this simpler version.
- Let a_i represent the entry / location decision of firm i.

$$a_i \in \{0, 1, ..., L_m\}$$

- $a_{im} = 0$ represents "no entry";
- $a_{im} = \ell > 0$ represents entry in location ℓ .

Model: Profit function

- What is the profit of firm *i* if it opens a store in location ℓ ?
- In principle, we could consider a model of consumer choice of where to purchase (e.g., logit), a model of price competition between active firms; obtain the Bertrand equilibrium of that game, and the corresponding equilibrium profits.
- This approach requires having data on prices and quantities at every location.
- Instead, Seim (2006) considers a convenient shortcut.
- Her model does not specify (explicitly) consumer choices and price competition, but it incorporates the idea that geographic distance with competitors (spatial differentiation) can increase a firm's profit.

Model: Profit function [2]

- Suppose that we draw a circle of radius d around the center point of location ℓ , e.g., a radius of 1km.
- From the point of view of a store located at ℓ , we can divide its competitors in two groups:
 - Close competitors: within the circle of radius d.
 - Far away competitors: outside the circle of radius d.
- Let $N_{\ell}(close)$ and $N_{\ell}(far)$ be the number of close and far away competitors relative to location ℓ .
- We can consider a profit function that depends on γ_{close} $N_{\ell}(close)$ + γ_{far} $N_{\ell}(far)$, where γ_{close} and γ_{far} are parameters to estimate.
- We expect $\gamma_{close} < \gamma_{close} < 0$. The difference between γ_{close} and γ_{far} tell us how important is geographic distance as a form of differentiation to increase profits.

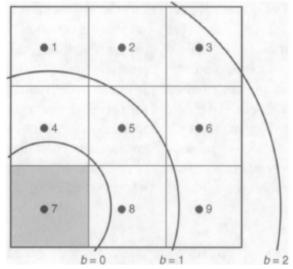
Model: Profit function [3]

- We can generalized this idea to allow for multiple circles, with different radius, around a location the center point of a location ℓ .
- Let $d_1 < d_2 < ... < d_B$ be B different radius of increasing magnitude, e.g., $d_1 = 0.2$ km, $d_2 = 0.5$ km, ..., $d_{10} = 20$ km.
- We can construct the number of firms within the bands defined by these radii:
 - $N_{\ell}(1) =$ Number of firms within the circle of radius d_1 ;
 - $N_{\ell}(2)=$ Number of firms within the band defined by the circles with radii d_1 and d_2 ;

...

- $N_{\ell}(B)=$ Number of firms within the band defined by the circles with radii d_{B-1} and d_B ;
 - $N_{\ell}(B+1) = \text{Number of firms outside the circle with radius } d_B$.

FIGURE 1
IMPACT ON PROFITS OF COMPETITORS' LOCATIONS: ILLUSTRATION



Model: Profit function [4]

• Profit of an active firm at location ℓ is:

$$\Pi_{i\ell} = \mathsf{x}_\ell \; \beta + \xi_\ell + \sum_{b=1}^{B} \gamma_b \; \mathsf{N}_\ell(b) + \varepsilon_{i\ell}$$

• We expect:

$$\gamma_1 < \gamma_2 < ... < \gamma_B < 0$$

- ξ_ℓ represents attributes of location ℓ which are known to firms bur unobserved to the researcher.
- ε_{i1} , ε_{i2} , ..., ε_{iL} are assumed iid over firms and locations with extreme value distribution.

