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Dynamic Decisions under Subjective Expectations:

A Structural Analysis

Yonghong An∗ Yingyao Hu† Ruli Xiao‡

January 2018

Abstract

This paper studies dynamic discrete choices by relaxing the assumption of ratio-

nal expectations. That is, agents’ subjective expectations about the state transition

are unknown and allowed to differ from their objectively estimable counterparts. We

show that agents’ subjective expectations and preferences can be identified and es-

timated from the observed conditional choice probabilities in both finite and infinite

horizon cases. Our identification of subjective expectations is nonparametric and

can be expressed as a closed-form function of the observed conditional choice prob-

abilities. We estimate the model primitives using maximum likelihood estimation

and illustrate the good performance of estimators using Monte Carlo experiments.

We apply our model to Panel Study of Income Dynamics (PSID) data and ana-

lyze women’s labor participation. We find systematic differences between agents’

subjective expectations about their income transition from those under rational ex-

pectations. A counterfactual analysis suggests that women with low and medium

incomes would increase the probability of working under rational expectations, and

that the probability would decrease for women with high income.

Keywords: Dynamic discrete choice models, subjective expectations, rational expecta-

tions, nonparametric identification, estimation.
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1 Introduction

Decision-making under uncertainty, such as occupational and educational choices, and

labor participation is prominent in economics. A central problem in this literature is to

infer preferences from observed choices. The inference requires a mapping between choices

and preferences. To build up the mapping, a general approach is to model agents’ choices

as the optimal solution to an expected utility maximization problem, where the expected

utility is computed using the agents’ expectations about choice-specific future outcomes

(e.g., a woman’s expectations of household income conditional on her labor participation

decisions). That is, the observed choices are determined by a combination of preferences

and expectations. The information of agents’ expectations thus is crucial to infer their

preferences through the observed choices.

Unfortunately, researchers typically do not observe agents’ expectations in practice, so

assumptions usually are imposed. A ubiquitous assumption is that the expectations are

rational such that agents’ subjective expectations about future outcomes coincide with the

ex post realized outcomes. Such an assumption may be problematic, as Manski (1993a)

pointed out that the observed choices can be consistent with multiple combinations of ex-

pectations and preferences. Moreover, some recent studies have documented systematic

discrepancies between subjective and rational expectations by comparing survey data on

agents’ subjective beliefs with the objective counterparts (see e.g., Heimer, Myrseth, and

Schoenle (2017) and Cruces, Perez-Truglia, and Tetaz (2013) among others). Not sur-

prisingly, violation of the rational expectations assumption may induce biased estimation

of agents’ preferences and misleading counterfactual results. A dominating solution in

the literature is to solicit subjective expectations (see a review in Manski (2004)) and to

study agents’ decisions under the observed expectations (see e.g., Van der Klaauw (2012)).

Nevertheless, the availability of such surveyed expectations is very limited. Especially, for

some historical datasets, it is impossible to collect agents’ subjective expectations.

In the existing literature, little is known about what can be achieved if there are nei-

ther solicited subjective expectations nor a known link between the ex post choice-specific

outcomes and subjective expectations such as the assumption of rational or myopic ex-

pectations. We provide a first positive result in this paper by showing that we can recover

agents’ preferences as well as subjective expectations if agents’ dynamic decisions are ob-

served. Specifically, we consider a standard dynamic discrete choice (DDC) model where

agents have subjective beliefs about the law of motion for state variables. The subjective
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expectations are unknown to the econometrician ex ante. This relaxes the rational ex-

pectation assumption, which is imposed in this literature to facilitate identification and

estimation. We provide conditions for nonparametrically identifying agents’ preferences

together with their subjective expectations. We analyze both finite and infinite horizon

frameworks and provide results for both homogenous and heterogenous beliefs.

We first show that when agents’ subjective expectations are homogenous, these ex-

pectations can be identified and estimated from the observed conditional choice proba-

bilities (CCPs) in both finite-horizon and infinite-horizon cases. Based on the insight of

the under-identification results, e.g., Rust (1994) and Magnac and Thesmar (2002), we

address identification of DDC models by assuming that the distribution of agents’ un-

observed preference shocks and the discount factor are known. Our methodology then

identifies agents’ subjective probabilities on state transition as a closed-form solution to

a set of nonlinear moment conditions that are induced from Bellman equations using the

insight in Hotz and Miller (1993). Identifying subjective expectations in the finite-horizon

case relies on the variation of agents’ CCPs in multiple time periods while those subjective

expectations are time-invariant. Our identifying procedure does not require observations

at the last period of agents’ decisions, although observing such information allows us to

achieve identification using data with fewer time periods. In the infinite-horizon scenario,

stationarity rules out variation of CCP over time. Our identification relies on the exis-

tence of an additional state variable, which enters the utility function linearly. Such an

assumption is related but less restrictive than the existence of an exclusion restriction,

which is widely used in the literature. However, we require that the law of motion of this

additional variable is known to the econometrician. Then we investigate the moment con-

ditions induced from Bellman equations by varying the realizations of this state variable

to identify the model.

