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Lecture 5

Today’s Lecture (Topic 5)

1. Basic concepts on empirical games of market entry
1.1. What is a model of market entry?
1.2. Why do we estimate models of market entry?

2. Entry models of complete information

3. Entry models of incomplete information
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Basic concepts in empirical games of market entry What is a model of market entry?
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Basic concepts in empirical games of market entry What is a model of market entry?

Main features of a model of market entry

(1) The dependent variable is a firm decision to operate or not in
a market.
- Entry in a market can be understood in a broad sense
- e.g., entry in an industry; opening a new store; introducing a new
product; adopting a new technology; release of a new movie;
participate in an auction, etc.

(2) There is a fixed sunk cost associated with being active in the
market;

(3) The payoff of being active in the market depends on the number
(and the characteristics) of other firms active in the market, i.e., the
model is a game.
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Basic concepts in empirical games of market entry What is a model of market entry?

Main features of a model of market entry [2]

Consider a market where there are N firms that potentially may to
enter in the market.

ai ∈ {0, 1} is a binary variable that represents the decision of firm i of
being active in the market (ai = 1) or not (ai = 0).

Profit of not being in the market is zero.

Profit of being active is: Vi (n)− Fi where Vi (.) is the variable profit,
n is the number of firms active, and Fi is the entry cost.

The number of active firms, n, is endogenous: n = ∑N
i=1 ai
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Basic concepts in empirical games of market entry What is a model of market entry?

Main features of a model of market entry [3]

Under Nash assumption, every firm takes as given the decision of the
other firms and makes a decision that maximizes its own profit.

The best response of firm i under Nash equilibrium is:

ai =


1 if Vi

(
1+∑j 6=i aj

)
− Fi ≥ 0

0 if Vi
(
1+∑j 6=i aj

)
− Fi < 0

where 1+∑j 6=i aj represents firm i’s Nash-conjecture about the
number of active firms.
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Basic concepts in empirical games of market entry What is a model of market entry?

Two-stage game

Where does the variable profit Vi (n) comes from?

It is useful to see a model of market entry as part of a two stage
game.

In a First stage, N potential entrants simultaneously choose whether
to enter or not in a market.

In a Second stage, entrants compete (e.g., in prices or quantities)
and the profits Vi (n) of each firm are determined.

Example: Cournot competition with linear demand P = A− B Q
and constant MCs, c , implies:

Vi (n) =
1
B

(
A− c
n+ 1

)2
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Basic concepts in empirical games of market entry Why do we estimate models of market entry?

Why do we estimate models of market entry?

[1] Explaining market structure.
- Why different industries (and different markets within the same
industry) have different number of active firms?

[2] Identification of entry costs parameters.
- These parameters are important in the determination of firms
profits, market structure, and market power.
- Fixed costs do not appear in demand or in Cournot or Bertrand
equilibrium conditions, so they cannot be estimated in those models.

[3] Data on prices and quantities may not be available.
- Sometimes all the data we have are firms’entry decisions. These
data can reveal information about profits and about the nature of
competition.

[4] Dealing with endogenous entry/exit in PF estimation and
endogenous product presence in demand estimation.
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Entry models of complete information
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2. Entry models

of complete information
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Entry models of complete information

Heterogeneous firms & complete information

[Data] Consider an industry with N potential entrants. For instance,
the airline industry.

We observe M different local markets, e.g., different routes,
Toronto-New York, Montreal-Washington, etc.

We index firms with i and markets with m.

Data = {aim , xim : i = 1, 2, ...,N; m = 1, 2, ...,M}

xim could include only market characteristics, but it may include also
market-firm characteristics.

Victor Aguirregabiria () Empirical IO February 7th, 2019 10 / 61



Entry models of complete information

Heterogeneous firms & complete information (2)

[Model] The (indirect) profit function of a firm is:

Πim =


πi (a−im , xim) + εim if aim = 1

0 if aim = 0

a−im ≡ {ajm : j 6= i}; and εim is an unobservable that is common
knowledge to all firms (complete information).

