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1. Introduction

Managerial frictions can be broadly construed as a cost associated with the manager’s overlooked but es-

sential input into the operation of a firm. Textbook industrial-organization models leave little room for

managerial frictions. Consider, for example, the ubiquitous pricing decision. Firms in most industries have

some discretion over their output price, which may require dynamic adjustment to changing supply and de-

mand conditions. When does the manager make these price changes? By how much? Textbook industrial-

organization models would say price is changed precisely when and by the amount dictated by strategic

considerations based on all available information. Other economic subdisciplines have paid more attention

to the frictions in this pricing process. Macroeconomists have developed a class of models in which price

inertia plays a key role in the monetary transmission mechanism, leading to a large theoretical and empirical

macro literature studying a range of frictions such as menu costs, the costs of monitoring rivals’ prices,

managerial inattention, and the implicit contracts that firms have with their customers to maintain prices.

Organizational economists have long been interested in the internal processes that firms use to overcome

the complexities associated with price setting in practice, dating back to Simon’s (1962) claim that “Price

setting involves an enormous burden of information gathering and computation that precludes the use of any

but simple rules of thumb as guiding principles,” and to Cyert and March’s (1963) classic book documenting

the rule of thumb used by a department store to price its merchandise.

In this paper, we help bridge the gap between these literatures by extending methods used in industrial

organization to estimate dynamic models to provide some of the first structural estimates of the sort of man-

agerial frictions posited by macro and organizational economists. We study the pricing decisions of a set of

rival firms selling computer components in an online marketplace, Pricewatch, which ranks the lowest-price

firms in the most prominent positions, generating the highest sales. Price changes were relatively frequent

in this market (the average spell between price changes lasting about a week) yet far from continuous. Initial

reduced-form analysis coupled with information from manager interviews provide evidence that managerial

frictions played a role in this price inertia, motivating us to propose a structural model to quantify these

frictions. Our fine-grained data (hourly price observations for scores of firms over a year) combined with

fluctuating market conditions and the jockeying for price rank generate a rich sample of price changes, an

ideal environment to estimate a dynamic model of competitive price adjustment. We use the model to back

out structural estimates of managerial frictions, separately identifying a manager’s cost of monitoring the

market from the menu cost he or she faces when entering a new price. These structural estimates provide

insight into the microfoundations of the observed price inertia, a perennial concern of macro and organiza-

tional economists, but also of interest to industrial-organization economists concerned with price dynamics.

We estimate our dynamic, structural model following the two-step method of Bajari, Benkard, and Levin

(2007) (BBL) for estimating structural parameters in the profit function. The first step involves estimating

reduced-form strategies constituting a Markov-perfect equilibrium. The second step involves finding struc-

tural parameters in the profit function that rationalize the estimated strategies such that no player can improve
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his payoff by deviating to some other strategy. To allow for feasible estimation in our complex setting and to

accommodate the possibility of boundedly rational managers—a natural possibility in our setting in which

managerial frictions are the focus—we make several modifications to BBL’s procedure. The reduced-form

policy functions estimated in the first step are not required to constitute a Markov-perfect equilibrium based

on the universe of state variables but rather are taken to be rule-of-thumb strategies based on a subset of

salient ones. In the second stage, we search for structural parameters rationalizing the estimated rule of

thumb as undominated by any deviation in the class of admissible rules of thumb. Rather than requiring that

the firm’s strategy to be optimal in every state, we impose the weaker requirement that the firm chooses a

rule of thumb ex ante maximizing its expected present discounted value of the flow of surplus over the play

of the game, where the expectation is taken over the distribution of salient states experienced by the firm.

The computational burden that the full state space would impose is daunting. Just considering permutations

of the scores of sample firms across price ranks, putting aside many other payoff-relevant variables (costs,

margins, distances between firms in price space, etc.), there are billions times more such permutations in a

single period than grains of sand on earth. Even if estimation were feasible for the econometrician, it may

be unrealistic to assume that managers could compute the best responses each instant conditional on such

a complex state space, especially in our setting in which the simple act of monitoring rivals’ prices will

present a substantial managerial friction, to say nothing of performing wildly complicated calculations. Our

approach—as one of the first attempts to accommodate boundedly rational players in a dynamic structural

model—presents its own challenges, to be successful requiring the specification of a parsimonious policy

functions providing a good fit to observed play. We will thus need to pay considerable attention to the spec-

ification of the functional form and covariates included in the policy function and to the measurement of

the policy function’s goodness of fit. To improve the fit of the policy functions, we modify the treatment

of firm heterogeneity in BBL’s framework. Instead of estimating the mean, variance, and other parameters

characterizing the continuous distribution of structural parameters across firms, we postulate discrete types

of firms, use machine-learning techniques to partition firms into the types ex ante, and estimate separate

structural parameters for each type. They key benefit of assuming several discrete types is that we can

improve the flexibility of the policy-function specification by allowing its coefficients to vary freely across

types. For parsimony, we end up postulating three types; if we instead try the structural estimation with a

single policy function, its fit and the structural estimates are quite poor.

Consistent with recent work microfounding price stickiness, including contributions to the macro theory

literature by Alvarez, Lippi, and Paciello (2011) and Bonomo et al. (2015), we build two separate managerial

frictions into the structural model, (a) a cost of monitoring market conditions to determine the appropriate

timing and size of a price change and (b) a menu cost, i.e., the physical cost of recording a new price. Though

we do not observe monitoring, we are still able to identify the cost of this latent action through the exclusion

restriction that certain payoff-relevant variables are only available to the manager after monitoring. We find

substantial monitoring costs—around $68 per episode for the most prominent firm type—but virtually no

menu costs. The division of managerial frictions matters for firm profit. In the counterfactual exercise in
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which these costs are reversed, with costless monitoring and a $68 menu cost, the firm’s net profit rises

substantially because the firm is able to tailor its price policy more closely to market conditions. In another

counterfactual exercise, we document substantial profit gains from an increasingly automated price-setting

policy (which firms went on to implement after our sample period). Our structural estimates confirm the

findings of Alvarez, Lippi, and Paciello (2015), who use survey data to calibrate their previously cited

dual-cost model, finding that the monitoring cost is three times the menu cost of changing price.

A limit of our approach is that our conclusions are derived from a small and specialized market, not a

broader set of markets representative of the U.S. economy. But even then, we would argue that more general

lessons can be drawn from our findings here, and the detail of the results more than outweighs the disadvan-

tage of specificity. For instance, measuring price stickiness in an online marketplace is a useful complement

to much of the existing empirical evidence, which so far has concentrated on brick-and-mortar stores. 1 Also,

we would argue that simply understanding the price-setting mechanisms in one market very well, as we can

with our unusually detailed data, can help us predict which factors are likely to be important in many other

markets. Finally, structural estimation would be difficult without the fine-grained, market-specific data pro-

vided by our setting. Our structural approach enables us to simulate counterfactual managerial costs for a

firm, including higher costs that the manager of a brick-and-mortar store might face.

The paper is structured as follows. Section 2 reviews related literatures. Section 3 provides background

on the Pricewatch market. Section 4 describes the data. Section 5 highlights several important reduced-

form results from the data. Besides motivating the setup of the structural model, these reduced-form results

contribute independent insights into price-changing behavior, which have the appeal of being non-technical

and fairly assumption-free. The rest of the paper is devoted to specification and estimation of the struc-

tural model. Section 6 specifies the three components of our structural model: the value, profit, and policy

functions. Section 7 presents estimates of the policy function and assesses the goodness of its fit. Sec-

tion 8 discusses identification of the structural parameters, presents the structural estimates, and provides

a sensitivity analysis. Section 9 conducts counterfactual simulations showing how a firm’s pricing behav-

ior changes when managerial costs are varied from the estimated levels. The last section concludes. An

appendix provides technical details on the structural estimation.

2. Literature Review

In this section, we provide more detail on where our paper fits in the literatures of several subfields. Method-

ologically, our paper lies in the industrial-organization literature, in particular the literature that structurally

estimates dynamic games, including seminal papers by Aguirregabiria and Mira (2007); Pakes, Ostrovsky,

and Berry (2007); Pakes, et al. (2015); and BBL cited in the introduction. Our estimation strategy is based

on BBL, modified to allow boundedly rational managers to choose a rule-of-thumb policy. Our paper studies

the same Pricewatch market and uses the same data as Ellison and Ellison (2009a, 2009b). Those papers

1Exceptions include Arbatskaya and Baye (2004), Chakrabarti and Scholnick (2005), Lünneman and Wintr (2006), Gorod-
nichenko and Weber (2015), and the “Billion Prices Project” (Cavallo and Rigobon 2012) in progress.
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focus on the demand side, estimating demand elasticities with respect to price, rank, avoided sales tax, and

geographic proximity between buyer and seller. We shifts the focus to the supply side, analyzing pricing dy-

namics, allowing for the strategic interaction among firms, and structurally estimating managerial frictions.

We will take the demand estimates from Ellison and Ellison (2009a) as an input into our analysis.

Our paper touches on several other strands of the industrial-organization literature. The field has a

distinguished history of interest in price rigidity, dating at least back to Gardiner Means’s testimony to

Congress testimony about inflexibility of prices during the Depression (Means 1935, documented in Terkel

1970). Stigler and Kindahl (1970) and Carlton (1986) bypass the Consumer Price Index (CPI) computed by

the Bureau of Labor Statistics (BLS) and indices computed by other administrative agencies, drilling into

the underlying transactions data to establish a body of stylized facts about price rigidity.

Price rigidity is but one issue under the broader heading of dynamic pricing. Another issue that has

received attention among empirical industrial-organization economists is documenting the occurrence of

Edgeworth cycles (Edgeworth 1925, formalized by Maskin and Tirole 1988), in which firms gradually

undercut each other until they reach the zero-profit level where they stay until one relents, resulting in

a dramatic price rise. Edelman and Ostrovsky (2010) and Zhang (2010) document Edgeworth cycles in

sponsored-search and online-advertising auctions, respectively. 2 Our setting resembles these Internet auc-

tions in that firms continuously “bid” for favorable rank positions by cutting their margins—indeed winning

the rank-1 position often requires the firm to have a negative margin of price over cost. Our reduced-form

analysis will document cycles in ranks, but in reverse of the Edgeworth pattern: a given firm’s rank gradually

rises as others undercut as they adjust their prices for secular declines in cost, punctuated by sharp drops in

the given firm’s rank when the manager attends to pricing, readjusting to a target rank.

A large industrial-organization literature documents price dispersion in homogeneous, consumer-good

markets ranging from retail gasoline (Barron, Taylor, and Umbeck 2004; Hosken, McMillan, and Taylor

2008; Lewis 2008) to books (Clay, et al. 2002) to general retail (Lach 2002). Closest to our setting is Baye,

Morgan, and Scholten (2004), who document price dispersion in an price-comparison website using rich

data collected with a web-scraping technology. Although we also document price dispersion in our reduced-

form analysis, this is not one of our core results, which are structural estimates of managerial frictions.

However, our core results can be viewed as contributing to the price-dispersion literature. Our finding that

substantial managerial frictions contribute to price stickiness provides a novel explanation for equilibrium

price dispersion. Most explanations rely on costly price search à la Stahl (1989), but managerial frictions

could also generate a distribution of prices for homogeneous goods in equilibrium. That is, our structural

estimates raise the possibility that supply-side rather than demand-side frictions drive price dispersion.