Our identification strategies also apply to DDC models with agents holding heteroge-

nous subjective expectations and/or preferences. Assuming that agents are classified into

finite types and those agents of the same type have homogenous expectations and/or pref-

erences, we prove that the type-specific CCPs can be nonparametrically identified. This

step uses the recently developed methodologies in measurement errors, e.g., Hu (2008).

Once the type-specific CCPs are recovered, one can apply the identification results devel-

oped for homogenous beliefs to identify the type-specific subjective expectations and/or

preferences. Not surprisingly, identification under heterogenous beliefs may require more
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periods of data than is the case with homogenous beliefs.

We propose a maximum likelihood estimator for the model primitives, including

agents’ preferences and subjective expectations in both finite and infinite horizon cases.

Our Monte Carlo experiments show that the proposed estimator performs well with mod-

erate sample sizes, and that performance maintains when the data are generated under

rational expectations. Furthermore, we find that imposing rational expectations leads

to inconsistent estimation of payoff primitives if the data are generated from subjective

expectations that differ from the objective counterparts.

We apply our method to the Panel Study of Income Dynamics (PSID) data to analyze

women’s labor participation under subjective expectations. To decide whether join the

labor force or stay at home, the household need to perceive how would the wife’s labor

force status affects their future household incomes. We discretize the household income

into groups, and refer these groups as low, median, and high. Our estimation results

reveal clear discrepancies between subjective expectations about state transitions and

their objective counterparts conditional on both working and not working. We also find

that agents have an asymmetric judgement about the income transitions: they are overly

optimistic about the probabilities of their income becoming higher if current income is low,

and overly pessimistic about the probabilities of their income decreasing if current income

is high. We further conduct a counterfactual analysis by simulating agents’ CCPs under

both subjective expectations and rational expectations. Our results suggest heterogenous

impacts of subjective expectations on labor participation. Women with low and medium

incomes hold rational expectations are more likely to work. In contrast, women with high

income are less likely to work if they have rational expectations.

This paper is related to the rapidly growing literature on subjective expectations.

Relaxing rational expectations in DDC models, or more generally in decision models, is

of both theoretical and empirical importance. Manski (2004) advocates using data on

subjective expectations in empirical decision models. In the literature along this line, a

great amount of effort has been put into collecting data regarding agents’ subjective ex-

pectations, and the researchers use these subjective expectations directly to study agents’

behaviors under uncertainty. For example, Van der Klaauw and Wolpin (2008) study So-

cial Security and savings using a DDC model where agents’ subjective expectations about

their own retirement age and longevity and future changes in Social Security policy come

from surveys. Zafar (2011, 2013) study schooling choices using surveyed data on students’
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subjective expectations. Wang (2014) uses individuals’ subjective longevity expectations

to explain adult smokers’ smoking decision in a framework of dynamic discrete choices.

Acknowledging the scarcity of expectations data, we take a distinctive approach from this

literature and focus on understanding agents’ decision-making only from their observed

choices.

This paper also contributes to a growing literature on identification of dynamic discrete

choice models. Rust (1994) provides some non-identification results for the infinite-horizon

case. Magnac and Thesmar (2002) further determine the exact degree of underidentifi-

cation and explore the identifying power of some exclusion restrictions. Kasahara and

Shimotsu (2009) and Hu and Shum (2012) consider identification of DDC models with

unobserved heterogeneity/state variables. Fang and Wang (2015) also use exclusion re-

strictions to identify a DDC model with hyperbolic discounting. Abbring (2010) provides

an excellent review on identification of DDC models. In a context of dynamic games,

Aguirregabiria and Magesan (2017) consider identification and estimation of players’ pay-

off and belief functions when their beliefs about other players’ actions are different from

the actual counterparts. Our paper, however, is qualitatively different from these pa-

pers in which they assume rational expectations to achieve identification. We are the

first to provide rigorous identification results for DDC models allowing that agents have

subjective expectations about state transitions. Not surprisingly, our identification and

estimation results can be applied to a wide array of empirical studies where agents’ sub-

jective expectations are crucial for their decisions but unobserved.

The remainder of this paper is organized as follows. Section 2 presents dynamic dis-

crete choice models with subjective expectations. Sections 3 and 4 propose identification

results for the finite and infinite horizon cases, respectively. Section 5 extends identifica-

tion to the model with heterogeneous beliefs and/or preferences. Section 6 provides an

estimator and Monte Carlo evidence. Section 7 studies women’s labor participation by

applying our method to PSID data. Section 8 concludes and the proofs are presented in

the Appendix.

2 DDC Models with Subjective Expectations

We consider a single agent DDC model, where each period an agent selects a choice

at from a finite set of actions, A = {1, · · · , K}, K ≥ 2, to maximize her expected lifetime
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utility. The state variable that the agent considers at period t has two parts, i.e., ht =

(xt, εt), where xt is observed by the econometrician, and εt is the unobserved component,

which is a vector of choice-specific shocks, i.e., εt = (εt(1), · · · , εt(K)). We assume that

the observed state variable xt is discrete and takes values in X ≡ {1, · · · , J}, J ≥ 2. At

the beginning of period t, ht is revealed and the agent chooses an action at ∈ A and

obtains the utility u(xt, at, εt). We use x and x′ to represent the variable at the current

and the following period whenever there is no ambiguity.