A Nash equilibrium is an N-tuple a∗m = (a
∗
1m , a

∗
2m , ..., a

∗
Nm) such

that for any player i :

a∗im = 1 { πi (a∗−im , xim) + εim ≥ 0 }

where 1 {.} is the indicator.
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Entry models of complete information

Heterogeneous firms & complete information (3)

The specification of the profit function may be:

πi (a−im , xim) = Vi (a−im , xvim)− FCi
(
x fim
)

Variable profit function, Vi (a−im , xvim), may come from a model of
price/quantity competition.

Many times the specification is "less structural" but flexible such as:

πi (a−im , xim) = xim βi +∑j 6=i ajm δij
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Entry models of complete information

Heterogeneous firms & complete information (4)

For concreteness, suppose that:

πi (a−im , xim) = xim βi +∑j 6=i ajm δij

εim is independent of xim and independently distributed over markets
with a known distribution, e.g., N(0, σi ).

We are interested in the estimation of the vector of parameters

θ =

{
βi
σi
,

δij
σi

: for any i , j
}
.

There are two main econometric issues:
(1) endogenous explanatory variables, ajm ;
(2) multiple equilibria.
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Entry models of complete information Endogeneity of other players’actions

Endogeneity of other players’actions

The econometric model is a simultaneous equation model where the
endogenous variables are binary.

The simultaneous equations are the players’best response functions:

a1m = 1
{
x1m β1 +∑j 6=1 ajm δ1j + ε1m ≥ 0

}
...

...
aNm = 1

{
xNm βN +∑j 6=N ajm δNj + εNm ≥ 0

}
There are two sources of endogeneity or correlation between ajm and
εim :

(a) Simultaneity;
(b) Correlation between εim and εjm .
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Entry models of complete information Endogeneity of other players’actions

Endogeneity of other players’actions (2)

Simultaneity. Consider the model with N = 2:

a1 = 1 {x1β1 + δ1 a2 + ε1 ≥ 0}

a2 = 1 {x2β2 + δ2 a1 + ε2 ≥ 0}

In equilibrium (i.e., in the reduced form of the model) a2 depends on
(x1, x2, ε1,ε2).

Therefore, a2 and ε1 are not independent, and a2 is an endogenous
exp. var. in the best response equation of firm 1.

In an entry game, simultaneity generates positive correlation between
error ε1 and a2 (↑ ε1 →↓ a2) – > downward bias in δ1, i.e., we
over-estimate competition effects.
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Entry models of complete information Endogeneity of other players’actions

Endogeneity of other players’actions (2)

Correlation between firms’unobservables.

a1 = 1 {x1β1 + δ1 a2 + ε1 ≥ 0}

a2 = 1 {x2β2 + δ2 a1 + ε2 ≥ 0}

For instance, εim can have a common market effect:

εim = ωm + uim

Positive correlation between ε1m and ε2m generates negative
correlation between a2m and ε1m (↑ ω → ↑ ε1 and ↑ a2): upward
bias in δ1, i.e., we under-estimate competition effects.
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Entry models of complete information Endogeneity of other players’actions

Endogeneity of other players’actions (3)

How do we deal with this endogeneity problem?

The intuition is that we could use IV:
if there are variables in x2m that do not enter in x1m , we can use

the variables as IVs for the endogenous regressor a2m in the
estimation of the best response equation for firm 1.

Unfortunately, IV (or the Rivers-Vuong method) is not consistent in
binary choice models with endogenous binary exp. vars.

But we will end up using a method "in the spirit of IV".
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Entry models of complete information Endogeneity of other players’actions

Endogeneity of other players’actions (4)

How do we deal with this endogeneity problem?

Alternatively, we could suggest using Maximum Likelihood as the
approach to deal with endogeneity.

Maximize the log-likelihood function

l(θ) = ∑M
m=1 ln Pr(a1m , a2m , ..., aNm | xm , θ)

Unfortunately, the model have multiple equilibria and this likelihood
function does not exist, i.e., it is a likelihood correspondence.