Our paper is related to several subfields outside of industrial organization. Substantively, our analysis

is related to a large literature in macroeconomics on sticky prices, including notable papers by Blinder et

2A number of papers attempt to characterize Edgeworth cycles and other interesting pricing dynamics in gasoline markets,
including Castanias and Johnson (1993); Eckert and West (2004); Noel (2007a, 2007b, 2008); Hosken, McMillan, and Taylor
(2008); Atkinson (2009); Lewis (2009); Wang (2009); and Doyle, Muehlegger, and Samphantharak (2010).
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al. (1998); Bils and Klenow (2004); Nakamura and Steinsson (2008); and Eichenbaum, Jaimovich, and

Rebelo (2011). As summarized in Klenow and Malin’s (2011) handbook chapter, this literature uses a range

of different data sources from manager surveys to supermarket scanner data to price data used by the BLS

to compute the CPI. These are typically reduced-form studies documenting facts about frequency and size

of price changes as well as identifying sectors with the most price rigidity (nondurable goods, processed

goods, goods with noncyclical demand, and goods sold in more concentrated markets). Comparing our

methodology to this literature’s, we also document descriptive facts in our from an initial reduced-form

analysis, but our main goal is structural estimation of managerial frictions, which this literature does not

undertake. Comparing our data to this literature’s, each has certain advantages. The macro studies tend

to use comprehensive datasets of retail prices, representative of the economy, whereas we look at a single

product. The tradeoff is that their datasets have less detail for each product. For example, BLS price data is

collected monthly, so price movements within a month are not recorded. We have hourly data, and we do, in

fact, observe many price changes within a month. We observe prices for most of the rivals operating in the

market, allowing us to estimate firms’ reactions to their rivals’ price movements. The BLS does not attempt

to sample all the substitutes in a product space. The nature of our market and the length of our time series

results in our recording dozens of price changes for each firm, allowing us to estimate a detailed policy

function for price changes at the firm level. We also have unusually detailed auxiliary data on wholesale

costs and quantities, integral to the structural estimation. 3

Ours is closest to a suite of papers from macro as well as empirical trade that back out managerial

frictions in price setting by, in effect, measuring the imperfect pass through of input-price shocks (gener-

ated by exchange-rate or commodity-price movements, depending on the study) to product prices. Two

pioneering studies estimate models of price setting by a single agent with costly adjustment, Slade (1998)

in the market for crackers sold at grocery stores, Davis and Hamilton (2004) in the market for wholesale

gasoline. More recently, Nakamura and Zerom (2010) and Goldberg and Hellerstein (2013) move beyond

single-agent models to oligopolies, using a static oligopoly model including menu costs. Nakamura and

Zerom (2010) find a menu cost of $7,000 in their calibration exercise, far greater than any managerial fric-

tion we estimate, though their figure is still a small percentage (less than 0.25%) of revenue. Goldberg and

Hellerstein (2013) estimate a menu cost of $60 to $230, or 1% to 3% of revenue in their structural estimation

of the static oligopoly model, in the range of our estimated monitoring cost, considerably higher than the

negligible menu cost we found in our online setting. Similar to these previous papers, we use variation in

input prices, in our case the wholesale price of memory chips, to provide crucial exogenous variation behind

3A recent addition to the macro literature, a working paper by Gorodnichenko and Weber (2015), studies pricing in an online
platform serving many retailers, generating data of similar richness as ours. Like most of this literature, the authors do not estimate
parameters governing firm interactions or managerial decisions, so, although their empirical setting is similar to ours, their goals
and methods are quite different. A study of the market for used cars in Germany in Artinger and Gigerenzer’s (2012) working paper
spans several literatures, macro as well as organizational economics. In the spirit of the macro literature, in particular Blinder et al.
(1998), the first part of their paper presents descriptive evidence from extensive manager surveys. The second part of their paper
gathers online price data from hundreds of car dealers to test Simon’s (1955) model of aspirational pricing. While we share their
goal of understanding what drives firms to change online prices, the direction of our analysis is quite different, estimating a model
of price changing by firms and structural parameters capturing managerial frictions.
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our estimation of managerial frictions. We diverge from these seminal papers in two ways, by incorporating

the dynamics of firm interactions and by distinguishing two types of managerial costs, a crucial distinction,

given that we find menu costs to be dominated by a different form of managerial friction, monitoring costs.

3. Empirical Setting

Our empirical setting is the online marketplace for computer components mediated by Pricewatch, previ-

ously studied by Ellison and Ellison (2009a, 2009b); see those papers for additional details on the empirical

setting. During the 2000–01 period during which our data were collected, the Pricewatch marketplace was

composed of a large number of small, undifferentiated e-retailers selling memory upgrades, CPUs, and

other computer parts. These retailers tended to run bare-boned operations with spartan offices, little or no

advertising, rudimentary websites, and no venture capital. A large fraction of their customers came through

Pricewatch. Instead of click-through fees, retailers paid Pricewatch a monthly fee to list products. Customers

could use Pricewatch to locate a product in one of two ways, either typing a product description into a search

box or running through a multi-layered menu to select one of a number of predefined product categories.

For example, clicking on “System Memory” and then on “PC100 128MB SDRAM DIMM” would return

a list of products in that category sorted from cheapest to most expensive in a format with twelve listings

per page. The full list for a pre-defined category could span dozens of pages with listings from scores of

retailers. Figure 1 contains the first page of a typical list for the memory module in our study, downloaded

during our sample period.

The Pricewatch ranking exhibited substantial churn from day to day and even from hour to hour. Fig-

ure 2 illustrates the movement in prices (top row of panels) and ranks (bottom row of panels) for three

representative retailers of PC100 128MB memory modules in our sample during a representative month.

The first and third retailers changed price six times during the month, the second retailer twice. Even the

second firm’s slower rate of price change is quite rapid compared to findings in the macro literature from

U.S. Bureau of Labor Statistics data that the median length of spells between price changes of 4.3 months

(Bils and Klenow, 2004). While frequent, retailers’ price changes were still far from continuous. When

firms were not changing prices, their ranks continued to move, bumped up or down by rival price changes,

leading a firm’s rank to fluctuate much more than its price.

Based on information from a detailed interview of a manager of one of the retailers participating on

Pricewatch, we can identify several possible reasons for this churn in the rankings. First, wholesale prices

could be quite volatile for some products. Retailers would receive wholesale-price quotes via daily emails,

and they often fluctuated from day to day. Short-term fluctuations could be up or down, but as these are

electronic components, the long-term trend was downward. The daily price quotes were relevant to the

manager’s operations as they typically carried little or no inventory, ordering enough to cover just the sales

since the previous day’s order. A second reason for turnover in the rankings was that managers did not

continuously monitor each individual product’s rank on the Pricewatch website, making the instantaneous
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changes needed to maintain a particular rank. Retailers typically offered scores of products in different

categories on Pricewatch; it would be impractical for a manager to continuously monitor all of them even

he or she attended to no other managerial tasks. Certain high-volume products, such as the specific memory

modules we study, could merit more attention, but this might involve checking at most one or two times a

day. During our study period, managers had to enter price changes manually into Pricewatch’s database, as

automated price setting was not introduced until 2002. Each adjustment would thus involve a fixed cost in

both determining and entering the appropriate price.

A retailer’s rank on Pricewatch was a key determinant of its sales and profits. The first panel of Figure 3,

derived from demand estimates from Ellison and Ellison (2009a), shows how a retailer’s daily sales vary

with rank. The bulk of sales go to the two or three lowest-priced retailers in this market, but positive sales

still accrue to many additional retailers on the list. For later reference in our calculation of firm profits,

we will label the curve Q(Rankit). A significant source of profit in this market came from the “upselling”

strategy documented by Ellison and Ellison (2009a), by which a firm attracts potential customers with low

prices for the “base” memory module, but then tries to induce them to upgrade to a more expensive one.

The second panel of Figure 3 again uses results from Ellison and Ellison (2009a) to back out an estimate

of the hourly profit from this upselling strategy as a function of the firm’s rank. The shape results from two

opposing forces: at higher ranks the firm has fewer potential customers, but the customers it does attract are

advantageously selected be more likely to upgrade. For later reference in our calculation of profits, which

will incorporate returns from the upselling strategy, we will label the curve U(Rank it).

Returning to Figure 2, it illustrates another feature of the Pricewatch market that will play a large role

in our analysis: heterogeneity in retailers’ pricing strategies. We have already seen that retailers varied in

the frequency of price change. They also appear to have targeted different segments of the ranking, with the

first firm maintaining low ranks, the second allowing itself to drift into middle ranks, and the third content

with high ranks. To accommodate this heterogeneity in the later estimation, we will allow the parameters to

vary freely across different types of firms. In fact, looking ahead to Section 5.1, the three firms in Figure 2

are representatives of the three types into which we will ultimately classify our sample using machine-

learning methods. This analytical treatment allows us to be agnostic about the source of the firms’ strategy

heterogeneity, whether differences in firm costs, such as the cost incurred by a manager to monitor market

conditions or to compute and enter a price change, or differences in a firm’s ability to convert customers

attracted by its rank position into sales of the base product or upgraded product (i.e., differences in the

Q(Rankit) or U(Rankit) function.

To summarize the main take-aways from this brief overview of the market, competition among retailers

for Pricewatch rank, a key competitive variable, led to frequent although far from continuous price changes.

Our interview information suggested that this pricing inertia was due in part to managerial frictions, mo-

tiving further reduced-form work providing clearer documentation of managerial inertia and motivating

structural estimation of a model of managerial costs involving in monitoring the market and changing price.

Visual evidence of substantial heterogeneity in firms’ pricing strategies will motivate our accommodating
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this heterogeneity in the estimation in a flexible way.

4. Data

Our data come from Ellison and Ellison (2009a). The authors scraped information on the first two pages

of listings (12 listings per page for a total of the 24 lowest-price listings) from the Pricewatch website for

several computer components. We focus on the category of 128MB PC100 memory modules because it

is the most active and highest volume of the categories collected and because of the homogeneity of the

products in this category. The authors recorded the name of the firm (as well as other information about

the firm such as its location), the name of the specific product, and its price. By linking names of firms and

products over time, we are able to trace pricing strategies of individual firms for individual products (taking

the conservative approach of assuming that a change in the product’s name indicates a change in product

offering). The authors scraped this continuously updated information every hour from May 2000 to May

2001 (with a few interruptions).

Ellison and Ellison (2009a, 2009b) supplemented the Pricewatch data with proprietary data from a re-

tailer who sold through Pricewatch. This retailer provided information on its quantity sold and wholesale

acquisition cost. We take this cost to be common across retailers justified by the fact that the typical retailer

carried little inventory, did not have long-term contracts with suppliers, and had access to a similar set of

wholesalers.

A large number of firms made brief appearances on the Pricewatch lists. Since we are interested in

the dynamics of firms’ pricing patterns, we study firms that were present for at least 1,000 hours during

the year (approximately one-eighth of our sample period) and changed price while staying on the list at

least once. For a small number of firms who had multiple products on the first two pages of Pricewatch

simultaneously during some periods, we excluded their observations during those periods. We were left with

43 firms appearing at some point during the year, at most 24 present on the first two pages of Pricewatch at

any particular moment. Although the excluded retailers do not constitute observations, we do use them to

compute relevant state variables for rivals including rank, density of neighboring firms, etc.

Based on these data, we created a number of variables to describe factors that might be important to

firms’ decisions about timing and magnitude of price changes. Figure 2 demonstrated the importance of the

rank of that firm on the Pricewatch list for firm outcomes. We also included margin, length of time since its

last price change, number of times a firm has been “bumped” (i.e., had its rank changed involuntarily) since

its last price change, and so forth. Table 1 provides a description of these variables and summary statistics.

Most of the variables can be understood from the definitions in the table, but a few require additional

explanation. Placement measures where a firm is between the next lower- and next higher-priced firms

in price space. For example, if three consecutive firms were charging $85, $86, and $88, the value for

Placement for the middle firm would be 0.33 = (86 − 85)/(88 − 85). Density is a measure of the crowding

of firms in the price space around a particular firm. It is defined as the difference between the price of the

8



next higher-priced firm minus the price of the firm three spaces below divided by 4. For example, if five

consecutive firms charged $84, $84, $85, $86, and $88, the value for Density for the firm charging $86

would be 1 = (88 − 84)/4. QuantityBump reflects relative changes in a retailer’s order flow caused by being

bumped from its rank. It is calculated using the Q(Rankit) function in Figure 2, in particular proportional to

ln(Q(Rankit)/Q(Rankit′)), where t is the current period and t ′ is the period in which the retailer last changed

price. CostTrend and CostVol are computed by regressing the previous two weeks of costs on a time trend

and using the estimated coefficient as a measure of the trend and the square root of the estimated error

variance as a measure of the volatility. The definitions of the remaining variables are self-explanatory.

Turning to the descriptive statistics, we see that the average price for a memory module in our sample was

$69, with a considerable standard deviation of 35.1. Most of this variation is over time, with prices typically

above $100 at the beginning of the period and down in the $20s by the end, mirroring a large decline in

the wholesale cost of these modules. The mean spell between price changes was 117.55 hours—about five

days—similar to what we saw for the first and third of the representative firms in Figure 2. Wholesale cost

showed a strong downward trend over our sample period, falling an average $0.19 per day, but was quite

volatile.