After the agent makes the decision a, nature determines the realization of the state

variable in the next period (h′) according to some random mechanism conditional on the

current state h and the agent’s decision a. This random mechanism usually is assumed

to be a Markov process of order one, and we denote it as f(h′|h, a). The agent has to

form some beliefs about this law of motion in order to take the future into account. The

agent’s choice a involves intertemporal optimization, thus the belief about the law of

motion plays an essential role in the agent’s decision making process. Let s(h′|h, a) be

the agent’s subjective beliefs about this law of motion. In the literature of DDC models,

a ubiquitous assumption is that the agent has perfect expectations about this law of

motion. That is, the subjective expectations are the same as their objective counterparts,

i.e., s(h′|h, a) = f(h′|h, a) for all h′, h and a. This assumption is imposed to mitigate the

complications of identifying and estimating DDC models.

The existing literature provided some rationales and conditions under which rational

expectations might hold. For instance, Manski (1993b) argues that perfect expectations

of one cohort could be achieved by learning from an earlier cohort. Magnac and Thes-

mar (2002) state that the following conditional independence assumption is necessary for

agents to have perfect expectations through learning:

Assumption 1 (Conditional Independence) The observed state variable x′ is drawn in-

dependently from ε conditional on x and a, i.e., f(x′|x, a, ε) = f(x′|x, a).

However, Manski (1993b) pointed out that perfect expectations cannot be derived from

a learning process if (1) the law of motion changes between the two cohorts due to some

macro-level shocks, or (2) the earlier cohort’s history cannot be fully observed. Moreover,

the recent literature documented violations of perfect expectations by comparing survey

data on agents’ subjective expectations with the objective counterpart; and such violations

often have a great impact on agents’ choices. For example, Heimer, Myrseth, and Schoenle
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(2017) show that surveyed mortality beliefs over the life cycle substantially differ from

actuarial statistics from the Social Security administration; this discrepancy leads to 30%

under-saving by the young and 15% more slow drawing down of assets by retirees. Cruces,

Perez-Truglia, and Tetaz (2013) also provide evidence of agents’ biased perception of the

income distribution.

Motivated by these theoretical arguments and the empirical evidence, we consider

identification of DDC models without imposing rational expectations on the agent’s be-

liefs about state transition. In what follows, we describe the agent’s problem in a general

framework with subjective expectations, lay out some traditional assumptions, and char-

acterize the agent’s optimization decision.

In each period, the agent’s problem is to decide what action maximizes her expected

utility, based on her subjective expectations about the future evolution of the payoff state

variable. That is,

max
at∈A

∑
τ=t,t+1,...

βτ−tE
[
u(xτ , aτ , ετ )|xt, at, εt

]
,

where β ∈ [0, 1) is the discount factor and the expectation is taken using the agent’s sub-

jective expectations s(h′|h, a). These beliefs are a complete set of conditional probabilities

that satisfy the following properties:

Assumption 2 Agents’ subjective expectations about the law of motion for the observed

state variable satisfy the following conditions:

(a)
∑

x′∈X s(x
′|x, a) = 1 and s(x′|x, a) ≥ 0 for any x ∈ X and a ∈ A.

(b) s(x′|x, a) is time-invariant.

Part (a) of Assumption 2 states some minimum requirements for subjective expectations.

That is, the beliefs are valid. Part (b) rules out the possibility that agents update their

beliefs about the transition by learning. This is consistent with the recent empirical

literature that agents’ subjective expectations are often one-time self-reported (see e.g.,

Wang (2014)).

We further make the following assumptions concerning the unobservable component

in the preferences following the literature (e.g., Rust (1987)).

Assumption 3 (a) u(x, a, ε) = u(x, a) + ε(a) for any a ∈ A; (b) ε(a) are i.i.d. draws

from the mean zero type-I extreme value distribution G(·) for all periods and all a ∈ A.
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The additive separability of agents’ utility imposed in Assumption 3 (a) is used widely in

the literature. Assuming a known distribution of ε is due to the non-identificatification

result of Magnac and Thesmar (2002). The mean zero type-I extreme value distribution

is assumed for ease of exposition. Our identification holds for any distribution of ε as long

as it is known.

With an additive separable utility function, we can represent the agent’s optimal choice

at in period t as

at = arg maxa∈A

{
u(xt, a) + εt(a) +

∑
τ=t+1,...

βτ−tE
[
u(xτ , aτ , ετ )|xt, a

]}
,

where the deterministic component of the objective function is defined as the choice-

specific value function,

vt(x, a) ≡ u(x, a) +
∑

τ=t+1,...

βτ−tE
[
u(xτ , aτ , ετ )|x, a

]
≡ u(x, a) + β

∫
Vt(x

′)s(x′|x, a)dx′,

where Vt(x) is the ex ante value function. The optimization problem can be characterized

as a decision rule, which maps the current state and the payoff shocks into an action,

denoted as δt : (x, ε)→ a. Equivalently,

a = δt(x, ε) ⇔ vt(x, a) + εt(a) > vt(x, a
′) + εt(a

′), ∀a′ ∈ A, a′ 6= a.