Standard Max. Likelihood is unfeasible.
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Entry models of complete information Multiple equilibria

Multiple equilibria

Consider the model:

a1 = 1 { x1β1 + δ1 a2 + ε1 ≥ 0 }

a2 = 1 { x2β2 + δ2 a1 + ε2 ≥ 0 }

The reduced form of the model is:

{x1β1 + ε1 < 0} & {x2β2 + ε2 < 0} ⇒ (a1, a2) = (0, 0)

{x1β1 + δ1 + ε1 ≥ 0}& {x2β2 + δ2 + ε2 ≥ 0} ⇒ (a1, a2) = (1, 1)

{x1β1 + δ1 + ε1 < 0} & {x2β2 + ε2 ≥ 0} ⇒ (a1, a2) = (0, 1)

{x1β1 + ε1 ≥ 0} & {x2β2 + δ2 + ε2 < 0} ⇒ (a1, a2) = (1, 0)
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Entry models of complete information Multiple equilibria

Multiple equilibria (2)

We can see that if

{ − x1β1 < ε1 ≤ −x1β1 − δ1 } AND { − x2β2 < ε2 ≤ −x2β2 − δ2 }

Then, the model has two equilibria:

(a1, a2) = (0, 1) AND (a1, a2) = (1, 0)

The model does not provide a unique prediction for the probabilities
Pr((a1, a2) = (0, 1) | θ) and Pr((a1, a2) = (1, 0) | θ). There is a
likelihood function.
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Entry models of complete information Multiple equilibria
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Entry models of complete information Multiple equilibria

Multiple equilibria (3)

With N > 2 there are more possibilities for multiple equilibria.

In general, for any value of the observables X and the parameters
(β, δ), there are hyper-rectangles in the space of (ε1, ε2, ..., εJ ) that
imply multiple equilibrium outcomes for (a1, a2, ..., aJ ).

The model does not have a likelihood function
ln Pr(a1, a2, ..., aJ |X , β, δ) but a likelihood correspondence.

Similarly, other sample criterion functions (e.g., GMM) based on
Pr(a1, a2, ..., aJ |X , β, δ) will be correspondences.

How to define/construct a consistent estimator in this context? Is the
model identified?
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Entry models of complete information Solutions that avoid multiple equilibria

Avoiding multiple equilibria

The first approaches to "deal with" Multiple Equilbria in the
estimation of games consisted in avoiding the problem: impose
restrictions on the model to avoid multiple equilibria.

(a) Homogeneous firms [Bresnahan & Reiss, JPE-91]. xim
βi +∑j 6=i ajm δij + εim = xm β+ δ nm + εm . If δ ≤ 0, this model has
a unique equilibrium; a unique Pr(nm |xm).

(b) Triangular system [Heckman, ECMA-78] δ1j = 0 for any j ;
δ2j = 0 for any j > 1; δ3j = 0 for any j > 2; ... This model has a
unique equilibrium.

(c) Restrictions on order of entry [Berry, ECMA-93]. Model with
utilities xim βi + δi nm + εim is such that in a region of ε’s with
multiple equilibria, all of them have the same number of entrants nm .
Then, the identity of the entrants is solved with an assumption on the
order of entry: firm 1 enters first; then firm 2; etc
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Entry models of complete information Multiple equilibria & Identification

Multiple equilibria & Identification

The common wisdom was that Multiple Equilibria was an
identification problem and that we need to impose restrictions in the
model to eliminate Multiple Equilibria and obtain identification.

This common wisdom was wrong. Multiple equilibria and
Identification are two different problems and, in most models with
multiple equilibria, we do not need to impose equilibrium uniqueness
to identify structural parameters.

We start with a general but stylized framework to study multiple
equilibria and identification.
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Entry models of complete information Multiple equilibria & Identification

Multiple equilibria & Identification: A general framework

Let θ be the vector of parameters of the model. Let P represent the
vector that represents the probability distribution Pr(a1, a2, ..., aN |x),
i.e., the prediction of the model.