5. Reduced-Form Evidence

Before diving into the structural model, we pause in this section to report several results from a reduced-form

analysis of the data. Besides motivating the setup of the structural model, the results contribute independent

insights into price-changing behavior, which have the appeal of being non-technical and fairly assumption-

free.

5.1. Firm Heterogeneity

To accommodate the strategy heterogeneity illustrated by the representative firms in Figure 2 in our sub-

sequent empirical analysis, we will adopt a compromise between combining all firms in one sample and

performing separate firm-by-firm analysis. Separate firm-by-firm analysis sacrifices power, perhaps un-

necessarily; results in a profusion of parameters that are hard to digest; and, most importantly, selects a

non-random set of firms, eliminating almost all of the less active firms due to too few observations. To

balance these three concerns with a desire to allow heterogeneity in our model, we will classify firms into a

small number of strategic types and allowed the model parameters to differ freely across the types.

To partition the firms into types, we employed a popular machine-learning technique, cluster analysis. 4

The first step is to select a set of dimensions along which the firms could be differentiated. We chose

seven variables that we judged were instruments under the firms’ control rather than outcomes depending on

4See Romesburg (2004) for a textbook treatment. To be clear, the cluster analysis referred to here is not the same as “clustering
the standard errors,” which is the familiar way of adjusting standard errors for correlation among related observations (which as
indicated in the table notes we do throughout, clustering by firm).
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external factors.5 Next, the variables are standardized so that each has a standard deviation of 1, preventing

the variable with the largest variance from dominating the assignment. Starting with every firm its own

cluster, the algorithm proceeds by identifying which clusters are most similar, measured by the sum of

Euclidean distances between all firms in the two clusters, and iteratively combines them. 6 We iterated until

three clusters were left, which we thought achieved a balance between spanning most of the important firm

heterogeneity and still obtaining enough of each type enough to analyze empirically with some confidence.

We will allow estimates of most structural parameters to freely vary across the three clusters, henceforth

referred to as types τ = 1,2,3.

Table 2 provides variable means by each of the three firm types. The 22 firms of type 1 generally occupy

the lower price ranks and change prices relatively frequently. The eight firms of type 2 occupy the middle

price ranks and tend to change prices infrequently. The 13 firms of type 3 generally charge the highest prices

but are more active in changing prices than type 2. This characterization echoes what we saw in Figure 2 for

the three firms representing each type. The means for Margin show that type 1 firms earn the lowest margins

(at least captured by this measure), followed by type 2, followed by type 3. The means of Rank show the

same pattern, with type 1 occupying the lowest ranks, followed by type 2, followed by type 3. The means

of SinceChange show that type 1 and type 3 change price more than twice as often as type 2.

5.2. Distribution of Price Changes

Figure 4 provides more refined evidence on the distribution of the size and spells of price changes by firm

type. Panel A provides histograms of the size of price changes. The bar for zero change has been omitted

for readability since firms did not change price in the vast majority of hours. Note that the height of the

other bars are unconditional masses, i.e., not conditioned on a price change. The distributions are roughly

unimodal for the three types, the mass falling off for larger magnitude price changes. The mode for all

types is at a price reduction of $1. While there is mass for price increases as well as reductions, more mass

is on the reduction side, consistent with the downward trend in wholesale costs throughout our sample. A

characteristic feature of type 2 firms is that they change price only infrequently, which shows up in the

histograms as relatively little overall mass in the histogram compared to the other types. The ratio of tail

mass to mode mass is higher for type 2 firms than others, suggesting that their infrequent price changes tend

to be larger in magnitude than other types’.

Panel A can be related to the theoretical and empirical literatures from macroeconomics on price sticki-

ness. Our histograms are roughly unimodal, inconsistent with theoretical models such as Golosov and Lucas

5The variables include the firm’s target Rank and Placement, the firm’s mean values of NumBump, SinceChange, and FirstPage,
and the firm’s variance of SinceChange. We also included the fraction of time the firm was present in our sample. Firm i’s target
value of a given variable is the mean of that variable computed for the subset of periods that immediately follow a price change by
i.

6The method of starting with each item in a separate cluster and combining them until the target is reached is called the
agglomeration method. The use of Euclidean distance (the sum of squared differences in the standardized variables) to measure
difference and the criterion of combining clusters that have the smallest sum of squared differences is called Ward’s method. These
are the standard options in Stata 14’s cluster command, which we used to perform the cluster analysis.
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(2007) that, under the assumption of cheap monitoring and expensive price changing, predict bimodal dis-

tributions, with most of the mass on large price changes in the tails than on small price changes in the center

of the distribution. We will actually provide a microfoundation for the unimodal price distributions shown

here when we estimate managerial costs. In particular, we estimate a high cost of monitoring and low cost

of price changing. The empirical macro literature has found unimodal distributions in other settings such as

Figure 2 in Midrigan (2011) and Figure II in Klenow and Kryvtsov (2008). The magnitudes of our firms’

price changes are smaller than in Klenow and Kryvtsov (2008), who report over 35% of price changes

exceeding 10% of the initial price in absolute value, while only 7% our our price changes are this large.

Panel B plots a kernel density estimate of the distribution of spells between price changes. The distri-

bution looks similar for types 1 and 3. These frequent price changers necessarily have shorter spells. Most

of the mass is concentrated in spells shorter than 200 hours. The mass for type 2 firms spreads out more

uniformly over longer spells, even as high as 600 hours.

The distribution of spells that we report has a shape similar to those previously documented, but with a

compressed scale. For instance, the spell distributions for our type 1 and type 3 firms look quite similar to

Figure IV in Klenow and Kryvtsov (2008) and Figure VIII in Nakamura and Steinsson (2008), but instead of

a time scale stretching to 12 or 18 months respectively, ours covers just one month. The difference could be

due in part to the nature of the data: much of the previous literature used monthly price data, missing more

frequent price changes that our hourly data would pick up. However, the analysis of survey data in Blinder

et al. (1998) finds that a large majority of managers change the prices of their most important products

no more than twice in a year. The managers of our firms are simply more active than those in these other

studies, perhaps due to volatile wholesale costs or low managerial costs.

Panel C plots the absolute value of the price change as a nonparametric function of spell using Cleve-

land’s (1979) locally weighted regression smoothing (LOWESS). The graph for type 1 firms shows an

upward slope, with larger changes made after longer spells. The type 2 graph is also initially upward sloped.

There is a downturn for longer spells, but this non-monotonicity is estimated from too few observations to

be conclusive. The type 3 graph shows a flat relationship between size and spell. The graph for type 2 is

higher than the other types’, indicating that the magnitude of type 2’s price changes tend to be larger even

conditional on spell. Although there is not a single pattern emerging here that can be used to make a clean

comparison, our results at least are not at odds with what the previous literature has found for the relationship

between spell length and size of price change, such as Figure VIII in Klenow and Kryvtsov (2008).

5.3. Managerial Inertia

We have seen that price changes, while frequent, were far from continuous, on the order of once per week

rather than each hour. This pricing inertia could be due in principle to many factors. The integer constraint

on prices could combine with only slowly moving market forces to produce the infrequent price changes.

Perhaps firms are reluctant to engender a rival response to a price cut. Figure 5 provides evidence that the

inertia is due at least in part to costs of managerial activity.
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The figure plots the residual probability of a price change (after partialling out other covariates as con-

trols) during each hour measured in Eastern Time, estimated separately for retailers operating on the East

and West Coasts. Retailers supply a national market via Pricewatch, so if there were no managerial costs,

presumably the timing of activity would be similar on the two coasts, responding to the same national de-

mand factors. In fact the probability functions peak at different points, at 11 a.m. for East Coast and 8 p.m.

for West Coast retailers.

Interestingly, the peak for the West Coast retailers is not simply shifted by the three-hour difference

between Eastern Time and the local time for West Coast retailers, as might be expected if the retailers on the

two coasts served separate markets but faced the same pattern of managerial costs during the day. Instead,

the peak on the West Coast is shifted by ten hours, to 8 p.m. Eastern Time, which is 5 p.m. in their local

time. One explanation, supported by the interview subject, is that the market has already been operating for

a few hours by the time the West Coast managers arrive at work, so they are well-advised to set prices in

the evening before they leave. The evening might also be a less busy time for them since orders might have

started falling off at least from customers in the East. In contrast, the East Coast manager would arrive to a

very slow order flow at 8 a.m. Eastern Time and have the leisure to adjust prices at that point before orders

picked up for the day. In the absence of managerial costs, it is difficult to rationalize why retailers on the

two coasts would pick the opposite ends of the day to do most of their price changes.

6. Structural Model

This section presents the model that will be the basis for our structural estimation. We begin in the next

subsection by discussing the key object in dynamic structural estimation, the firm’s value function. The

subsections after that discuss the components that go into computation of the value function.

6.1. Value Function

Firm i participates in the market each period from the current one, t, until it exits at time Ti. Its objective

function is the present discounted value of the stream of profits given by the value function

Vi(st;σ,θ) = E

[
Ti

∑
k=t

δkπik

]
, (1)

where st represents the state of the game in period t, σ is the vector over i of firms’ strategies σ i, δ is the

discount factor,

πit = π(st,σ(st), θ) (2)

is the static profit function, reflecting the payoff from one period (one hour in our empirical setting) of play,

and θ is a vector of parameters. The expectation is taken over the distribution of all possible game play and

evolution of private shocks starting from s t .
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The focus of this study is on obtaining structural estimates of θ, which will include measures of manage-

rial costs, upselling profits, and other variables of central interest. In essence, we will compare firm i’s value

function when it plays equilibrium strategy σ i to that when it plays some deviation σ̃ i, maintaining rivals’

play as specified by σ. The estimated θ will be those values minimizing violations of the dominance of σ i

over σ̃i. As in BBL, we are not required to solve for the equilibrium. Instead, we can observe the equilibrium

from the data. Still, we need to compute the value function in and out of equilibrium, which in turn requires

three components: (a) specification of the profit function π it ; (b) an estimate of firm i’s policy function,

σ̂i(st), which, following BBL, we will use in place of the equilibrium strategy σ i(st); and (c) treatment of

the expectations operator. The remainder of this section will be devoted to specifying the profit function

and policy function. Expectations will be computed by averaging the present discounted value of the profit

stream from many simulated runs of the market, as described in more detail in Section 8 on the structural

estimation.

For tractability and to better suit our empirical setting, our model will depart in several ways from the

standard BBL framework. We touch on the departures here but discuss them in more detail below in the

relevant sections. First, either because of limited information, cognition, or memory, the manager is assumed

to only be able to consider a restricted set Ŝ of the overall state space. For example, rather than keeping

track of the whole price history for each rival, manager i may view his current rank as an adequate summary

statistic of the combined effect of these actions. Second, the manager is assumed to follow a rule-of-thumb

policy that is a function of the restricted state space Ŝ. He does optimize, not over the price each moment,

but over the long-run choice of this policy, maximizing the present discounted value of profits over the set of

admissible policies PF. Given the overwhelming complexity of the period-by-period optimization problem

involving the full state space, it is unlikely that managers were fully neoclassical—all the more in our setting

in which we have qualitatively documented substantial managerial frictions, which we aim to quantify. Our

approach has the advantage of being able to accommodate behavioral managers. The disadvantage of model

is that it will be misspecified if managers are more neoclassical or behavioral in a different way than we

allow. It will thus be essential for us to specify a class of policy functions that can closely match observed

firm behavior. We will devote careful attention to this specification and to gauging its resulting goodness of

fit.