We then define the CCP that the agent chooses each action corresponding to the decision

rule δt. That is,

pt(a|x) =

∫
I (a = δt(x, ε)) dG(ε),

where I(·) is an indicator function.

In a finite horizon case with the ending period denoted as T̃ , the agent can solve for

the problem using backward induction. Specifically, in last period T̃ , the choice-specific

value function is exactly the payoff function, i.e., vT̃ (x, a) = u(x, a). As a result, we can
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represent the CCP as follows

pT̃ (a|x) =

∫
I
[
u(x, a) + εT̃ (a) > u(x, a′) + εT̃ (a′), ∀a′ ∈ A, a′ 6= a

]
dG(εT̃ ).

By using backward induction, we can represent the choice-specific value function in period

t as the following.

vt(x, a) = u(x, a) + β

∫
maxa′∈A{vt+1(x

′, a′) + εt+1(a
′)}s(x′|x, a)dG(εt+1)dx

′ ∀t < T̃ . (1)

Consequently, the agent’s CCP induced by the optimal decision rule in period t can be

expressed as

pt(a|x; s) =

∫
I [vt(x, a) + εt(a) > vt(x, a

′) + ε(a′)] dG(εt) ∀t < T̃ , (2)

where s ≡ {s(x′|x, a)}a,x,x′ collects all subjective expectations about the state transition.

In an infinite horizon case, the agent’s problem essentially becomes a fixed point prob-

lem because stationarity typically is imposed. The decision rule and the corresponding

CCPs are consistent in each period, and the choice-specific value functions and the CCPs

can be characterized as

p(a|x; s) =

∫
I [v(x, a) + εt(a) > v(x, a′) + ε(a′)] dG(ε)

v(x, a; s) = u(x, a) + β

∫
V (x′)s(x′|x, a)dx′.

The CCPs then can be represented as a fixed point mapping:

p = Ψ(p;u, s), (3)

where the mapping Ψ is determined by the distribution of payoff shocks, i.e., G(·), and

p = {p(a|x;u, s)} collects all CCPs.

Note that in the DDC model introduced above, the state transitions are still governed

by the objective probabilities f(x′|x, a). Nevertheless, in general the observed choices

{at}t=1,2,··· would have different distributions from the case where agents have rational

expectations.

Remark. It is worth noting that the subjective expectations about state transitions
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here are qualitatively different from an agent’s subjective beliefs about her opponents’

behaviors in a dynamic game. An agent’s decision rule in our model is a mapping from

preference and state transition to a choice, and the mapping remains the same under both

subjective and rational expectations about the state transitions. In dynamic games, an

agent’s strategy is also a mapping from preference, the belief about others’ choices, and the

state transition, where the belief about others’ choices is consistent with the actual choice

function at Nash equilibrium. However, this mapping changes when an agent’s subjective

belief about her opponents’ behaviors differs from the actual counterparts. In such a case,

agents are boundedly rational, their beliefs are inconsistent, and a Nash equilibrium does

not exist. Aguirregabiria and Magesan (2017) consider identification and estimation of

dynamic games in such a scenario. Their method that deals with the changed mapping

and bounded rationality does not apply to our model. Our model requires an original

argument for identification that has not been used in the other contexts, and our method

can be extended to dynamic games with Nash equilibrium and agents’ having subjective

expectations about state transitions.

3 Identification of Finite Horizon Models

This section shows that agents’ preferences and subjective expectations are uniquely

determined by their CCPs. The main idea of identification is to investigate the variation of

CCPs across time and to build a relationship between CCPs and subjective expectations.

We present an identification procedure for cases with and without observing the last

period of agents’ decisions. Since the discount factor β is not the focus of this paper,

we assume that it is known. We refer to Magnac and Thesmar (2002) and Abbring and

Daljord (2016) for the identification of the discount factor β.

3.1 Identification without the last period

In this section, we assume that the last period of agents’ decisions is not observed in

the data, i.e., t = 1, 2, · · · , T , where T is the last period of data observation but not the

final period of agent’s decision T̃ , i.e, T < T̃ . Under Assumptions 1-3 above, the ex ante
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value function at period t can be expressed as

Vt(x) = − log pt(a = K|x) + vt(x, a = K)

≡ − log pt,K(x) + vt,K(x),

where the choice K can be any choices in A, and we choose the last one for ease of

exposition. Given that the state variable x has supports {1, 2, ..., J}, we define a vector

of J − 1 independent subjective probabilities as follows:

Sa(x) = [s(x′ = 1|x, a), ..., s(x′ = J − 1|x, a)], a ∈ A. (4)

Similarly, we define

− logpt,K = [− log pt,K(x = 1), ...,− log pt,K(x = J − 1)]′ − (− log pt,K(J))

vt,K = [vt,K(x = 1), ..., vt,K(x = J − 1)]′ − vt,K(J). (5)

The choice-specific value function can be expressed as follows:

vt(x, a) = u(x, a) + β
∑

x′
Vt+1(x

′)s(x′|x, a)dx′

= u(x, a) + βSa(x)(− logpt+1,K + vt+1,K) + β
[
− log pt+1,K(J) + vt+1,K(J)