Let Θ be the parameter space. And let P be the space of the
probabilities Pr(a1, a2, ..., aN |x).

A model can be described as a mapping , M(θ) : Θ→ P .

Multiple equilibria means that the mapping M(.) is a
correspondence.

No identification means that, at the true P0 in the population, the
inverse mapping M−1 is a correspondence.
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Entry models of complete information Multiple equilibria & Identification

Multiple equilibria & Identification (3)
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Entry models of complete information Multiple equilibria & Identification

Multiple equilibria & Identification (4)

Example: Consider a simple equilibrium model where both θ and P
are scalars, the model M(θ) is defined as the set of probabilities P
that solves the fixed point problem:

P = Φ (−1.8+ θ P)

where Φ (.) is the CDF of the standard normal.

For instance, for θ0 = 3.5, the set of equilibria is :
M(θ0) = { P (A)(θ0) = 0.054, P (B )(θ0) = 0.551, P (C )(θ0) = 0.924}.
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Entry models of complete information Multiple equilibria & Identification
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Entry models of complete information Multiple equilibria & Identification

Identification and multiple equilibria Example

Let P0 the probability that we observe in the population. P0 can be
either PA or PB or PC , and the researcher does not know it.

We now show that θ0 is uniquely identified given P0

P0 is an equilibrium associated with θ0 and therefore:

P0 = Φ (−1.8+ θ0 P0)

Since Φ(.) is an invertible function, we have that:

θ0 =
Φ−1 (P0) + 1.8

P0

Given P0 6= 0, θ0 is uniquely determined (identified).
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Entry models of complete information Complete information games: Identification

Some general identification results: Lemma 1

Consider an econometric model that implies the following restriction:

P(x) = g
(
x ′θ
)

- P(x) is conditional moment or probability (e.g.,
P(x) = Pr(Y = 1|X = x)) that is identified from the data;
- g (.) is a strictly monotonic and continuous function, and it is
known to the researcher;
- x is a vector of exogenous variables. E [xx ′] is full column rank.

Then, the vector of parameters θ is identified, i.e.,

θ =
(
E
[
xx ′
])−1

E
[
x g−1 (P(x))

]
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Entry models of complete information Complete information games: Identification

Semiparametric extension of Lemma 1

Consider an econometric model that implies: P(x) = g (x ′θ)

with the same interpretation as in Lemma 1 but now:
- g(.) is unknown to the researcher except for a location restriction,
e.g., g(0) = 0.
- θ1 is restricted to be 1. x1 is a continuos variable with support R

Then, θ and g(.) are identified. Matzkin (Econometrica, 1992).
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Entry models of complete information Complete information games: Identification

Some general identification results: Lemma 2

Consider an econometric model that implies:

P(x1, x2) = g1
(
x ′1θ1

)
+ g2

(
x ′2θ2

)
- P(x1, x2) is a moment or probability identified from the data;
- g1 (.) and g2(.) are strictly monotonic and continuous functions that
are known to the researcher;
- x1, x2 are exogenous variables, linearly independent.
- Normalization (fixing intercept):x01 : g(x0′1 θ1) = 0.

Then, (γ1,γ2) is identified:

θ1 =
(

E
[(
x1 − x01

) (
x1 − x01

)′])−1
E
[(
x1 − x01

)
g−11

(
P(x1, x02 )− P(x01 , x02 )

)]
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Entry models of complete information Complete information games: Identification

Semiparametric extension of Lemma 2

Consider an econometric model that implies:

P(x1, x2, z) = g1
(
x ′1θ1

)
+ g2

(
x ′2θ2

)
Same restriction as in Lemma 2 but now:
- g1 (.) and g2(.) are unknown to the researcher expect for
g1 (0) = g2(0) = 0
- θ1 = θ2 = 1. x11 and x21 are continuous variables with support R

Then, functions g1(.) and g2(.) and parameters θ1, θ2 are identified.
Matzkin (Econometrica, 1992).
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Entry models of complete information Complete information games: Identification

Point - Identification in discrete choice game

Consider the 2-player binary choice game:

a1 = 1 { x ′1β1 + a2x
′
1δ1 + ε1 ≥ 0 }

a2 = 1 { x ′2β2 + a1x
′
2δ2 + ε2 ≥ 0 }

Suppose that δ1 ≤ 0, δ2 ≤ 0, and (ε1, ε2m) are independent (for the
moment) standard normals.