Profit function - Space of product characteristics

- We can apply this approach to the model of spatial location in product space.
- Let \mathbf{z}_{ℓ} be the vector of observable characteristics that define a product in location ℓ .
- Given the B radii $d_1 < d_2 < ... < d_B$, we can define:

$$N_\ell(b) \equiv ext{Number of existing products with}$$
 with characteristics \mathbf{z} such that $d_{b-1} < \|\mathbf{z}_\ell - \mathbf{z}\| \le d_b$

• Profit of an active firm at location ℓ is:

$$\Pi_{i\ell} = x_{\ell} \ \beta + \xi_{\ell} + \sum_{b=1}^{B} \gamma_b \ N_{\ell}(b) + \varepsilon_{i\ell}$$

Model: Equilibrium (1)

• The game is of incomplete information. Firms do not know the actual numbers $N_{\ell}(1), ..., N_{\ell}(B)$. Instead, they now the expected value:

$$\mathbb{E}\left[N_{\ell}(b)\right] = N_{\ell}^{e}(b; \mathbf{P}) \equiv N \sum_{\ell'=1}^{L} 1\left\{d_{b-1} < \|\mathbf{z}_{\ell'} - \mathbf{z}_{\ell}\| \leq d_{b}\right\} P_{\ell'}$$

where P_{ℓ} is the equilibrium probability of opening a store at location ℓ ; and $\mathbf{P} = \{P_{\ell} : \ell = 1, 2, ..., L\}$.

• Then, given that a firm has beliefs ${\bf P}$ about entry probabilities at every location, the firm's best expected profit of entry in a location ℓ is:

$$\Pi_{i\ell} = \mathsf{x}_\ell \; \beta + \xi_\ell + \sum_{b=1}^B \gamma_b \; \mathsf{N}_\ell^e(b; \mathbf{P}) + \varepsilon_{i\ell}$$

including the possibility of no entry, $a_i = 0$ with $\Pi_i(0) = 0$.

◆ロト ◆部ト ◆注ト ◆注ト 注 りなべ

Model: Equilibrium (2)

• Given the logit assumption on $\varepsilon's$ the **best response** probability of entry at location ℓ is:

$$P_{\ell} = \frac{\exp\left\{x_{\ell} \ \beta + \xi_{\ell} + \sum_{b=1}^{B} \gamma_{b} \ N_{\ell}^{e}(b; \mathbf{P})\right\}}{1 + \sum_{j=1}^{L} \exp\left\{x_{j} \ \beta + \xi_{j} + \sum_{b=1}^{B} \gamma_{b} \ N_{j}^{e}(b; \mathbf{P})\right\}}$$

• The equilibrium of the model is described by L simultaneous equations, one for the share/probability of each location ℓ , P_{ℓ} . In compact form:

$$\mathbf{P} = \Lambda \left(\mathbf{P}; \ \mathbf{x}, \boldsymbol{\xi}, eta, \gamma
ight)$$

 This is a continuous mapping and compact space. By Brower's, the model has at least one equilibrium.

Model: Equilibrium (3)

- In equilibrium, a change in x_{ℓ} in a single location affects the entry probabilities $P_{\ell'}$ at every location ℓ' in the city.
- Example: Policy that encourages entry in location 1.
 - Direct substitution effect: Keeping all $N_\ell^e(b; \mathbf{P})$ constants, the increase in $x_1\beta$ generates a substitution from other locations into location 1.
 - Indirect equilibrium effect: the increase in P_1 implies an increase in $N_\ell^e(b; \mathbf{P})$ that include location 1; implies a reduction in entry probabilities in locations ℓ nearby location 1.

Data and Estimation

• Suppose that we have data from an industry (e.g., supermarkets) in a city (or one network). We observe:

Data =
$$\{x_{\ell}, n_{\ell} : \ell = 1, 2, ..., L\}$$

Given these data, we can construct shares: s_{ℓ} : $\ell = 1, 2, ..., L$:

$$s_\ell = rac{n_\ell}{N}$$
 and $s_0 = rac{N - n_1 - ... - n_L}{N}$

We distinguish three cases for the estimation of the model:

Case 1: 1 network. $L \to \infty$ & Large $\frac{N}{L}$ such that $s_{\ell} > 0$ at every ℓ .

Case 2: 1 network. $L \to \infty$ & Small $\frac{N}{L}$ such that $s_{\ell} = 0$ for some ℓ .

Case 3: M networks. $M \rightarrow \infty$. Small N, L.