]
. (6)

We leave the derivation of equation (6) in the Appendix. We take the difference of the

choice-specific value function above between a = i and a = K, and apply the results in

Hotz and Miller (1993),

ξt,i,K(x) ≡ log

(
pt,i(x)

pt,K(x)

)
= vt(x, a = i)− vt(x, a = K)

= β[Si(x)− SK(x)][− logpt+1,K + vt+1,K ] + [u(x, i)− u(x,K)], (7)

where t = 1, 2, · · · , T − 1. The difference between the choice probabilities of any two ac-

tions, the component in the left-hand-side of the equation above, is time-variant and this

variation over time does not rely on the associated utility difference u(x, i)− u(x,K) di-

rectly. This property allows us to further eliminate the utility function in the relationship
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between choice-specific value function and CCPs,

∆ξt,i,K(x) ≡ log
( pt,i(x)

pt,K(x)

)
− log

( pt−1,i(x)

pt−1,K(x)

)
= β[Si(x)− SK(x)][−∆ logpt+1,K + ∆vt+1,K ], (8)

where ∆ logpt+1,K ≡ logpt+1,K − logpt,K and ∆vt+1,K ≡ vt+1,K − vt,K . This equation

holds for each of x ∈ {1, 2, ..., J} and any time period t ∈ {1, · · · , T − 1}.
Next we stack the equation above for J − 1 values of x in the matrix form with the

following definitions:

Sa ≡


Sa(x = 1)

Sa(x = 2)
...

Sa(x = J − 1)

 ; ∆ξt,i,K ≡ [∆ξt,i,K(1), ...,∆ξt,i,K(J − 1)]′. (9)

Note that matrix Sa has dimensions (J − 1)× (J − 1). Then we have a matrix version of

equation (8):

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ], ∀t ∈ {1, · · · , T − 1}. (10)

Equation (10) indicates that the observed differences of the CCPs between any two actions

over time ∆ξt,i,K are induced by two components. One is the difference of the subjective

expectations associated with the two actions, which is our identification target. The other

one is the difference of the corresponding choice specific value functions, which is also

unknown from the data. To identify the subjective expectations, we need to eliminate the

value difference ∆vt+1,K in equation (10). To do that, we explore additional restrictions

imposed by the model in the value function, leading to the following connection in the

difference of value function over time.1

∆vt,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K), (11)

1We provide the detailed derivation of this connection in the Appendix.
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where S̃K defined as follows is a (J − 1)× (J − 1) matrix.

S̃K ≡


SK(1)− SK(J)

SK(2)− SK(J)
...

SK(J − 1)− SK(J)

 .

In summary, the choice probabilities are associated with subjective expectations and

value functions through equation (10), and the choice-specific value function evolves as in

equation (11). By eliminating the value functions from these two equations, we can con-

struct the direct relationship between the observed choice probabilities and the subjective

expectations. To proceed, we first impose a rank condition ton the primitive matrices Si

and SK ,

Assumption 4 There exists one action i, i 6= K such that the (J − 1)× (J − 1) matrix

Si − SK is full rank.

Assumption 4 requires that the agent’s beliefs about state transition, conditional on

choice i relative to choice K, have sufficient variations. It guarantees the invertibility of

Si − SK . A full rank restriction to primitives often is imposed for identification in the

literature of structural models. For instance, both Kasahara and Shimotsu (2009) and Hu

and Shum (2012) impose full rank condition in identifying DDC models with unobserved

heterogeneity/state variables. Under Assumption 4, we eliminate ∆vt+1,K in equation

(10) to obtain

βS̃K [Si − SK ]−1∆ξt,i,K − [Si − SK ]−1∆ξt−1,i,K = β∆ logpt,K , t = 3, · · · , T − 1. (12)

This equation provides a direct link between the choice probabilities and the subjec-

tive expectations through a nonlinear system, which enables us to solve the subjective

expectations with a closed-form expression. The nonlinear system above contains J − 1

equations for a given t, and there are (J − 1) × (J − 1) and (J − 1) × (J − 1) unknown

parameters in S̃K and [Si − SK ]−1, respectively. Suppose that we observe data for 2J

consecutive periods, denoted by t1, · · · , t2J . We assume that the CCPs satisfy
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Assumption 5A Matrix ∆ξi,K with dimensions of (2J−2)×(2J−2) is invertible, where

∆ξi,K ≡
[ ∆ξt1,i,K ∆ξt2,i,K ... ∆ξt2J−2,i,K

∆ξt1−1,i,K ∆ξt2−1,i,K ... ∆ξt2J−3,i,K

]
.

This assumption is imposed on the observed probabilities and therefore is directly testable.

Nevertheless, it also rules out the stationary case, where the choice probabilities are time-

invariant. Under this assumption, equation (12) can be rewritten as follows:[
S̃K [Si − SK ]−1, −β−1[Si − SK ]−1

]
= ∆ log pK∆ξ−1i,K , (13)

where ∆ log pK ≡
[
∆ logpt1,K ,∆ logpt2,K , ...,∆ logpt2J−2,K

]
. We can solve for S̃K and

Si − SK from the nonlinear system above. Once S̃K is identified, we have obtained

SK(x)− SK(J) for all x ∈ {1, 2, · · · , J}, x 6= J . In order to fully recover SK(x), we need

to pin down SK(J) by the following assumption.