P (0, 0|x1, x2) = Φ (−x1β1) Φ (−x2β2)

P(1, 1|x1, x2) = [1−Φ (−x ′1 [β1 + δ1])] [1−Φ (−x ′2 [β2 + δ2])]
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Entry models of complete information Complete information games: Identification

Point - Identification [2]

The first equation implies:

lnP (0, 0|x1, x2) = lnΦ (−x1β1) + lnΦ (−x2β2)

By Lemma 2, we have identification of β1, β2.

The second equation implies:

lnP (1, 1|x1, x2) =
ln [1−Φ (−x ′1 [β1 + δ1])]
+ ln [1−Φ (−x ′2 [β2 + δ2])]

By Lemma 2, we have identification of [β1 + δ1], [β2 + δ2].

Combining the two conditions we have identification of β1, β2, δ1, δ2.
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Entry models of complete information Complete information games: Identification

Point - Identification [3]

The previous model includes several restrictions that can be relaxed
and still keeping point identification.

cov (ε1, ε2) = 0

Note that we are not exploiting an important restriction of the model.

The model implies an upper bound and a lower bound on the
probability P (0, 1|x1, x2, z).

L(x1, x2, z ; θ) ≤ P (0, 1|x1, x2, z) ≤ L(x1, x2, z ; θ)

where the bounds L(x1, x2, z ; θ) and U(x1, x2, z ; θ) are known
function (up to θ) provided by the model.

We now study how to incorporate these restrictions in an effi cient
estimation of the model.
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Entry models of complete information Complete information games: Estimation

Complete info games: Estimation

Tamer (REStud, 2003) and Ciliberto & Tamer (ECMA, 2009).

Consider the discrete choice game:

a1m = 1
{
x1m β1 +∑j 6=1 ajm δ1j + ε1m ≥ 0

}
...

...
aNm = 1

{
xNm βN +∑j 6=N ajm δNj + εNm ≥ 0

}
Let P0(am |xm) ≡ P0(a1m , ..., aNm |x1m , ..., xNm) be the true
probabillity in the population.

P0(am |xm) is nonparametrically identified from the data.
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Entry models of complete information Complete information games: Estimation

Complete info: Estimation [2]

For every data point (am , xm) and vector of parameters θ, the model
implies a lower bound (strictly greater than 0) and an upper bound
(strictly lower than 1) for the probability P0(am |xm):

L(am |xm ; θ) ≤ P0(am |xm) ≤ U(am |xm ; θ)

The bound probabilities L(am |xm ; θ) and U(am |xm ; θ) are functions
that can be obtained by integrating over the distribution of ε in the
model.
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Entry models of complete information Complete information games: Estimation

Complete info: Estimation [3]

For instance, for the two-player game:

L(0, 0|x; θ) = U(0, 0|x; θ)
= Pr(ε1 < −x1β1 & ε2 < −x2β2)

L(1, 1|x; θ) = U(1, 1|x; θ)
= Pr(ε1 ≥ −x1β1 − δ1 & ε2 ≥ −x2β2 − δ2)

U(0, 1|x; θ) = Pr(ε1 < −x1β1 − δ1 & ε2 ≥ −x2β2);
L(0, 1|x; θ) = U(0, 1|x; θ)− "Ambiguous rectangle"

U(1, 0|x; θ) = Pr(ε1 ≥ −x1β1 & ε2 < −x2β2 − δ2);
L(1, 0|x; θ) = U(1, 0|x; θ)− "Ambiguous rectangle"
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Entry models of complete information Complete information games: Estimation