6.2. Profit Function

Our detailed specification of the profit function π it draws on our rich information about the business strate-

gies of the firms operating in this market and the costs they face, as well as institutional details and estimates

from Ellison and Ellison (2009a):

πit = Baseit + Upsellit −μτ Monitorit −χτ Changeit , (3)
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where

Baseit = Q(Rankit)(Priceit − Costt) (4)

Upsellit = U(Rankit). (5)

The first term Baseit accounts for the profits from the sale of the base version of the memory modules,

equaling the quantity sold times the margin per unit. The quantity sold is the function Q(Rank it) from

Figure 3A. The second term Upsellit accounts for the upselling strategy discussed in Section 3, whereby

the firm attracts potential customers with low prices for the base product but then induces some of them

to upgrade to more expensive versions of the memory module. It is given by the function U(Rank it) from

Figure 3B.7

The final two terms in (3) reflect the two types of managerial costs that we seek to estimate, both of which

vary by firm type τ . The coefficient μτ on the indicator Monitorit for whether firm i monitors in period t will

provide an estimate of the cost of monitoring. The last term involves Change it , which is our label for the

indicator 1{Δit �= 0} for whether firm i changes price in period t, where we define Δit = Priceit − Pricei,t−1.

The coefficient χτ on this indicator will provide an estimate of the cost of price change over and above any

monitoring cost. We do not observe monitoring, but, just as we will generate simulated values for Rank it ,

Priceit , and other variables when we compute expectations of the value function, we can simulate Monitor it

using the model of monitoring behavior embedded in the policy function discussed in the next subsection.

The specification of managerial costs μτ and χτ as fixed parameters represents a departure from BBL’s

framework, which specifies a distribution over structural parameters with a mean and variance to be es-

timated. Our approach of estimating a single fixed parameter eases the computational burden, important

given we allow the parameters to differ across the three types τ . We also have several conceptual reasons

for our approach. The policy function specified in the next subsection already incorporates arrival of oppor-

tunities for managerial actions based on both stochastic as well as deterministic factors. Our estimates of

the structural parameters can be thought of as the marginal cost of taking the relevant managerial action in

opportune periods dictated by the policy function. Implicit in this formulation is the presumption that man-

agerial actions are not taken in other periods in part because of high, perhaps prohibitive, draws for random

managerial costs. To explain the relative rarity of price changes observed on a hourly basis, an estimated

distribution of managerial costs would have to be skewed toward large values compared to our estimate for

opportune periods. Estimating the distribution of managerial costs would require specifying the functional

form for the distribution and the hour-to-hour correlation structure, which could be quite complex. Our pol-

icy function captures the time-series properties of opportunities for managerial action simply, by including

covariates such as SinceChange, Night, and Weekend, among others.
7We normalize the profit function for a firm that moves off of the first two Pricewatch pages to $4.70, our projection of a firm’s

hourly profit at rank 25 based on Ellison and Ellison’s (2009a) parametric estimates for ranks 1–24. The structural estimates are
robust to the choice of this normalization.
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6.3. Policy Function

The next piece needed for structural estimation is the policy functions, or models of firms’ strategies. An

estimate of this model provides the σ̂ i(st) that will be substituted for equilibrium strategies σ i(st) to compute

the value function (1) in the simulations. The model reflects the reality that price changes in this market are

infrequent relative to our data frequency. To a first order, the best prediction of the firm’s price next hour

is its current price. We will thus focus on modeling the timing and size of price change episodes, with the

firm maintaining the price outside of these episodes. Consistent with our belief that firms are not engaging

in complicated calculations of optimal policy based on hundreds of state variables each hour, we want the

model to be simple, streamlined, and reflective of just the variables that firms are likely to be able to monitor

and process. Also, we want the model to be a predictive empirical description of what firms actually do.

We thus model price changes as coming from a two-step process. The manager knows some components

of the market state vector at all times, information he receives essentially “for free.” Based on these state

variables, the manager’s first step is to decide whether to attend to the market to gather information and

perform calculations needed for a pricing decision. We will call this behavior “monitoring” and denote the

decision to do so with the indicator function Monitor it . In our setting, we think of monitoring as computing

quantities like percentage markups and visiting the Pricewatch website to gather the relevant information,

involving an opportunity cost of cognition and time. Through monitoring, the manager gains additional

information on state variables, including current rank and the distribution of competitors’ prices, and com-

putes the new desired price. If the new desired price is different from the current price and the costs of

changing it are justified, then he enters it in the Pricewatch form, and changes it on his own website, again

involving costs in terms of cognition and time. We will call this second step “price changing.”

The two-step process can account for periods of excess inertia, during which the manager keeps price

constant even though market conditions would warrant a price change. Inertia can come from three sources.

First, the manager may not be aware of the changed market conditions because he did not monitor. Second,

the benefit from making a desired price change, especially a small price change, may not justify the man-

agerial cost of entering it. Third, if the desired price change is smaller than a whole dollar unit in which

Pricewatch prices are denominated, price may stay constant. The two-step process is also consistent with

anecdotal evidence from our interview subject and broader survey evidence (see Blinder et al., 1998) that

managers often monitor market conditions including rival prices without changing their own price.

We specify the manager’s latent desire to monitor, Monitor∗it , as

Monitor∗it = Xitατ + eit , (6)

where Xit is a vector of explanatory variables, ατ is a vector of coefficients to be estimated, which are

allowed to differ across firm types τ , and eit is an error term. If Monitor∗it ≥ 0, then the firm monitors; i.e.,

Monitorit = 1. Otherwise, if Monitor∗it < 0, then the firm does not monitor; i.e., Monitorit = 0.

In essence, equation (6) embodies the manager’s forecast of the costs and benefits of monitoring, so,
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perforce, the explanatory variables can only include state variables known by the manager before monitor-

ing. In addition, the variables must be important shifters of either the cost or benefit of monitoring. We

specify the following parsimonious list:

Xit =
(

Nightt , Weekendt , CostVolt , CostTrend+
t , |CostTrend−

t |

QuantityBump+
it , |QuantityBump−

it |, lnSinceChangeit , (lnSinceChangeit)
2
)

. (7)

We assume the manager is automatically aware of the time and day. The variables Nightt and Weekendt are

included to reflect that the cost of monitoring varies in a predictable way over a week: the cost of monitoring

at 2am on Sunday morning might be high if that’s when a manager typically sleeps, and the benefit might

be low because few sales would be made around that time anyhow. The manager is also assumed to be

aware of the day’s wholesale cost—recall that he receives emails every day from the wholesalers—and

can glean volatility and trends from the pattern of costs over the past couple of weeks. Presumably the

gains to monitoring are greater the more conditions including costs are fluctuating. We include CostVol t to

capture the magnitude of recent unpredictable fluctuations and CostTrend t to capture recent trends. Both

rapidly rising and rapidly falling costs would lead the manager to monitor more. To allow asymmetry 8 in

the concern for rising or falling costs, a rising cost trend, CostTrend +
t = CostTrendt ×1{CostTrendt > 0},

enters (6) separately from a falling cost trend, CostTrend −
t = |CostTrendt | ×1{CostTrendt < 0}. The latter

variable appears in absolute value so that we would anticipate the two variables’ coefficients to have the

same sign if not magnitude.

We assume that the manager is roughly aware of changes in his order flow resulting from being bumped

in the ranks and will be more likely to monitor if there has been a large change, whether an increase or

decrease. Thus (6) includes QuantityBumpit . Recall that this variable is computed by translating the current

rank and rank at the previous price change into a quantity change using the function in Figure 3A. This

predicted change in order flow is a proxy for the quantity signal the manager observes. The proxy diverges

from the signal because the firm’s actual sales depend on random market fluctuations on top of any pre-

dictable effect of a rank change. The proxy also diverges from the signal because the manager may only be

vaguely aware of actual sales in any given hour. Again, to allow for asymmetries, increases in order flow,

QuantityBump+
it , enter separately from decreases, QuantityBump−

it .

The last set of variables, functions of SinceChangeit , enter in a flexible, nonlinear way, allowing for

various patterns of managerial attention, including monitoring the market at regular intervals as well as

periods of intense monitoring, in which several price changes may follow in succession, followed by periods

of inattention during which price stays constant independent of market conditions. Including this variable

can help us tease out time dependence from state dependence in price monitoring behavior.

8Some evidence suggests that prices could be stickier in one direction versus the other. For instance, Borenstein, Cameron, and
Gilbert (1997) identify an asymmetry in the response of wholesale gasoline prices to cost increases versus decreases.
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Conditional on monitoring, the manager may decide to change price based on the information acquired.

Let Δ∗
it = Price∗it − Pricei,t−1 denote the size of the price change the manager would desire if price were a

continuous variable and the menu cost χτ of changing price were ignored just for period t. Assume this

latent variable is given by

Δ∗
it =

⎧⎨⎩Zitβτ + uit if Monitorit = 1

0 if Monitorit = 0,
(8)

where Zit is a vector of explanatory variables, βτ is a vector of coefficients to be estimated, which again are

allowed to differ across firm types τ , and uit is an error term. The actual price change Δit = Priceit −Pricei,t−1

may diverge from the latent price change Δ∗
it for two reasons. First, rather than being continuous, prices

were denominated in whole dollars on Pricewatch. Second, because changing price is not in fact costless,

the manager must weigh the benefits of changing price if cost were no object reflected by Δ ∗
it against the

menu cost χτ . Assuming the manager’s willingness to pay to change price is an increasing function of the

size of the desired price change, we can relate the observed price change Δ it to the actual Δ∗
it by specifying

cut points along the real line

· · ·< C−5
τ < C−4

τ < C−3
τ < C−2

τ < C−1
τ < C1

τ < C2
τ < C3

τ < C4
τ < C5

τ < · · · . (9)

Then

Δit =

⎧⎪⎨⎪⎩
k if Δ∗

it ∈
(
Ck

τ ,Ck+1
τ

)
,

−k if Δ∗
it ∈

(
C−(k+1)

τ ,C−k
τ

)
.

(10)

Thus, for example, an observed price increase of $1 corresponds to a latent price change satisfying Δ ∗
it ∈(

C1
τ ,C2

τ

)
. If the manager monitored but did not change price, then Δ∗

it ∈
(
C−1

τ ,C1
τ

)
. To deal with the fact

that many elements of the manager’s decision to change price—the function mapping the size of his desired

price change into his willingness to pay to change price, the distribution of the error term u it , of course the

menu cost χτ , which is yet to be estimated—we adopt a flexible specification for the C k
τ , allowing them to

be free parameters estimated in a similar way as the cut points in an ordered probit, and allowing them to

differ across firm types τ .

The explanatory variables can include state variables the manager learns as a result of monitoring in

addition to those known before. We specify the following parsimonious set:

Zit =
(

CostTrendt , CostChangeit , Marginit , NumBumpit ,

Densityit ×NumBumpit , Placementit , Rankit , RankOneit

)
. (11)

The higher are forecasted costs, CostTrendt , and the more costs have risen since firm i last changed its price,

CostChangeit , the higher the firm’s desired price. Marginit may also factor into price changes, a firm with
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low margins being more likely to increase price and one whose margins are already high less likely to further

increase price and more likely to lower.

The remaining variables in Zit are the sort of state variables revealed by monitoring. After visiting the

Pricewatch website, the firm learns its current rank and thus the number of ranks it was bumped since the

last price change. The firm can use this information to return itself to its desired rank, so decreasing price

if it was bumped up in the ranks (gauged by a positive NumBump it) and increasing price if it was bumped

down. A low-ranked firm may have less of an incentive to cut price to increase it sales; this effect may be

particularly strong for a firm occupying rank 1: further price reductions will only result in a small increase

in sales because most of the demand elasticity is with respect to rank, which the firm cannot improve beyond

1. We, therefore, include an indicator, RankOneit . We include Densityit because the presence of a thicket of

close competitors may affect pricing incentives. For example, in a dense price space, firms may have less

incentive to increase price because this will result in a more severe rank change. Specifically, we include

Densityit interacted with NumBumpit because density will likely matter more for firms that have a need to

change price as proxied by a bump from the previous preferred ranking. A firm’s Placementit between its

nearest rivals will also affect its desired price in potentially complex ways.

The list of explanatory variables in Zit deliberately excludes some of the variables that appear in the

monitoring equation. For example, Nightt is included in the monitoring equation to reflect the fact that

checking the Pricewatch website at 2 a.m. would typically be more costly than during the workday. However

Nightt should have little effect on the desired price change conditional on monitoring because, conditional

on already being on the website, changing price is no more difficult at 2 a.m. than 10 a.m. The same logic

applies to Weekendt . While the time since price was last changed may affect the desire to monitor—one

possibility is that with more time for market conditions to change, more information is to be gained—

conditional on the information gained through monitoring such as Rank it and NumBumpit , SinceChangeit

has no obvious role in price setting and thus is excluded from Z it .