Assumption 6A There exist a state x ∈ {1, 2, · · · , J} under which the agent’s subjective

expectations about the state transition are known for action K.

For ease of exposition, denote the state in Assumption 6A as x = J , so this assumption

indicates that s(x′|x = J, a = K) or SK(J) is known. The restriction of known subjective

expectations imposed in assumption 6A is only required to hold for a certain state and

action. For example, the agent might have perfect expectations about the state transition

in some extreme states, i.e., s(x′|J,K) = f(x′|J,K). Assumption 6A is supported by

some empirical evidence. For example, Heimer, Myrseth, and Schoenle (2017) find from

a survey that respondents’ subjective survival beliefs equal the actuarial statistics when

they turn 68 years old.

The fact that imposing Assumption 6A is necessary for identification comes from the

nature of DDC models. Recall that equations (10) and (11) summarize all the structural

links in a DDC model with identification power. The two equations suggest that the

identification power comes from the variation of CCPs and choice-specific value functions,

which depends on the belief difference Si − SK and relative beliefs under choice K,

SK(x) − SK(J), x ∈ J , x 6= J . Obviously, different SK(J) can realize both (10) and

(11) simultaneously. One possible avenue for relaxing Assumption 6A is to explore other
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restrictions provided outside the model. For example, the relationship between subjective

expectations and objective transitions.

Under Assumption 6A, we can identify SK and consequently other Si. In what follows

we show that the subjective expectations associated with other actions i′, i′ 6= i,K, can

be identified. We augment equation (10) to a matrix equation

∆ξ̃i,K = β[Si − SK ][−∆ log p̃K + ∆ṽK ], (14)

where

∆ξ̃i,K =
[
∆ξτ1,i,K ,∆ξτ2,i,K , ...,∆ξτJ−1,i,K

]
,

∆ṽK =
[
∆vτ1+1,K ,∆vτ2+1,K , ...,∆vτJ−1+1,K

]
,

∆ log p̃K =
[
∆ logpτ1+1,K ,∆ logpτ2+1,K , ...,∆ logpτJ−1+1,K

]
.

The time periods τ1, τ2, · · · , τJ−1 are chosen such that ∆ξ̃i,K is invertible. Note that matrix

∆ξ̃i,K is constructed through reducing the dimension of matrix ∆ξi,K . Consequently, the

existence of such {τ1, τ2, · · · , τJ−1} is guaranteed by Assumption 5A that matrix ∆ξi,K is

invertible. The invertibility of ∆ξ̃i,K , together with Assumption 4 allows us to identify

−∆ log p̃K + ∆ṽK as [Si − SK ]−1∆ξ̃i,K/β, which is also invertible. Moreover, equation

(14) holds for all other choices i′ 6= i,K, i.e.,

∆ξ̃i′,K = β[Si′ − SK ][−∆ log p̃K + ∆ṽK ]. (15)

This equation and the identified matrix −∆ log p̃K + ∆ṽK enable us to identify the sub-

jective expectations associated with choice i′ as follows.

Si′ =
1

β
∆ξ̃i′,K [−∆ log p̃K + ∆ṽK ]−1 + SK

= ∆ξ̃i′,K∆ξ̃−1i,K [Si − SK ] + SK . (16)

We summarize our identification results as follows:

Theorem 1 Suppose that Assumptions 1–6A hold. Then the subjective expectations

s(x′|x, a) for x, x′ ∈ {1, 2, ..., J} and a ∈ {1, 2, ..., K} are identified as a closed-form

function of the CCPs pt(a|x), pt−1(a|x), and pt−2(a|x) for t = t1, t2, ..., t2J .
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Proof : See the Appendix.

The identification results in Theorem 1 require at least 2J consecutive periods of

observations or 2J − 2 spells of 3 consecutive periods. In empirical applications, we may

not have data for 2J periods, especially when the state space, i.e., J is large. We present

in the following an alternative identifying strategy that requires only J + 1 periods of

data. Not surprisingly, we have to impose stronger assumption on model primitives than

in Theorem 1.

Assumption 6B There exists an action a = K under which the agent’s subjective ex-

pectations about state transition for choice K, s(x′|x, a = K) are known.

Assumption 6B is stronger than Assumption 6A because it normalizes the whole condi-

tional distribution s(x′|x, a = K) for all the values of x. Nevertheless, the advantage of

such a restriction is that it reduces the number of observed periods required for identifi-

cation.

To obtain a closed-form solution to subjective expectations, we rewrite the link be-

tween CCPs and subjective expectations described in (12) in the following vectorization

expression,

vec(β∆ logpK) = vec(βS̃K [Si − SK ]−1∆ξt,i,K)− vec([Si − SK ]−1∆ξt−1,i,K)

= [(∆ξt,i,K)′ ⊗ (βS̃K)]vec([Si − SK ]−1)− [(∆ξt−1,i,K)′ ⊗ I]vec([Si − SK ]−1)

= [(∆ξt,i,K)′ ⊗ (βS̃K)− (∆ξt−1,i,K)′ ⊗ I]vec([Si − SK ]−1). (17)

Identification requires the following full rank condition, which again is empirically testable.