Estimation: Tamer (2003)

Tamer (2003) proposes the following Likelihood criterion function and
estimator:

θ̂MLE = argmax
θ

M

∑
m=1

lnP0 (am | xm)

subject to: L(am |xm ; θ) ≤ P0(am |xm) ≤ U(am |xm ; θ)
for any m

That can be represented as (θ̂MLE , λ̂MLE ) = argmax
θ,λ

Q(θ,λ), with

Q(θ,λ) =
M

∑
m=1

lnP0 (am | xm)

+λUm max
{
0 ; lnP0 (am | xm)− lnU(am |xm ; θ)

}
+λLm max

{
0 ; ln L (am | xm)− lnP0(am |xm ; θ)

}
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Entry models of complete information Complete information games: Estimation

Estimation: Ciliberto & Tamer (2009)

Tamer (2003)’s criterion function is highly dimensional because the
Kuhk-Tucker multipliers.

Chernozukov, Hong, and Tamer (2007), and Ciliberto and Tamer
(2009) propose the following criterion (penalty) function and
estimator:

θ̂ = argmin
θ

M

∑
m=1

max
{
0 ; P0 (am | xm)− U(am |xm ; θ)

}2
+

M

∑
m=1

max
{
0 ; L(am |xm ; θ)− P0 (am | xm)

}2
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Entry models of complete information Complete information games: Estimation

Estimation: Ciliberto & Tamer (2009)

The method proceeds in two-steps.

Step 1: Nonparametric estimator of P0 (am | xm) at every data
point (am , xm).

Step 2: Given estimates P̂0(am | xm), we estimate of θ by
minimizing the penalty function:

θ̂ = argmin
θ∈Θ

Q
(

θ, P̂0
)

with

Q
(

θ, P̂0
)
=

M

∑
m=1

max
{
L(am | xm ; θ)− P̂0(am | xm) , 0

}2

+
M

∑
m=1

max
{
P̂0(am | xm)− U(am | xm ; θ)− , 0

}2
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Empirical entry models of incomplete information

– – – – – – – – – – – – – – – – – – – – – – – – – – – –

3. Entry models

of incomplete information
– – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Empirical entry models of incomplete information Model

Entry models with incomplete information

A market with N potential entrants. If firm i is active in the market
(aim = 1), its profit is:

Πim = xim βi +ωm + εim +∑
j 6=i

δij ajm

xm = (x1m , x2m , ..., xNm) is common knowledge to firms and
observable to the researcher.

ωm is is common knowledge to firms but unobservable to the
researcher.

εim is private information of firm i , independent across firms,
independent of (xm ,ωm), and unobservable to the researcher. For
concreteness, εim ∼ iid N(0, 1).
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Empirical entry models of incomplete information Model

Bayesian Nash Equilibrium (BNE)

The information of firm i is (xm ,ωm ,εim).

A player’s strategy depends on the variables in his information set.

Let αi (xm ,ωm , εim) be a strategy function for firm i such that
αi : X ×Ω×R→ {0, 1}.

We can define a Bayesian Nash Equilibrium (BNE) in terms of the
strategy functions αi (xm ,ωm , εim).

It will be convenient to represent a BNE in terms of Choice
Probabilities.
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Empirical entry models of incomplete information Model

Conditional choice probabilities (CCPs)

Players’choice probabilities.