Estimation: One Network; Large L; Large N/L

• With large N/L, such that $n_{\ell} > 0$ and $s_{\ell} > 0$ at every location ℓ , the model implies that:

$$\ln\left(\frac{s_{\ell}}{s_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{s}) + \xi_{\ell}$$

- This is a linear regression model with regressors x_{ℓ} , $N_{\ell}(1)$, ..., $N_{\ell}(B)$, and error term ξ_{ℓ} .
- Remember that:

$$N_{\ell}^{e}(b;\mathbf{s}) \equiv N \sum_{\ell'=1}^{L} 1\left\{d_{b-1} < \|\mathbf{z}_{\ell'} - \mathbf{z}_{\ell}\| \leq d_{b}
ight\} \ s_{\ell'}$$

• Therefore, this is system of L simultaneous equations, and variables $N_{\ell}^{e}(b; \mathbf{s})$ are endogenous regressors.

◆□▶ ◆□▶ ◆荳▶ ◆荳▶ 荳 めぬで

One Network; Large L; Large N/L: OLS

$$\ln\left(\frac{s_{\ell}}{s_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{s}) + \xi_{\ell}$$

- Regressors $N_{\ell}^{e}(b; \mathbf{s})$ are endogenous: they are correlated with ξ_{ℓ} . OLS estimator is inconsistent.
- We expect: $cov(N_\ell^e(1;\mathbf{s}),\xi_\ell)>0$ and $cov(N_\ell^e(1;\mathbf{s}),\xi_\ell)>cov(N_\ell^e(2;\mathbf{s}),\xi_\ell)>...>cov(N_\ell^e(B;\mathbf{s}),\xi_\ell)$
- This implies that OLS estimator of γ_1 is upward biased, and $bias(\gamma_1) > bias(\gamma_2) > ... > bias(\gamma_B)$
- We might wrongly conclude that distance does not affect competition.

One Network; Large L; Large N/L: IV

$$\ln\left(\frac{s_{\ell}}{s_0}\right) = x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_b \ N_{\ell}^{e}(b; \mathbf{s}) + \xi_{\ell}$$

- Model implies instruments for the endogenous regressors.
- Market characteristics x_j in locations other than ℓ do not enter in the equation for location ℓ but affect the equilibrium values $N_{\ell}^{e}(b; \mathbf{s})$.
- Let $\overline{x}_{\ell}(b)$ be the mean value of x_j in those locations that belong to the band b around location ℓ :

$$\overline{x}_\ell(b) = \frac{\sum_{j=1}^L 1\{\text{location } j \text{ belongs to band } b \text{ around } \ell\} \ x_j}{\sum_{j=1}^L 1\{\text{location } j \text{ belongs to band } b \text{ around } \ell\}}$$

• We can use $\overline{x}_{\ell}(b)$ as an instrument for $N_{\ell}(b)$.

One Network; Large L; Large N/L: Consistency

- Consistency and root-L asymptotic normality of the IV estimator as $L \to \infty$ requires some conditions.
- Haiqing Xu (IER, 2018) establishes conditions for consistency.
- The key condition is the Network Decaying Dependence (NDD) condition.
- A sufficient condition for NDD is:

$$\left|\sum_{b=1}^{B} \gamma_b\right| < \frac{1}{N}$$

- Under this condition, spatial effects decay with distance and the spatial stochastic process implied by the equilibrium is ergodic.
- Interestingly, this is also a sufficient condition for equilibrium uniqueness.

One Network; Large L; Large N/L

- Note that this regression-like approach has two very important advantages.
- Dealing with endogeneity. We can deal with endogeneity using a standard IV method.
- Computational simplicity. For the estimation of the structural parameters, we don't need to solve for an equilibrium of the model even once.

Estimation: One Network; Large L; Small N

- We cannot use a regression-like approach.
- Now, $s_{\ell} = \frac{n_{\ell}}{N}$ is zero for many locations ℓ . Furthermore, $s_{\ell} = \frac{n_{\ell}}{N}$ is no longer a consistent estimator of P_{ℓ} .
- We can use a MLE but a key issue is how to deal with the endogeneity problem associated with the unobservables ξ_{ℓ} .
- We first describe the MLE under the assumption of $\xi_\ell=0$ (no unobserved location heterogeneity) and then we relax this assumption.