Assumption 5B The matrix (∆ξt,i,K)′ ⊗ (βS̃K)− (∆ξt−1,i,K)′ ⊗ I is invertible.

Consequently, a closed form identification can be represented as

vec([Si − SK ]−1) = [(∆ξt,i,K)′ ⊗ (βS̃K)− (∆ξt−1,i,K)′ ⊗ I]−1vec(β∆ logpK). (18)

Similar to the case where SK(J) is known, we can identify Si′ without imposing any

further restrictions after Si is identified. We state the result in the following theorem and

omit the proof since it is similar to the proof of Theorem 1.
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Theorem 2 Suppose that Assumptions 1–4, 5B, and 6B hold. Then the subjective ex-

pectations s(x′|x, a) for x, x′ ∈ {1, 2, ..., J} and a ∈ {1, 2, ..., K − 1} are identified as a

closed-form function of the CCPs pt(a|x), pt−1(a|x), and pt−2(a|x) for t = t1, t2, ..., tJ+1.

Remark. From the identification procedure above, we can show that the result in Theo-

rem 1 also holds when the discount factor β is unknown if we replace Assumption 6A

by Assumption 6B in Theorem 1. First of all, we can identify S̃K [Si − SK ]−1 and

β−1[Si − SK ]−1 from equation (13). Under Assumption 6B, S̃K is known and this al-

lows us to identify Si − SK . Consequently, both Si and β are identified.

Identification of preferences. After we identify subjective expectations using the

results in Theorem 1 or Theorem 2, we proceed to identify agents’ utility function u(x, a).

As in the existing literature, a normalization is required to identify the preference and is

stated in the following.

Assumption 7 The utility of choice a = K is normalized: u(x,K) = 0 for any x ∈
{1, 2, · · · , J}.

Normalization of utility for one alternative is widely used to identify DDC models (see

e.g., Blevins (2014), Fang and Wang (2015), and Abbring and Daljord (2016)). The recent

literature points out that such normalization is not completely innocuous and may bias

counterfactual policy predictions (see e.g., Norets and Tang (2013)). Chou (2015) shows

identification of DDC models by relaxing the normalization. Nevertheless, we focus on

relaxing rational expectations, thus we maintain this standard assumption.

Since the last period of decision T̃ is not observed, we cannot use the CCPs in the

ending period to identify the preference. Instead we explore the links between the utility

function, the observed CCPs, and the identified subjective expectations. Note that the

observed CCPs in period t are determined by the choice specific value function at that

period vt(x, a), which are time-variant and unknown. This non-stationarity increases the

number of unknowns along with the time period. To focus on the preference and reduce

the number of unknowns, we represent the difference of CCPs with the choice specific

functions in the last period vT (x, a) using the connection of the choice specific value
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function over time.2

u(x, a)− β[S†a(x)− S†K(x)]
∑T

τ=t+2
[−βS†K(x)]τ−t−1(logp†τ,K)

= log pt,a(x)− log pt,K(x) + β[S†a(x)− S†K(x)] logp†t+1,K + (βS†K)T−t−1v†T,K , (19)

where t = 1, 2, · · ·T − 2, and x = 1, 2, · · · , J . S†a, S
†
K ,p

†
t,K and v†t,K are the counterparts

of Sa, SK ,pt,K and vt,K , respectively with the component of X = J included, e.g.,

S†a(x) = [Sa(x), s(x′ = J |x, a)] = [s(x′ = 1|x, a), ..., s(x′ = J |x, a)], ∀a ∈ A.

We stack utilities for all the choices and define

ua ≡


u(x = 1, a)

u(x = 2, a)
...

u(x = J, a)

 ;S†a ≡


S†a(x = 1)

S†a(x = 2)
...

S†a(x = J)

 , a ∈ A, a 6= K. (20)

We show in the Appendix that equation (19) implies that for any t′ ∈ {1, 2, · · · , T − 3},
ua satisfies the following equation

[
I − (βS†K)t

′]
ua

= β(S†a − S
†
K)
[ T∑
τ=t+2

(−βS†K)τ−t−1(logp†τ,K)−
T∑

τ=t+t′+2

(−βS†K)τ−t−t
′−1(logp†τ,K)

]
+ logp†t,a − logp†t,K + β(S†a − S

†
K) logp†t+1,K

−(βS†K)t
′
[

logp†t+t′,a − logp†t+t′,K + β(S†a − S
†
K) logp†t+t′+1,K

]
, (21)

where the components in the right-hand-side of the equations are either known from

the data or are identified from Theorem 1 or Theorem 2. Moreover, we show that the

matrix
[
I−(βS†K)t

′]
is invertible by construction. Consequently, we provide a closed-form

identification expression for the utility function, and summarize the result in the following

Corollary.

Corollary 1 Suppose Assumptions 1–7 hold, agents’ utility function u(x, a) is nonpara-

metrically identified.

2We provide the detailed derivation of equation (19) in the Appendix.
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Proof : See Appendix.