Given a strategy function αi (xm ,ωm , εim), the associated choice
probability is the result of integration this strategy function over the
distribution of the player’s private information

Pi (xm ,ωm) ≡
∫

αi (xm ,ωm , εim) dΦi (εim)

It represents the expected behavior of player i from the point of view
of the other players who do not know the private information εim .
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Empirical entry models of incomplete information Model

BNE in terms of CCPs

Firm i’s expected profit is:

Πe
im = xim βi +ωm + εim +∑

j 6=i
δij Pj (xm ,ωm)

Firm i’s best response is:

{aim = 1} ⇔
{

εim < xim βi +ωm +∑
j 6=i

δij Pj (xm ,ωm)

}

And firm i’s best response probability function is:

Pr
(
aim = 1|xm ,ωm ,Pj 6=i

)
= Φ

(
xim βi +ωm +∑

j 6=i
δij Pj (xm ,ωm)

)
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BNE in terms of CCPs [2]

Given (xm ,ωm), a Bayesian Nash equilibrium (BNE) is a vector of
probabilities P(xm ,ωm) ≡ {Pi (xm ,ωm) : i = 1, 2, ...,N} that solves
the fixed point problem:

Pi (xm ,ωm) = Φ

(
xim βi +ωm +∑

j 6=i
δij Pj (xm ,ωm)

)

In a BNE, firms’beliefs about their opponents’entry probabilities are
the opponents’best responses to their own beliefs.

By Brower FP Theorem, the model has at least one BNE.

The equilibrium may not be unique.
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Entry models with incomplete information

We study the following topics in the econometrics discrete choice
games of I.I.

1. Identification

2. Problems with standard estimation methods (MLE, GMM)

3. Two-step and K-step Pseudo ML estimators
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Entry models with incomplete information (6)

The first entry models and empirical applications with incomplete
information assumed that the only unobservables for the researcher
where the private information variables εim . That is, they assume that
ωm = 0.

This restriction simplifies very substantially the identification and
estimation of this type of models.

However, it is quite unrealistic and it can be easily rejected by the
data. This restriction implies that:

Pr(a1m , a2m , ..., aNm | xm) =
N

∏
i=1
Pr(aim | xm)

Ignoring ωm can induce substantial biases in the estimation of the
parameters δ that measure players’strategic interactions.
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Empirical entry models of incomplete information Identification

Identification: Assumptions

Suppose that we have a random sample of markets and we observe:

{xm , aim : m = 1, 2, ...,M; i = 1, 2, ...,N}

Assumption 1: ωm is independent of xm and it has a finite
mixture distribution: ωm ∈ {c1, c2, ..., cL} with Pr(ωm = ck ) ≡ λk .

Assumption 2: {P0i (xm ,ωm)} is such that two markets, m and
m′, with the same common knowledge variables (xm ,ωm) select the
same type of equilibrium.

Under these assumptions, and standard rank conditions, we can
identify the model parameters θ.
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Empirical entry models of incomplete information Identification

Identification: Step 1

The proof of identification proceeds in two steps.

First, we show that the probabilities P0i (x,ω) are nonparametrically
identified.

This is obvious in the model with ωm = 0 because:

P0i (x) = E(aim | xm = x)

In the model with ωm = 0, the nonparametric identification of
P0i (x,ω) is based on the identification of nonparametric finite
mixture model.
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Identification: Step 1 (Nonparametric finite mixture)

With common knowledge unobs, ωm , the estimation of choice
probabilties is more complicated. But there are many recent results
(Hall & Zhou, 2003, Kasahara & Shimotsu, 2009, 2013).

The model is:

Pr(am = a | xm = x) =
L

∑
k=1

λk

[
N

∏
i=1
P0i (x , ck )

]

Different results show the NP identification of λ′k s and P
0
i (x , ck )’s.

The key identification assumption is the independence of players’aim
conditional on (xm ,ωm).
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Identification: Step 2

Given P0i (xm ,ω) for every market m and type ω, we can represent
our model as a linear regression-like model:

Φ−1
(
P0i (xm)

)
= xim βi +∑

j 6=i
δij P0j (xm)

Define Yim ≡ Φ−1
(
P0i (xm)

)
; Zim ≡ (xim ,P0j (xm) : j 6= i); and

θi ≡ (βi , δij : j 6= i). Then,

Yim = Zim θi + eim

θi is identified iff E (Z ′imZim) has full column rank. For this, we need
exclusion restrictions, i.e., player specific variables in xim . [or
functional form identification].
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Empirical entry models of incomplete information Estimation

Maximum likelihood estimation (1)

Suppose that the only unobservables for the researcher are the
private information variables εim .