While it is easy to justify the inclusion of the explanatory variables in the respective functions, it may be

harder to assert that this strategy model is sufficient to describe firms’ behavior. Firms could have executed

much more complex strategies, including nonlinear functions of the included variables, interactions of them,

and additional variables such as the characteristics of neighboring firms in the Pricewatch ranking. One

might worry whether a parametric policy function could adequately capture the intricacies involved in full-

blown expected-value maximization each period, perhaps calling for more flexible methods such as random

forests, which can systematically process a range of possible covariates and specifications, nesting our two-

stage model.

We argue that our approach still has a number of appealing features in our empirical setting. First, our

approach is computationally much less burdensome than a fully rational model. Second, it is reasonable to

suppose managers used fairly simple rules of thumb to make the high-frequency decisions to monitor and

change price rather than continually evaluating expected value functions based on scores of state variables

each period. Such calculations would overwhelm the direct cost of checking websites and calculating and
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typing in new prices involved in the managerial actions. Third, as discussed in Section 7.4, we have en-

couraging results from a goodness of fit test to determine the match between simulations from our estimated

strategies and observations in the data. Finally, flexible machine-learning methods such as random forests

are not panaceas. Although excellent at prediction, random forests often lack the useful economic inter-

pretability of a parametric model. That said, incorporating machine-learning methods in dynamic structural

estimation is a promising area for future research.

7. Estimation of the Policy Function

7.1. Estimation Details

Our model for the policy function embodied in equations (6)–(11) is known in the econometrics literature as

a zero-inflated ordered probit (ZIOP). The term “zero-inflated” refers to the fact that there are more zeros—

in our setting periods without a price change—than would be expected under a standard ordered probit.

The overabundance of zeros in our setting results from the manager’s monitoring less than continuously

because of the cost of monitoring. Thus the monitoring stage determines the degree of zero-inflation. Harris

and Zhao (2007) demonstrate in Monte Carlo experiments that the maximum likelihood estimator of the

ZIOP performs well in finite samples. While we adopted the ZIOP specification and chose the variables

appearing in the each stage to best reflect our understanding of the empirical setting informed by manager

interviews, formal Vuong (1989) tests of non-nested models reported in Section 7.4 support the inclusion

of a monitoring stage to the price-change equation and the support our choice of variables to include in the

different stages.

We estimate equations (6)–(11) jointly using maximum likelihood taking the errors e it and uit to be

independent standard normal random variables.

Without the monitoring stage, the price-change stage of the model would simply be an ordered probit,

where various intervals would correspond to various discrete price changes. With the monitoring stage, the

likelihood of observations in which firm i does not change price at time t is

L(Δit = 0) = 1 −Φ(Xitατ )︸ ︷︷ ︸
Pr(Monitorit=0)

+ Φ(Xitατ )︸ ︷︷ ︸
Pr(Monitorit=1)

[
Φ

(
C1

τ − Zitβτ

)
−Φ

(
C−1

τ − Zitβτ

)]︸ ︷︷ ︸
Pr
(
Δ∗

it∈
(

C−1
τ ,C1

τ

)) , (12)

where Φ is the standard normal distribution function. The likelihoodof, for example, a k dollar price increase

is

L(Δit = k) = Φ(Xitατ )︸ ︷︷ ︸
Pr(Monitorit=1)

[
Φ

(
Ck+1

τ − Zitβτ

)
−Φ

(
Ck

τ − Zitβτ

)]︸ ︷︷ ︸
Pr
(
Δ∗

it∈
(

Ck
τ ,Ck+1

τ

)) . (13)

Adding the monitoring stage scales up the probability of no price change and scales down the probability of

any given sized price change.

We group the few price reductions of $5 or more together and similarly group the few price increases of
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$5 or more so that we only need to estimate thresholds down to C −5
τ and up to C 5

τ .

7.2. Identification

Though the dependent variable Monitorit in the monitoring equation (6) is not itself observable, the coeffi-

cients ατ in this equation can still be estimated because Monitor it affects the distribution of observed price

changes (or lack thereof) through the latent price change equation (8).

The monitoring and price-changing equations combine to produce a single price change, but the param-

eters in the separate stages can still be separately identified. Intuitively, parameters in the price-changing

equation are identified from periods with active price changes. Fixing the covariates, a unique parameter

vector will best match the distribution of price increases and decreases. The number of zeros may not be

well matched; the mismatch identifies the parameters in the monitoring equation. For example, an excess

of zeros is attributed to a reduced likelihood of monitoring since, had the firm had been monitoring, these

opportunities to change price would not have been missed.

In Monte Carlo exercises, Harris and Zhao (2007) find that the ZIOP model is well identified even

without exclusion restrictions, but exclusion restrictions can help avoid convergence problems and improve

the precision of parameter estimates. Exclusion restrictions play a more central role in applications such

as ours in which heteroskedasticity or non-normal errors cannot be ruled out, precluded by data limitations

from estimating the error distribution nonparametrically. The problem is similar to that arising with the

Heckman (1979) selection model, which is well known to perform poorly in the presence of non-normal

or heteroskedastic errors without exclusion of some variables appearing in the selection equation from the

main equation.

The natural exclusion restrictions we employ bolster identification. We include Night t and Weekendt in

the monitoring equation but exclude them from the price-change equation because they relate more to the in-

convenience of activity at those times than the optimal size of a price change. We also include SinceChange it

in the monitoring equation, capturing the manager’s guess of how far out of line the unadjusted price has

become over time, but excluded from the price-change equation because other variables are sufficient statis-

tics for the optimal price change once the manager is able to observe them through monitoring. These

excluded variables will help identify true excess zeros (when these instrumental variables are high, say)

from a distributional mode that is higher than expected due to non-normal or heteroskedastic errors.

7.3. Results

Table 3 presents estimates of ατ , βτ , and Ck
τ by firm type τ . Consider the results for type 1 firms first,

as these represent the majority of firms, comprising the biggest sample. Night and Weekend show up as

important determinants of whether a firm monitors. This result is not surprising but is a telling indicator

of the importance of managerial attention. Managers evidently take evenings and weekends off and do not

bother monitoring the market then. Managers are also more likely to monitor if wholesale cost is volatile,

if there has either been a sharp trend in wholesale cost or a sharp change in order flow recently, or if there
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has been a long spell since the last price change. These estimates are consistent with intuition and are

quite precisely estimated for type 1 firms. Conditional on monitoring, a price increase for a type 1 firm is

associated with a wholesale cost increase, a firm being bumped down, rank being low, rank being 1, and

there being few firms close by in price space. Again, these results are consistent with intuition as well as

our conversations with one of the firm managers.

A likelihood-ratio test rejects homogeneity of the policy function across types at better than the 1% level.

While there are quantitative differences among the results for the firm types, there are generally not large

qualitative differences, especially for the ατ coefficients. Our framework is flexible enough to accommodate

the difference in activeness between type 2 firms and the rest. In the monitoring equation, the coefficients

for lnSinceChange and (lnSinceChange)2 of type 2 firms constitute a quadratic function of lnSinceChange

that is decreasing when SinceChange < 586. So a type 2 firm would only monitor when it has accumulated

enough change in QuantityBump or it has been a very long time since the last price change. Conditional

on monitoring, a type 2 firm requires a more significant latent size of price change to trigger actual price

changes because the size of the interval of no price change, C 1
τ −C−1

τ , is larger for τ = 2 than other types.

7.4. Goodness of Fit

This subsection assesses the goodness of fit of our estimated policy function σ̂, in particular whether it

fits well enough to be suitable for the later structural estimation. As discussed in the next section, after

substituting the specified profit function as well as estimates of the structural parameters, firm i’s value

function V̂i (σ̂, θ) reduces to a linear function of just a few aggregates, in particular, the total hours firm i

spends at each rank and the total times it changes its price. Hence the goodness of fit of the estimated policy

function can be assessed by comparing aggregates simulated from the policy function to their values in the

actual data. We first provide an informal, visual assessment using a series of figures.

To provide some technical details on how the simulations were run, we start with a given firm type and

consider all the observations at the it level for that type. For each it, we construct 20 simulated forward

histories lasting 720 hours. The simulations use the actual market data for state variables where possible

(e.g., for cost histories), simulating firm behavior by substituting current state variables as well as random

draws for error terms eit and uit into equations (6) and (8) of the policy function. Averaging the aggregate

over all the simulations for all it observations of that firm type produces a value that can be compared to

the average in the actual data of 720-hour forward histories starting from each candidate observation. To

be precise, the aggregates are discounted rather than simple sums, using the same annual discount factor of

0.95 used in the value functions in the structural estimation. Over the 720-hour horizon, discounting has a

negligible effect on the results.

The first panel of Figure 6 compares compares simulated time spent at each rank (solid black curves) to

actual (dashed grey curves) for the three firm types. The actual curves have quite different levels and shapes

across firm types, yet the simulated curves are able to fit each quite well. Panel B compares the simulated

number of price changes from the estimated policy function (the black squares) to the averages in the actual
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data (the grey circles). Again, the fit is quite close, with the markers essentially overlapping and moving

together across the types of firm: moderate for type 1, low for type 2, and high for type 3. The close fit is not

surprising given the policy function is a reduced form that was estimated in part to maximize the likelihood

of the observed frequency of price changes. However, the close fit was not guaranteed. The maximum

likelihood estimation targeted size as well as number of price changes; we see that the joint estimation does

not harm the fit for number alone. More importantly, the policy functions were estimated to fit individual

behavior; letting their interaction on the market play out over a length of time could generate feedback

causing behavior to diverge from actual outcomes. We see in the first panel that this is not the case. Taken

together, the results from Figure 6 suggest that the estimated policy function will provide good estimates of

the sums that are the essential inputs into the value functions in the structural estimation.

Figure 7 provides a more refined assessment of goodness of fit. The policy function should not only be

able to fit the forward history on average across states but also fit the forward history in any state s in which

the firm finds itself. The figure compares simulated to actual profit conditional on various dimensions of the

state including various initial ranks in the first panel and initial margins in the second panel. (To save space,

we just show the results for type 1 firms; the fit for types 2 and 3 is similar.) We focus on profit in this figure

as opposed to time spent at each rank in the previous figure because profit is a convenient summary statistic

for the distribution of times spent at each rank, allowing us to reduce the dimensionality of the graph. While

we do not yet have all the components of profit π it from equation (3)—the managerial-cost components are

of course yet to be structurally estimated—we can estimate the first two components Base it and Upsellit
using equations (4) and (5). Because monetary profits are not observed even in the actual data, they have

to be estimated in both cases—using simulated prices in the former case and actual prices in the latter. The

figure reports results binned first by rank and then by margin. Each point on the graph represents an average

taken over it observations whose rank or margin at the point of observation (serving as the initial state s

from which we simulate 720 hours forward) puts it into the relevant bin.

Panel A compares the simulated to actual monetary profit going forward for 720 hours conditional on

rank in the initial period. The solid black curve for profit based on simulated prices closely matches the

dashed grey one for profit based on actual prices over the whole range of the horizontal axis. Of course the

closeness of the graphs could be a symptom, not of good fit, but of the stability of the environment, with

initial rank correlating highly with profits at least over an horizon as short as 720 hours. To investigate this

possibility, we have added a curve (lighter with dot markers) representing the naïve forecast that the firm

earns the same profit in each of the 720 hours as it does in the first. This naïve forecast ends up overestimating

profit conditional on top ranks, because it has not taken into account the other firms’ reaction to firm i’s top

rank, which is to undercut firm i. For similar reasons it ends up underestimating profit conditional on bottom

ranks. Our estimated policy function fits dramatically better for both high and low ranks, suggesting that

our policy function likely captures this dynamic correctly.

Panel B similarly compares simulated, actual, and naïve estimates of monetary profit conditional on a

type 1 firm’s margin (price minus wholesale cost in levels) in the initial state s. Again our estimated policy
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simulation fares well, while the naïve prediction underestimates profit conditional on negative margins and

overestimates profit conditional on positive margins because does not properly incorporate the firm’s future

price adjustments and the cascade of rival responses. This comparison suggest that our policy function has

likely captured this dynamic correctly.