One Network; Large L; Small N: epsi = 0

- Suppose that $\left|\sum_{b=1}^{B} \gamma_b\right| < \frac{1}{N}$ such that the model has a unique equilibrium. Suppose that we impose this restriction throughout the estimation of the model.
- Let θ be the vector of structural parameters, and let $\mathbf{P}(\theta)$ be the vector of equilibrium probabilities associated with θ . That is, $\mathbf{P}(\theta)$ solves

$$\mathbf{P}(\theta) = \Lambda \left(\mathbf{P}(\theta); \; \theta \right)$$

• Or equivalently, $P(\theta)$ solves the system:

$$P_{\ell}(\theta) = \frac{\exp\left\{x_{\ell} \ \beta + \sum_{b=1}^{B} \gamma_{b} \ \textit{N}_{\ell}^{\textit{e}}(\textit{b}; \mathbf{P}(\theta))\right\}}{1 + \sum_{j=1}^{L} \exp\left\{x_{j} \ \beta + \sum_{b=1}^{B} \gamma_{b} \ \textit{N}_{j}^{\textit{e}}(\textit{b}; \mathbf{P}(\theta))\right\}}$$

One Net; Large L; Small N: epsi = 0 [2]

According to the model,

$$[n_1, n_2, ..., n_L] \sim \textit{Multinomial}(N; P_1(\theta), P_2(\theta), ..., P_L(\theta))$$

• Therefore, the likelihood function is:

$$\mathcal{L}(heta) = \prod_{\ell=0}^L P_\ell(heta)^{n_\ell}$$

or

$$\ln \mathcal{L}(\theta) = \sum\limits_{\ell=0}^{L} n_{\ell} \, \ln P_{\ell}(\theta)$$

One Net; Large L; Small N: epsi = 0 [3]

- We can estimate θ by MLE using the **Nested Fixed Point algorithm**.
- We maximize $\ln \mathcal{L}(\theta)$ using a Newton's or **BHHH** iterative method:

$$\widehat{\theta}_{K+1} = \widehat{\theta}_K - \left[\sum_{\ell=0}^L \frac{\partial \ln P_{\ell}(\widehat{\theta}_K)}{\partial \theta} \frac{\partial \ln P_{\ell}(\widehat{\theta}_K)}{\partial \theta'} \right]^{-1} \left[\sum_{\ell=0}^L n_{\ell} \frac{\partial \ln P_{\ell}(\widehat{\theta}_K)}{\partial \theta} \right]$$

- At each iteration K, given $\widehat{\theta}_K$ we compute the equilibrium $\mathbf{P}(\widehat{\theta}_K)$.
- When L is large, the computation of an equilibrium can be computational demanding.
- To deal with this computational cost Haiqing Xu (IER, 2018) proposes approximating the equilibrium by using L local equilibria, on for each location. The local equilibrium at location ℓ is obtained using only location this location and its nearest neighbors.

February 14th, 2019

One Net; Large L; Small N: epsi /= 0

- Now, the equilibrium vector depends on the vector of unobservables $\boldsymbol{\xi}=(\xi_1,\xi_2,...,\xi_L).$ We have $\mathbf{P}(\theta;\boldsymbol{\xi}).$
- ullet The log-likelihood function is integrated over the distribution of $oldsymbol{\xi}$:

$$\ln \mathcal{L}(\theta) = \sum_{\ell=0}^{L} n_{\ell} \left[\int \ln P_{\ell}(\theta; \xi) \ f(\xi) \ d\xi \right]$$