If the model had unique equilibrium, then we could estimate θ by
MLE:

θ̂MLE = argmax
θ

M

∑
m=1

N

∑
i=1
aim lnPi (xm , θ) + (1− aim) ln(1−Pi (xm , θ))

where Pi (xm , θ) is the unique equilibrium probability of player i given
(xm , θ).

However, when the model has multiple equilibria, the likelihood is not
a function but a correspondence.
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Maximum likelihood estimation (2)

We still can define the MLE in a model with multiple equilibria.

For any (θ,P), define the extended likelihood function is:

Q(θ,P) =
M

∑
m=1

N

∑
i=1
aim lnΦ (xim βi + P−i (xm) δi )

+ (1− aim) lnΦ (−xim βi − P−i (xm) δi )

where P−i (xm) = {Pj (xm) : j 6= i} and δi = {δij : j 6= i}.

This is a well-defined function for any values of (θ,P).
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Maximum likelihood estimation (3)

The MLE is defined as:

θ̂MLE = argmax
θ


max
P

Q(θ,P)

subject to:
Pi (xm) = Φ (xim βi + P−i (xm) δi ) for every i ,m


This estimator has all the good properties of MLE under standard
regularity conditions.

However, it can be very diffi cult to implement in practice.

It requires optimization with respect to P which is a high dimensional
vector. Many local maxima.

Judd and Su (2012). MPEC method.
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Two-step Pseudo ML estimation (1)

Let P0 be the vector of choice probabilities (for each i and xm) in the
population.

It is possible to show that the true θ0 uniquely maximizes Q∞(θ,P0).

The two-step Pseudo ML estimator of θ0 is defined as the sample
counterpart of θ0.

That is:
θ̂ = argmaxQM (θ, P̂0)

where P̂0 is a consistent nonparametric estimator of P0.
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Empirical entry models of incomplete information Estimation

Two-step Pseudo ML estimation (2)

The first-step can be just a Nadaraya-Watson Kernel estimator of the
choice probabilities: P̂i (x).

The second step is just a standard Probit model with likelihood:

M
∑
m=1

N
∑
i=1
aim lnΦ

(
ximβi + ∑

j 6=i
δij P̂j (xm)

)

+(1− aim) lnΦ

(
−ximβi − ∑

j 6=i
δij P̂j (xm)

)

It can be generalized to deal with unobserved heterogeneity ωm .
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K-Step Estimator

The first-step nonparametric estimator can have large variance and
finite sample bias because the curse of dimensionality in NP
estimation.

This translates into the two-step estimator of θ that can have also
large variance and finite sample bias.

The K-step estimator is a solution to this problem.

Let θ̂
(1)
i be the two-step estimator.

Given θ̂
(1)
i and P̂ (0), we can construct new choice probabilities, P̂ (1),

that now are parametric and exploit part of the structure of the
model:

P̂ (1)(xm) = Φ
(
xi β̂

(1)
i +∑j 6=i δ̂

(1)
ij P̂ (0)(xm)

)
Under some regularity conditions (Kasahara & Shimotsu, 2009), P̂ (1)

has smaller variance and finite sample bias than P̂ (0).
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K-Step Estimator [2]

Given the new estimator P̂ (1), we can obtain a new estimator of θ:

θ̂
(2)

= argmax
θ
QM (θ, P̂ (1))

with QM (θ, P̂ (1)) =
M
∑
m=1

N
∑
i=1
aim lnΦ

(
ximβi + ∑

j 6=i
δij P̂

(1)
j (xm)

)
+

(1− aim) lnΦ

(
−ximβi − ∑

j 6=i
δij P̂

(1)
j (xm)

)
We can also apply this procedure recursively to define a K − step
estimator.

Under some regularity conditions (Kasahara & Shimotsu, 2009), θ̂(K )

with K > 1 has smaller variance and finite sample bias than θ̂(1).
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