Table 4 provides an additional assessment of the policy function’s fit using formal Vuong (1989) tests

of model closeness. The Vuong (1989) test statistic Z compares the model’s likelihoods after subtracting

a penalty for extra parameters. We compare our preferred model, the zero-inflated ordered probit (ZIOP)

embodied in equations (6)–(11), labeled model A, to a series of alternatives, labeled B–D.

For model B, we start with our preferred specification but shift some variables from Xit in the monitor-

ing equation to Zit in the price-change equation; in particular we shift all the variables except Night t and

Weekendt from Xit to Zit . This comparison will test whether the careful choice of which equation the vari-

ables appear in matters or whether it just matters the variables are included somewhere in the specification.

For model C, instead of shifting the variables from Xit to Zit , we just omit them from the model entirely.

This comparison will test whether the monitoring equation is mainly identified off of the timing variables

Nightt and Weekendt or whether other included variables contribute as well. Model D keeps the price-change

equation as specified in the preferred Model A but omits monitoring equation (6). Thus, unlike models A–C,

which are all ZIOP models, model D is a simple ordered probit (OP) model.

In cases of nested or partially overlapping models, the Vuong Z statistic has a complex distribution,

related to a weighted sum of chi squares where the weights are eigenvalues of a matrix of conditional

expectations, leading authors to provide a subjective evaluation of the level of the Z statistic rather than

directly computing its p-value. We see that the test statistic is enormous for the comparison of the OP model

omitting monitoring (model D) against any of the ZIOP models (models A–C). This suggests that including

the monitoring equation produces a substantially better fit. The preferred ZIOP specification (model A) has

a considerable Z statistic of 3.20 and 3.92 when tested against the alternatives that either shift (model B)

or delete variables (model C) from the monitoring equation. This provides suggestive evidence that careful

placement of the variables in the correct equations matters for fit.

8. Estimation of Structural Parameters

8.1. Identification

For tractability and to better suit our empirical setting, our model will depart in several ways from the

standard BBL framework. We touch on the departures here but discuss them in more detail below in the

relevant sections. First, either because of limited information, cognition, or memory, the manager is assumed

to only be able to consider a restricted set Ŝ of the overall state space. For example, rather than keeping

track of the whole price history for each rival, manager i may view his current rank as an adequate summary

statistic of the combined effect of these actions. Second, the manager is assumed to follow a rule-of-thumb

policy that is a function of the restricted state space Ŝ. He does optimize, not over the price each moment,
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but over the long-run choice of this policy, maximizing the present discounted value of profits over the set of

admissible policies PF. Given the overwhelming complexity of the period-by-period optimization problem

involving the full state space, it is unlikely that managers were fully neoclassical—all the more in our setting

in which we have qualitatively documented substantial managerial frictions, which we aim to quantify. Our

approach has the advantage of being able to accommodate behavioral managers. The disadvantage of model

is that it will be misspecified if managers are more neoclassical or behavioral in a different way than we

allow. This motivated our careful specification of the policy function to matching observed firm behavior

and our assessment of its goodness of fit.

We follow the broad outlines of the BBL approach to estimate our structural parameters with a few

modifications. While BBL assume the econometrician observes the game play of a Markov prefect Nash

equilibrium, we assume a weaker solution concept such that the observed game play is a Nash equilibrium

in which each player chooses a rule-of-thumb policy function based on a limited set of state variables to

maximize the present discounted value of profits. The equilibrium policy function is that estimated in the

previous section. We then calculate the simulated counterpart of the value function in equation (1), which

involves approximating the distribution of the states considered by the firm. Assuming firms have consistent

beliefs about game play—the premise of the BBL method—then a natural approximation of the distribution

of states in firms’ consideration sets is the empirical distribution observed in the data, denoted Ŝ. This

approximation is also consistent with our policy-function estimation, which matches firms’ behavior to the

same distribution of states.

In the final step, we search for structural parameters θ—which here is the vector of managerial costs μτ

and χτ —that rationalize the estimated policy function as the equilibrium one, i.e., the one among the class

of admissible policy functions maximizing the value function. Let PF(α τ ,βτ ,Ck
τ ) denote the admissible

class of policy functions, comprised by substituting alternative values for the estimated parameters in the

monitoring and price-changing equations. Our identification condition is that no deviation in PF(α τ ,βτ ,Ck
τ )

can dominate the estimated policy function σ̂ i. Formally,

Es∈Ŝ[Vi(s; σ̂, θ)]≥ Es∈Ŝ[Vi(s; σ̃i, σ̂−i, θ)] for all σ̃i ∈ PF(ατ ,βτ ,C
k
τ ). (14)

We estimate θ by finding values that satisfy (14) for a large number of deviations σ̃ i. The details of our

specific estimator and our choice of deviations are provided in the appendix.

The intuition behind how θ is identified is straightforward. Our estimate of the equilibrium policy

function σ̂i will entail some rates of monitoring and price changing. Holding the benefits of these actions

constant, their rates should be inversely related to their costs, μ τ and χτ respectively. For example, a high

equilibrium monitoring rate entailed by σ̂ i must imply a low μτ . If instead μτ were extremely high, the

set of deviations PF(ατ ,βτ ,Ck
τ ) is rich enough that one could be found involving a lower rate of moni-

toring, reducing the number of times μτ is subtracted from the profit stream, which for a given benefit of

monitoring would increase the value function. Similarly, a high equilibrium rate of price change (condi-
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tional on the rate of monitoring) can only be consistent with a low χ τ . What may be difficult in practice is

distinguishing in the data an equilibrium with frequent monitoring but inert price changing from one with

infrequent monitoring but hair-trigger price changing. But that is a difficulty with the identification of the

policy function—discussed already in Section 7.2—not the structural parameters. A well-identified policy

function will deliver distinct rates of monitoring and price changing that can be used to identify μ τ and χτ .

If the policy function is not well identified, then different bootstrapped samples will lead to large swings

in the rates of monitoring and price changing, leading to large bootstrapped standard errors on the struc-

tural parameters. Thus the standard errors on the structural parameters will serve as a natural check on the

identification of the policy function.

To identify the structural parameters, it is crucial that the richness of the set of deviations PF(α τ ,βτ ,Ck
τ )

be exploited. Not all deviations give useful information. For example, a deviation generating negative mar-

gins most of the time would be dominated by the equilibrium strategy for any managerial-cost parameters.

As discussed further in the next subsection, we will sample from distributions of deviations that have a

realistic chance of being profitable to maximize the power of identification assumption (14).

The restriction of deviations to σ̃ i(si) ∈ PF(ατ ,βτ ,Ck
τ ) is where our procedure accommodates behav-

ioral managers, who pursue rule-of-thumb strategies short of fully rational strategies. A fully rational strat-

egy would have to dominate all conceivable deviations including, for example, a one-time price increase

of $1 in any given hour, a deviation which is not in PF(α τ ,βτ ,Ck
τ ). Given the difficulty of solving for

the fully rational strategies in our setting, we are reluctant to examine deviations that only “work” (i.e.,

generate inequalities in the correct direction) if firms are fully rational. The restricted set of deviations we

consider reflects the idea that firms experiment among a simpler class of pricing rules to discover the most

profitable of them. By restricting the set of deviations, our identification assumption is weaker than the

standard assumption in BBL, allowing for estimation of structural parameters that is robust to certain forms

of behavioral pricing. The only potential pitfall for structural identification would be if the deviation set

were not rich enough to span possible combinations of monitoring and price-changing rates. Our model

avoids this pitfall, however: fixing all the other parameters, varying the constant terms in α τ and βτ over

(−∞,∞)2 can produce any combination of monitoring and price-changing rates in (0,1) 2. The true drawback

to the restriction σ̃i ∈ PF(ατ ,βτ ,Ck
τ ) lies in the possibility of misspecifying equilibrium strategies, hence

the importance of establishing good fit of the policy function in Section 7.4.

Additional technical details on the estimation of the structural parameters have been relegated to the

appendix, allowing us to turn directly to the results.

8.2. Results

Table 5 presents the estimates of the structural parameters from the profit equation (3). Recall that we rely

on estimates of Baseit and Upsellit from previous research, leaving managerial costs μτ and χτ as the only

structural parameters to be estimated. We measure μτ and χτ in dollars.

Type 1 firms are estimated to have a substantial monitoring cost of around $72, significantly different

25



from 0 at better than the 5% level. While at first glance this estimate may seem high, further consideration

suggests it is plausible. The monitoring cost covers a series of managerial activities including reviewing

recent sales and inputs, acquiring competition status, and integrating information from several sources. If

these activities occupy about an hour of the manager’s time, the monitoring cost should be comparable to

the manager’s hourly pay. The estimated cost of changing price for a type 1 firm is in fact negative, −6.3,

although insignificantly different from 0. Using the 95% confidence interval, we can reject that costs of

changing price exceed $4.1 at better than the 5% level. The estimates suggest that managers find it costly to

continually attend to the market but once they do attend, the menu costs of electronically updating the price

are fairly trivial. This estimate confirms the notion that the advent of e-commerce can practically eliminate

physical menu costs. The stark contrast between the two types of managerial costs are in align with a

series of recent macro papers. For example, Alvarez, Lippi and Paciello (2015) finds the cost of reviewing

information is three times as large as the cost of changing price, and Zbaracki, Ritson, Levy, Dutta and

Bergen (2004) finds the managerial cost behind the decision of price change is about six times as large as

the physical cost of the actual price change.

Turning to type 2 firms, the estimate of the monitoring cost at $48 is a bit lower though qualitatively

similar to that for type 1. The 42.4 estimate for the cost of changing price is substantially higher than

that for type 1’s. However, the remarkably wide confidence interval [−177.2,145.8] around the estimate

indicates that the cost estimate is essentially uninformative. The small number (eight) of type 2 firms

and the infrequency of their price changes combine to generate few price-change observations that go into

identifying the policy function. This shows up in standard errors for the policy-function parameters in

Table 3 that are around five times higher for type 2 than type 1 firms, leading to the wide confidence interval

seen here. The clustering procedure that divided firms up into types allowed us to keep heterogeneous

type 2 firms from contaminating the estimates for other types but did not provide enough data to allow

credible estimation of that type’s managerial costs.

The estimates for type 3 firms are almost identical to those for type 1. They also have a substantial

monitoring cost of around $68 and negative but insignificant cost of changing price of −7.4. One might

have thought the differences between type 1 and type 3 firms stem from differences in managerial capacity.

Perhaps type 1 managers occupy the low ranks because they can cheaply monitor and respond to this active

segment of the market. In fact, while type 1 and type 3 firms occupy different ranks, they do not differ

much in their price-changing behavior, as Figure 4 showed. This similarity naturally translates into similar

managerial costs. One possible story is that similar managers are indifferent among various rank positions

because high margins and upselling profits (per consumer) at high ranks balance low sales. The indifferent

managers are content then to spread and fill out the rank space.

Our preferred estimates given in the bottom of Table 5 re-estimate the structural parameters after im-

posing a non-negativity constraint on costs. This is a compelling theoretical restriction because it is hard to

imagine monitoring or inputting prices providing a utility boost. Perhaps more importantly, the assumption

plays an essential role in separately identifying the components of managerial costs in certain cases, in par-
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ticular when the policy function happens to generate a price change for almost all monitoring episodes. To

understand this essential role, consider the limiting case in which the manager changes price every time he

monitors. Then μτ = 100 and χτ = 0 would produce the same net profit as μτ = 1,100 and χτ = −1,000,

as indeed would every linear combination of μτ and χτ on the line including these points. The structural

parameters would be unstable and huge positive values for μ τ and huge negative values for χτ could result.

Imposing the constraint μτ ,χτ ≥ 0 eliminates this instability and selects plausible values of the structural

parameters.9 The non-negativity constraint binds for type 1 and 3’s cost of changing price. That estimate

becomes precisely 0, while the cost of monitoring falls slightly for them and its confidence interval tightens.

The estimates for type 2 remain unchanged although the 95% confidence interval around that type’s moni-

toring cost now includes 0 and ranges up to 210.9, reinforcing the impression that the structural estimates

for that type are simply uninformative.