- Since L is large, the dimension of ξ and the integral is large. Very demanding computational problem.
- Two approaches to compute $I = \int \ln P_{\ell}(\theta; \xi) \ f(\xi) \ d\xi$:
 - Monte Carlo simulation: $I \simeq \frac{1}{R} \sum_{r=1}^{R} \ln P_{\ell}(\theta; \boldsymbol{\xi}^{(r)}).$
 - Discrete ξ 's. Binary, $K=2^L$ points: $I=\sum\limits_{k=1}^K \ln P_\ell(\theta;\boldsymbol{\xi}^{(k)}) \ \pi_k$

M Networks; Large M; Small N, L

- Now, we have M cities or networks and for each city m we observe $\{x_{m\ell}, n_{m\ell} : \ell = 1, 2, ..., L_m\}$.
- The log-likelihood function is: **without** $\xi's$:

$$\ln \mathcal{L}(\theta) = \sum\limits_{m=0}^{M} \sum\limits_{\ell=0}^{L_m} n_{m\ell} \, \ln P_{m\ell}(\theta)$$

- The estimation is the same as before, but for each trial value of θ we need to compute M equilibria, one for each city.
- With $\xi's$, the estimation is similar as described above for one single network, but again with as many equilibria as cities and values of ξ per city.

Seim (2006) application: Main Results

- Seim (2006) finds very significant results of spatial differentiation (γ parameters decline very significantly with distance)
- Market structure and spatial structure of stores under two different scenarios of city growth.
 - Growth in population but keeping city boundaries.
 - Growth in population and in city boundaries
- The model can be used to study how changes in the exogenous characteristics x_ℓ of a single location (e.g., new amenities, schools, new local regulations, transportation, developments) can affect the landscape of firms in the whole city.

3. Models of Firms' Spatial Location: Multi-product (store) firms

Model with Multi-Store Firms

- Consider the same spatial configuration as before, but now the N
 potential entrants can open as many stores as possible locations L.
- Now, the number of players N is very small (a few retail chains). For instance, two firms indexed by $i \in \{1, 2\}$.
- The decision variable for firm i:

$$\mathbf{a}_{i} = (a_{i1}, a_{i2}, ..., a_{iL})$$

where $a_{i\ell} = 1\{\text{Firm } i \text{ opens a store in location } \ell\} \in \{0, 1\}.$

Multi-Store Firms: Profit

- Now, the profit function should incorporate not only the competition effects from the stores of other firms but also the competition or/and spillover effects from the own stores.
- For instance (we can extend it to allow for B bands):

$$\Pi_i = \sum_{\ell=1}^L extbf{a}_{i\ell} \left[extbf{x}_\ell eta_i + \xi_\ell + \gamma_i \; extbf{a}_{j\ell} + heta_i^{ extit{ED}} \sum_{\ell'=1}^L rac{ extbf{a}_{i\ell'}}{ extbf{d}_{\ell\ell'}} + arepsilon_{i\ell}
ight]$$

where $d_{\ell\ell'}=$ distance between ℓ and ℓ' .

• θ_i^{ED} captures cannibalization effects (if $\theta_i^{ED} < 0$) or economies of scope/density (if $\theta_i^{ED} > 0$).

Best responses

- The space of the vector $\mathbf{a}_i = (a_{i1}, a_{i2}, ..., a_{iL})$ has 2^L possible points.
- For instance, Jia (2008) studies competition between in entry/location between Walmart and Kmart in L=2,065 locations (US counties). This implies $2^L=2^{2065}\simeq 10^{621}$.
- The computation of an equilibrium in this model is computationally very costly.
- Researchers have consider different approaches to deal with this issue.
 - (a) Moment inequalities based on restrictions on the unobservables: Ellickson, Houghton, and Timmins (RAND, 2013)
 - (b) Lattice theory approach: Jia (Econometrica, 2008); Nishida (Marketing Science, 2014)

Ellickson, Houghton, and Timmins (2013)

 Consider a game between N multi-store firms but ignore for the moment cannibalization and economies of scope/density such that:

$$\Pi_i = \sum_{\ell=1}^L \mathsf{a}_{i\ell} \left[\mathsf{x}_\ell \beta_i + \xi_\ell + \sum_{j
eq i} \gamma_{ij} \; \mathsf{a}_{j\ell} + \epsilon_{i\ell}
ight]$$

- They assume that: $\varepsilon_{i\ell}=\alpha_i+\xi_\ell$. They also assume complete information.
- By revealed preference, the profit of the observed action of firm i, \mathbf{a}_i , should be larger than the profit of any alternative action, \mathbf{a}_i' :

$$\Pi_{i}\left(\mathbf{a}_{i}\right)-\Pi_{i}\left(\mathbf{a}_{i}'\right)\geq0$$
 for any $\mathbf{a}_{i}'\neq\mathbf{a}_{i}$

• EHT (2013) consider hypothetical choices \mathbf{a}'_i that difference out the error term such that we do not need to integrate over a space of 2^L unobservables.

- Suppose that the observe choice of firm i, \mathbf{a}_i , is such that $a_{i\ell}=1$ and $a_{i\ell'}=0$.
- Consider the hypothetical choice \mathbf{a}_i' that consists in the relocation of a store from ℓ into ℓ' , such that $a_{i\ell}=0$ and $a_{i\ell'}=1$. Then:

$$\Pi_{i}\left(\mathbf{a}_{i}\right)-\Pi_{i}\left(\mathbf{a}_{i}^{\prime}\right)=$$

$$\left[x_{\ell}-x_{\ell'}
ight]eta_{i}+\sum_{i
eq i}\gamma_{ij}\left[a_{j\ell}-a_{j\ell'}
ight]+\left[\xi_{\ell}-\xi_{\ell'}
ight]\geq0$$

- Now, suppose that for a different firm, firm k, the observe choice, \mathbf{a}_k , is such that $a_{k\ell} = 0$ and $a_{k\ell'} = 1$.
- Consider the hypothetical choice \mathbf{a}_k' that consists in the relocation of a store from ℓ' into ℓ , such that $a_{k\ell}=0$ and $a_{k\ell'}=1$.
- Then, for firm k we have:

$$\Pi_k\left(\mathbf{a}_k
ight) - \Pi_k\left(\mathbf{a}_k'
ight) = \ \left[x_\ell - x_{\ell'}
ight] eta_k + \sum_{j
eq k} \gamma_{kj} \left[a_{j\ell'} - a_{j\ell}
ight] + \left[\xi_{\ell'} - \xi_\ell
ight] \geq 0$$

• Adding the inequalities:

$$\left[x_{\ell}-x_{\ell'}
ight]eta_{i}+\sum_{j
eq i}\gamma_{ij}\left[a_{j\ell}-a_{j\ell'}
ight]+\left[\xi_{\ell}-\xi_{\ell'}
ight]\geq0$$

$$\left[x_{\ell}-x_{\ell'}\right]\beta_k+\sum_{j\neq k}\gamma_{kj}\left[a_{j\ell'}-a_{j\ell}\right]+\left[\xi_{\ell'}-\xi_{\ell}\right]\geq 0$$

We have:

$$\left[x_{\ell} - x_{\ell'}\right] \left[\beta_i - \beta_k\right] + \sum_{j \neq i} \gamma_{ij} \left[a_{j\ell} - a_{j\ell'}\right] + \sum_{j \neq k} \gamma_{kj} \left[a_{j\ell'} - a_{j\ell}\right] \ge 0$$

43 / 44

 Using different pairs of locations and/or firms, we can construct many different inequalities like

$$[x_{\ell} - x_{\ell'}] \left[\beta_i - \beta_k\right] + \sum_{j \neq i} \gamma_{ij} \left[a_{j\ell} - a_{j\ell'}\right] + \sum_{j \neq k} \gamma_{kj} \left[a_{j\ell'} - a_{j\ell}\right] \ge 0$$

- Using these inequalities, we can estimate the parameters β and γ using the smooth Maximum Score estimator (Manski, 1975; Horowitz, 1992; Fox, 2010).
- EHT (RAND, 2013) apply this approach to study competition in entry/location between department store chains in US.