8.3. Sensitivity

This section gauges the sensitivity of the results to several specification choices made in constructing the

profit and value functions. Regarding monetary profits, we adopted a particularly simple specification in

equation (3), the markup of price over unit cost times quantity, measuring unit cost as the wholesale acquisi-

tion cost of a memory module using our daily data. In practice, firms may have had other unit costs. Credit-

card purchases involve a transaction fee, typically 2.25%. There is also a small chance of loss or breakage

of the wholesale product. Offsetting these extra costs, firms gained extra revenue through the approximately

$3 difference between actual shipping costs and the $9.99 they commonly charged the consumers. Our

presumption is that these extra costs and revenues largely cancel each other out, leaving equation (3) as

an accurate representation of monetary profits. Table 6 shows how the structural parameters change with

alternative specifications of monetary profits.

The first row for both the cost of monitoring and price change repeats the baseline estimates from the

previous table for comparison. The structural costs presented have all been estimated imposing the non-

negativity constraint. Following the baseline estimates, the next row recomputes the structural estimates

after adding $2 to unit cost. In general, higher unit costs lead the estimates of managerial costs to fall.

Intuitively, the higher are unit costs, the lower are unit profits; lower managerial costs are required to justify

the observed frequency of managerial activity. Qualitatively, though, the results do not change much, as the

monitoring cost still dominates the cost of price changing for type 1 and type 3 firms. Indeed, the cost of

price changing continues to hit the zero lower bound for type 1 and type 3 firms but it remains positive for

type 2 firms.

9Although our estimated policy functions happen to generate substantially more monitoring episodes than price changes, for
some bootstrapped samples, the estimated policy functions generate similar numbers of monitors and price changes, leading to the
problem of wildly positive values of μτ and negative values of χτ . To address this problem in the unconstrained estimation, for a
valid boostrap draw, we required the number of monitors to exceed the number of price changes by at least 5%. The percentage
of valid bootstraps is listed in Tabel 5. A side benefit of imposing the non-negativity constraint is that it eliminates the problem of
invalid bootstraps, as indicated by 100% of the bootstrapped sample being valid, as stated at the bottom of the table.
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Our specification of monetary profits used the function in Figure 3B for upselling profits. The next row

for each managerial cost re-estimates the structural parameter cutting the assumed upselling profits in half

for that type. Again, as expected, this leads to lower estimates for managerial costs. For example, monitoring

costs for type 1 firms falls from $68.4 to $26.0. While this is a large quantitative change, still the qualitative

picture remains that for type 1 and type 3 firms, the monitoring cost is substantial while the cost of price

changing is negligible. Notably, after this reduction in upselling profits, type 2 firms start to look much like

the others. The cost of price changing hits the zero lower bound for them, too. Therefore, we cannot be sure

whether the inactivity of type 2 firms is explained by a high cost of changing price or a lack of add-on profits.

Some anecdotal evidence for the latter interpretationcomes from examining firms’ product webpages. While

it is quite common for type 1 and type 3 firms to have complex webpages emphasizing available upgrades,

most type 2 firms have very simple webpage designs offering little information on premium options.

The last row re-estimates the structural parameters changing the profit specified for firms that disappear

from our sample of the first two Pricewatch pages because they rise to rank 25 or higher. As mentioned in

footnote 7, this was set to $4.70, but here we cut it in half. This causes very little change in the estimated

managerial cost for type 1 firms because they spend very little time at high ranks. For types-2 and 3,

estimated monitoring costs rise to offset the higher benefit from adjusting price to avoid falling off the list.

For all three types, the qualitative results are insensitive to this change in specification.

9. Counterfactuals

To assess the importance of managerial costs for the firm’s pricing behavior, in this section we present

counterfactual exercises in which we shock a single firm i’s managerial costs and see how its pricing behavior

and profit change, leaving other firms the same as before. In effect, this section performs the inverse exercise

from the structural estimation in the previous section. In the structural estimation, we estimated a policy

function from actual pricing behavior and used this to infer firms’ managerial costs. Here, we posit a vector

of managerial costs for i and search over policy functions for the one maximizing its simulated profits.

For each candidate policy function, we want to simulate i’s new pricing behavior and profit assuming that

all other firms continue with their originally estimated managerial costs, equivalent to assuming that their

pricing behavior is given by the originally estimated policy functions. This is exactly the simulation we did

for the 1,800 deviations during the structural estimation, so we can treat these deviations as candidate policy

functions, and use the recorded simulations to recalculate simulated profits with the new managerial costs for

these deviations, and pick the one with the highest profits as the firm’s optimal policy at the new managerial

costs. In fact, for this purpose, we did a much finer search by simulating for additional several thousands

candidate policy functions that are drawn sequentially from the proximity of the existing promising ones.

To save space we will focus on the case in which i is a type 1 firm. The results are shown in Figure 8.

Panel A shows the monthly number of prices changes for the firm as the costs of monitoring and price

change vary from 0 to 100 dollars. With a large yet finite pool of high quality candidate policy functions, we
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are able to identify 31 policy functions as optimal for some given vectors of managerial costs. The surface is

therefore marked by 31 plateaus, which indicate regions of costs for which we identified the same strategy

as optimal. Even as costs of monitoring and price changing go to 0, the frequency of price change does

not grow without bound. In other words, in the complete absence of frictions associated with price change,

it is not optimal for a firm to continuously tweak its price. There are three reasons for this. First, other

firms have retained their positive costs, so they do not respond continuously. This results in stretches when

state variables do not change during which i’s optimal strategy is to keep price constant. Second, changing

price, especially downwards, may trigger other firms’ reaction and intensity future competition, so there is

a dynamic incentive to wait for a while between price changes. Third, prices in this market are posted in

whole dollar amounts, so even if a firm continuously monitored its optimal continuous price, it still would

not want to change the price until the optimal price exceeded the threshold necessary to move the price a

whole dollar up or down. When i has no costs of monitoring or price changing, it ends up changing price

around once a day.

Panel B explores the same counterfactual exercise but now focuses on a different outcome variable: i’s

monthly profits. These are the net profits from equation (3), which subtract off the new managerial costs

with which we are shocking firm i, accumulated over the month. While the surface in the previous panel had

discrete jumps reflecting the discrete changes to firm i’s pricing policy, the continuous changes in i’s costs

smooth out its profit function in this panel. We will highlight several key insights that can be drawn from

the graph. The graph shows that the division between the two types of managerial costs matters for profit.

At the estimated costs of $68.4 for monitoring and $0 for price changing, the firm’s net profit is $6,070.

Holding the total managerial cost of a joint episode of monitoring and price changing constant at $68.4 but

shifting more of the joint cost from monitoring to price changing, the firm’s monthly profits montonically

increase from $6,070 to $6,496. In principle, simple arithmetic could explain this gain: holding constant

the firm’s monitoring and price-changing episodes, it gains from shifting more of the joint cost onto price

changing because it monitors multiple times for each price change, so managerial costs would be lower

with free monitoring and $68.4 price changing rather than vice versa. In fact the gain here is due to a more

subtle change in the firm’s strategy. When monitoring is expensive, the firm ends up forgoing some prime

opportunities to change price and changing price is some other less than prime circumstances knowing that

it would be too expensive to delay and keep tabs on the market. As monitoring becomes cheaper, the firm

can keep almost continual tabs on the market and change price in exactly the right states. At the estimated

costs of $68.4 for monitoring and $0 for price changing, the firm’s optimal strategy leads it to monitor an

average of 10.7 times per month, generating managerial costs of 68.4 ·10.7 = 731.9. If the costs are shifted

to $0 for monitoring and $68.4 for price changing, the firm ’s optimal policy now leads it to continually

monitor and change price 12.1 times a month, generating managerial costs of 68.4 ·12.1= 827.6. Aggregate

managerial costs are thus higher with more weight shifted from monitoring to price changing. So it is not

an arithmetic reduction in cost that leads to the counterfactual profit increase. Rather this increase in profit

comes from improvements in the firm’s pricing policy, possible when the managerial activity with additional

29



option value—monitoring—becomes cheaper even as the managerial activity without option value—price

changing—becomes more expensive.

Another key insight from Panel B, which can be drawn from considering the height of the surface, is

the potentially large gain to adopting technologies that decrease managerial costs, potentially thousands of

dollars a month just for this one product. In particular, based on numbers in this graph, the monthly net

profits would increase by over $1,500 if the managerial costs decreased from the estimated levels to zero.

One would underestimate the profits improvement assuming the firm simply saves the managerial cost,

which is about a half of $1,500, without showing a policy response. Re-optimizing the policy function to

a suitably active one contributes the other half of the profit improvement. The gain would presumably be

multiplied if the technology could be used to reduce managerial costs for the scores of other products the

retailers marketed on Pricewatch. In fact the retailers did move to automated pricing soon after the time

period of our data, consistent with our estimates of potentially large gains from doing so.

10. Conclusion

In this paper, we studied firms’ price-changing behavior in an online market for computer components. Spe-

cial features of this market made it particularly suitable for study: firms were ranked according to price with

lower-price firms receiving more prominent listings and the bulk of the sales on the market; this ranking sys-

tem, coupled with rapidly changing market conditions, gave firms an incentive to change price frequently

as they jockeyed for position. The abundance of price-changing episodes over the year of high-frequency

(hourly) observations offers an opportunity to precisely estimate a structural model of price-changing be-

havior.

We used some initial reduced-form evidence to direct the structural modeling. While firms were free to

change price continuously, as frequent as the price changes were, they were far from continuous. Despite

competing in a nationally integrated market (at least to some extent), managers on the East and West Coast

changed prices at times during the day suiting their shifted schedules, and managers in all locations rarely

changed prices on weekends. We took this as reduced-form evidence that the costs of managerial activity

provided a source of pricing inertia, motivating a structural model allowing us to separately estimate both

the managerial cost of monitoring the market and the managerial cost of entering the new price (a pure

menu cost). We were also careful to incorporate firm heterogeneity in the structural model, based on visual

examination of price and rank paths for some representative firms showing systematic differences in their

strategies, with some firms changing price at least weekly while others only once or twice a month and

with some firms aggressively targeting prominent ranks while others higher ranks with lower sales. We

incorporated firm heterogeneity in the structural estimates by using a machine-learning method to cluster

sample firms method into three types and then estimating policy functions and structural parameters allowed

to freely vary across types.

Given the emphasis on frictions in managerial behavior, and the prohibitive complexity of the state
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space in our setting, we built a dynamic model of a boundedly rational manager. The manager changes

price according to a rule of thumb based on a subset of state variables attended to rather than making the

price change that would be optimal given the full state space each instant. The key step for our approach

to work is to estimate a rule of thumb—in the language of dynamic structural estimation, a policy function

for price changes—that accurately captures managerial behavior. We do this by allowing for a sufficiently

rich set of carefully selected state variables, further enriched by allowing for different policy functions

across heterogeneous firm types, and then determining that the policy function performs well across a suite

of goodness-of-fit exercises. Following BBL, we estimate the structural parameters—here, the managerial

costs of monitoring and changing price—as those rationalizing the estimated policy function as being more

profitable than deviations. The new feature added to accommodate bounded rationality is that deviations are

restricted to the class of admissible rules of thumb rather than any arbitrary price change.

For the types of firms for which we have reliable estimates (types 1 and 3), we estimate a cost of

monitoring of roughly $60 and essentially no cost of price changing. (The estimates for type 2 firms are

considerably noisy because there are relatively few of these firms and they changed price infrequently,

leaving few price-changing episodes to use to estimate the model.) While these managerial-cost estimates

can be moved around by introducing or removing factors in the profit function, the qualitative results remain.

Managerial costs primarily arise in the monitoring stage; the further cost of inputting price changes is fairly

trivial, suggestive of technological features of this e-commerce market.

This paper fills several gaps in the economics literature. First, we extend methods in the literature on

dynamic structural estimation to accommodate behavioral agents who may behave according to rules of

thumb based on a subset of state variables. This is an important extension in our setting, where our central

focus is on limits to managerial capacity, but may be realistic in other settings as well. Second, we contribute

to the empirical macroeconomics literature on retail price stickiness. Like that literature, we suggest that the

costs of managerial attention and activity may be important. Our novel contribution is a carefully specified

dynamic model of pricing behavior that can generate actual structural estimates of these costs. Finally, we

contribute to the behavioral-economics literature by, first, providing a framework for structural estimation in

the presence of behavioral agents and, second, by providing numerical estimates of the cost of managerial

activity, providing an insight into the psychological barriers of actions such as changing prices that are

typically regarded as automatic in neoclassical models.
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Appendix A: Details on Structural Estimation

This appendix provides additional technical details on the estimation of the structural parameters omitted
from the text.

To transform our identification condition (14) into an estimator of θ requires empirical analogs to the
expectations over value functions appearing there, which we will compute via simulation. Our empirical
analogue to the first expectation, Es∈Ŝ[Vi(s; σ̂, θ)], is

ÊV i(σ̂, θ) =
1

MN

M

∑
m=1

N

∑
n=1

min{T,720}
∑

tmn=0
δtmnπ(stmn, σ̂(stmn), θ). (A1)

There are three summations in (A1). The first sum simulates the expectation over initial states represented
by the Es∈Ŝ operator. We do this by taking M draws from the set of state vectors observed in the data, Ŝ, and
averaging the result (hence the division by M). The second sum simulates the expectation implicit in the
value function Vi; this expectation is over the distribution of all possible histories of game play and private
shocks starting from the given initial state. We compute this expectation by simulating N histories for each
of the M initial states and averaging the resulting value functions (hence the division by N). The third sum
adds up the profit stream implicit in the value function.

The other expectation, Es∈Ŝ[Vi(s; σ̃i, σ̂−i, θ)] from the identification condition (14) is similarly trans-

formed into its empirical analogue ÊV i(s; σ̃i, σ̂−i, θ). Instead of all firms behaving according to the estimated
policy function σ̂, firm i deviates to the policy function σ̃ i ∈ PF(ατ ,βτ ,Ck) in the simulation, resulting in
profit π(stmn, σ̃i(stmn), σ̂−i(stmn), θ) as the new summand in (A1).

The upper limit in the third sum is modified from the value function as originally appears in (1). Instead
of calculating the value function over an indeterminate number of periods ending with firm i’s exit at time
Ti, we just add up the profit during the first month—720 hours to be precise. We do this to reduce the
accumulation of simulation errors as the period becomes longer. Given the nature of deviations we are
considering, with the firm deviating to a whole new policy function for the entire game, profits are stationary
in all simulations. Hence the average per-period profit over 720 hours is an unbiased estimate of the average
over the whole game. This is not true of some excluded deviations, for example, a one-time increase in price
of $1; such a deviation could generate a complicated impulse response, which would lead the average profit
over a truncated period to diverge from that over the full game. We set the discount factor to an annual value
of 0.95, though discounting turns out to be fairly inconsequential over the month horizon we are considering.

Calculating ÊV i is further expedited following BBL’s insight that when the profit function is linear in
the structural parameters, this linearity is inherited by ÊV i because it is essentially an average over these
linear profits. Thus, for example, we can write ÊV i(s; σ̂, θ) as the dot product of two vectors

ÊV i(s; σ̂, θ) =
#   »
EV i(s; σ̂) · #»

θ τ . (A2)

Here
#   »
EVi(s; σ̂) is a vector with four components, corresponding to the four terms in the profit function in

(3). The first component is the sum of the stream of firm i’s base profits in a simulation, ∑min{T,720}
tmn=0 Baseitmn ,

averaged over the MN simulations, where firms behave according to their estimated policy functions in each
simulation. Similarly, the remaining three components are the averages over the MN simulations of, respec-
tively, the total upselling profit over a simulation, ∑min{T,720}

tmn=0 Upsellitmn
; the number of times firm i monitored

market conditions during a simulation, ∑min{T,720}
tmn=0 Monitoritmn ; and the number of times firm i changed price

during a simulation, ∑min{T,720}
tmn=0 1{Δitmn �= 0}. The second vector in (A2) includes the structural parameters

for a firm of type τ : i.e.,
#»

θ τ = (1,υτ ,μτ ,χτ ). The linearity in (A2) means that the summary statistics
#   »
EVi(s; σ̂) are all that need to be saved from the MN simulations to later compute ÊV i(s; σ̂, θ) for any given
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θ because one just needs to take the dot product of the summary statistics and subvectors of the given θ.
Hence the simulation and estimation steps can essentially be conducted independently.

The other expectation estimate can be expressed similarly as

ÊV i(s; σ̃i, σ̂−i, θ) =
#   »
EV i(s; σ̃i, σ̂−i) · #»

θ τ , (A3)

in this case conducting the simulations with firm i using its deviation strategy σ̃ i in the simulation while
other firms use their estimated policy functions.

With these estimates of the expectations in identification condition (14) in hand, we can proceed to
estimation of the structural parameters θ. Following BBL, define Q to be the change in the value function
caused by a deviation in strategy:

Q(σ̂, σ̃i, θτ ) =
[
ÊV i(s; σ̂, θ)− ÊVi(s; σ̃i, σ̂−i, θ)

]
(A4)

=
[

#   »
EVi(s; σ̂)− #   »

EVi(s; σ̃i, σ̂−i)
]
· #»

θ τ , (A5)

where (A5) follows from (A2) and (A3). The force of identification assumption (14) here is that Q will
be non-negative for sufficiently accurate estimates of the expectations and for θ sufficiently close to the
true structural parameters. We will estimate θ by assessing a penalty for violations of non-negativity and
choosing the value that minimizes the sum of squared penalties over the deviations considered:

θ̂ = argmin
{ #»

θ τ |τ=1,2,3}

{
∑

{σ̃i|τ=1,2,3}
[min{Q(σ̂, σ̃i, θτ ),0}]2

}
. (A6)

For each firm type, we considered a set of 2,000 deviations σ i from the set of policy functions PF(ατ ,βτ ,Ck
τ ).

Each deviation was generated by adding three perturbations to the type’s estimated policy function. The first
perturbation involves pure random noise: we multiplied the coefficients α̂ τ , β̂τ by log-uniform noise terms
and shifted the cut points Ĉk

τ by uniform noise terms. The second perturbation involves adding correlated
noise terms to the constant term in α̂τ and the cut points Ĉk

τ , such that the deviations amount to an experi-
ment with changing the frequency of monitoring and frequency of price change conditional on monitoring
in opposite directions. The third perturbation is to add correlated noise terms to the cut points Ĉk, such that
the deviations amount to experiments with trade off between small and large price changes. We chose these
perturbations to reflect actual tradeoffs that firms might face in their decision-making. For each deviation
σ̃i, we calculate the value function statistics

#   »
EVi(s; σ̃i, σ̂−i) with M = 10,000 random draws of initial states

with replacement and N = 1 simulation for each initial state. For the estimated policy, we calculate the value
function statistics

#   »
EV i(s; σ̂) with M = 1,000,000 random draws of initial states with replacement and N = 1

simulation for each initial state to attain greater accuracy.
Because we have chosen a large number of deviations and a large number MN of simulations for each

deviation, the second-stage estimate, θ̂, is quite accurate conditional on the first-stage estimate σ̂. The main
source of randomness in θ̂ therefore is the potential error in the first stage. To account for this main source
of error, we create 200 bootstrapped samples and repeat the whole estimation procedure. For each boot-
strapped sample n = 1, . . .,200, we derive a new estimate, σ̂ (n), of the policy function. For each n, we
carry out the second-stage using σ̂ (n) in the place of σ̂ in (A4), (A5) and (A6) and generate new sets of
deviations by perturbing σ̂ (n). The resulting structural estimates θ̂(n), to minimize the sum of squared penal-
ties represented by the new Q function. Confidence intervals can be constructed from quantiles of the set
{θ̂(n)|n = 1, . . . ,200}. We could have used bootstrapping to compute standard errors for the policy-function
parameters ατ , βτ , and Ck

τ reported in Table 3. It turns out that these bootstrapped standard errors are quite
close to the standard errors from the maximum-likelihood procedure we chose to report. To simplify the
estimation, we did not incorporate uncertainty in Q(Rank it) and U(Rankit) in our standard errors, but we
note that those expressions were fairly precisely estimated in Ellison and Ellison (2009a).
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Table 2: Variable Means by Firm Type

Combined types Type 1 Type 2 Type 3
Variable (43 firms) (22 firms) (8 firms) (13 firms)

Density 0.60 0.63 0.52 0.56
Margin 1.01 −0.72 1.24 6.20
NumBump 1.30 1.00 2.12 1.64
Placement 0.58 0.58 0.58 0.58
Price 70.06 68.09 85.42 64.90
QuantityBump −0.16 −0.17 −0.18 −0.11
Rank 10.75 7.78 13.37 18.06
RankOne 0.06 0.09 0.02 0.00
SinceChange 117.55 99.88 255.08 93.33

Observations 111,276 71,460 16,904 22,912

Notes: Shown are means only of variables varying over indexes i and t . Column for combined firms repeats information from
Table 1 for comparison.
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Table 4: Vuong Non-Nested Specification Tests

Versus alternative model

Model B. ZIOP shifting variables C. ZIOP omitting variables D. OP omitting monitoring

A. ZIOP preferred specification 3.20 3.92 11.98

B. ZIOP shifting variables 1.82 11.61

C. ZIOP omitting variables 12.03

Notes: Entries are Z statistics from Vuong (1989) specification test comparing non-nested models.
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Figure 1: Example Pricewatch Webpage

Note: Page downloaded October 12, 2002.
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Figure 2: Price and Rank Series for Representative Firms of Each Type

Pr
ic

e 
ra

nk

0
2
4
6
8

10
12
14
16
18
20
22
24

Pr
ic

e

95

100

105

110

115

120

125

130

Hours during August 2000 Hours during August 2000Hours during August 2000

Type 1 firm Type 2 firm Type 3 firm

Note: Series start later for type 2 and type 3 firms because they entered during the month.
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Figure 3: Effect of Rank on Retailer Outcomes
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Notes: Panel A is derived from Ellison and Ellison’s (2009a) demand estimates, based on their regression of the natural log of
quantity on linear rank. Exponentiating yields the equation graphed, Q(Rank it) = 4.56(1 + Rankit)−1.29. Panel B is derived from
Ellison and Ellison’s (2009a) estimates of upselling profit. They estimate that a retailer sells an additional 0.97(1 + Rank it )−0.77

units of a medium-quality product with an average markup of $15.69 and an additional 0.49(1 + Rank it)−0.51 units of a high-quality
product with an average markup of $31.45. The sum of these, for total upselling profit of U(Rank it) = 15.18(1+ Rankit)−0.77 +
15.48(1 + Rankit)−0.51, the function graphed.
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Figure 4: Distribution of Size and Spell of Price Changes
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Figure 5: Price-Changing Activity During the Day for Retailers on Different Coasts
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Notes: Graphs show residual probability of price change each hour estimated after partialling out other covariates. So that the
probability functions integrate to 1, they have been converted into conditional probabilities, i.e., conditional on a price change
occurring during the day. Probabilities computed from estimates from a maximum likelihood model similar to that reported in
Table 3 but with Night indicator replaced by suite of indicators for Eastern Time hour and interactions between this suite and an
indicator for whether the supplier is located on the West Coast. Model estimated on subsample of East and West Coast suppliers
only.
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Figure 6: Goodness of Fit of Estimated Policy Function by Firm Type
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estimation. Over the short 720-hour horizon, discounting has a negligible effect on the graphs.
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Figure 7: Goodness of Fit of Estimated Policy Function Across Various Initial States
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Note: To save space, graphs show results only for type 1 firms. Monetary profit involves just the first two components of π it ,
Baseit + Upsellit , not the managerial costs structurally estimated later. Monetary profit for the actual sample is also estimated but
estimated based on firms’ actual prices as opposed to the simulations, which use prices from the estimated policy function. Naïve
forecast assumes firm earns same profit in each of the 720 hours as in the first. Profits discounted using same 0.95 annual factor
used to compute value functions in the structural estimation. Over the short 720-hour horizon, discounting has a negligible effect
on the graphs.
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Figure 8: Counterfactual Scenarios with Various Different Managerial Costs
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Note: Counterfactuals show firm’s response to a shock to its managerial costs. Dots indicate counterfactuals associated with
optimal policies for managerial costs set to the structural estimates. To save space, graphs show results only for type 1 firms. Net
profit subtracts managerial costs from π it . Profits discounted using same 0.95 annual factor used to compute value functions in the
structural estimation. Over the short 720-hour horizon, discounting has a negligible effect on the graphs.
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