3.2 Identification with the last period

In this section, we show that the model can be identified using fewer periods of data

than are required by Theorems 1-2 if data on the dynamic ending period T̃ are available.

Agents do not need to form beliefs for the future at the ending period. Thus, CCPs on

the ending period enables identification of the preference regardless whether agents have

subjective or rational expectations. We then do not need to eliminate the utility function

from the moment conditions by taking difference over time. Instead we use the identified

utility function and the variation of CCPs over time in equation (7) instead of equation

(8) to identify the beliefs. We maintain the notation that t = 1, 2, · · · , T . Here T is the

last period of agents’ decision, i.e., T = T̃ .

We rewrite equation (7) as follows.

ηt,i,K(x) ≡ ξt,i,K(x)− [u(x, i)− u(x,K)]

= β[Si(x)− SK(x)][− logpt+1,K + vt+1,K ], t = 1, 2, · · · , T − 1, (22)

where ηt,i,K(x) is identified because the utility difference u(x, i) − u(x,K) is identified

using data of the ending period. Similar to equations (10) and (11), we have the following

matrix representation that links the observables to the subjective expectations,

ηt,i,K = β[Si − SK ][− logpt+1,K + vt+1,K ],

vt,K = βS̃K(logpt+1,K + vt+1,K). (23)

Under Assumption 4, we have:

βS̃K [Si − SK ]−1ηt,i,K − [Si − SK ]−1ηt−1,i,K = β logpt,K , t = 1, · · · , T. (24)

Identification of the subjective expectations can be accomplished with an invertibility

assumption stated in the following:
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Assumption 5C Matrix ηi,K with dimension of (2J − 2)× (2J − 2) is invertible, where

ηi,K ≡
[ ηt1,i,K ηt2,i,K ... ηt2J−2,i,K

ηt1−1,i,K ηt2−1,i,K ... ηt2J−3,i,K

]
.

Similar to Assumption 5A, Assumption 5C is also testable. We summarize the iden-

tification result in the following corollary to Theorem 1.

Corollary 2 Suppose that Assumptions 1–4, 5C, and 6A hold. Then the subjective expec-

tations s(x′|x, a) for x, x′ ∈ {1, 2, ..., J} and a ∈ {1, 2, ..., K} are identified as a closed-form

function of the CCPs pt(a|x), for t = t1, t2, ..., t2J−2.

Corollary 2 shows that 2J − 2 periods of data (versus 2J periods required in Theorem 1)

are sufficient for identification if the last period of data are available.

Analogously, if the last period of data are available and Assumption 6B is imposed,

i.e., SK is known, we can improve upon Theorem 2 by identifying the model with J − 1

periods of data. We provide some brief discussions on the identification as the procedure

is similar to that of Corollary 2 . First of all, utility function can be recovered from the

choice in the last period. Using this information and the known subjective expectations

SK , we can identify the choice-specific value function vt,K for t = 1, 2, · · · , T through

iteration,

vt(x,K) = u(x,K) + βSK(x)(− logpt+1,K + vt+1,K) + β
[
− log pt+1,K(J) + vt+1,K(J)

]
,

for t = 1, · · · , T − 1, and the last period choice specific value function is the same as

the per-period utility function. To identify the beliefs Si, we only need to use the first

equation of (23) with Si being the only unknown. We define

η̃i,K =
[
ητ1,i,K ,ητ2,i,K , ...,ητJ−1,i,K

]
,

which is an observed (J − 1)× (J − 1) matrix. A testable full rank condition is necessary

for identification.

Assumption 5D The (J − 1)× (J − 1) matrix η̃i,K is invertible.

We summarize the result as a corollary to Theorem 2:

20



Corollary 3 Suppose that Assumptions 1 - 3, and 5D hold. Then the subjective expec-

tations s(x′|x, a) for x, x′ ∈ {1, 2, ..., J} and a ∈ {1, 2, ..., K}, together with the util-

ity function u(x, a), are identified as a closed-form function of the CCPs pt(a|x) for

t = T − J + 2, T − J + 3, ..., T .

4 The Infinite Horizon Case

The identification strategy in Section 3 uses variations in the CCPs across time. Un-

fortunately, these variations are not available in the infinite horizon case. Thus we explore

extra restrictions such as the existence of an additional state variable. We follow the basic

setup in Section 2 and maintain Assumptions 1-3 in what follows.

Denote the observed state variable to be (x,w), where both are discrete, x ∈ {1, 2, · · · , J}
and w ∈ {1, 2, · · · ,M}. We impose the following assumption on the agents’ subjective

expectations about the transition of the state variables.

Assumption 8 The agent’s subjective beliefs about the transition of the observed state

variables (x,w) satisfy

s(x′, w′|x,w, a) = s(x′|x, a)f(w′|w, a). (25)

This assumption imposes two restrictions on agents’ subjective expectations. First, the

two state variables are independent conditional on their previous state. Second, agents’

have rational expectation on the transition of state variable w. The law of motion for w,

f(w′|w, a) in Assumption 8 is specified to be dependent on action a and our identification

in this section will be based on this specification. This nests the law of motion f(w′|w),

which does not depend on the action, as a special case and the identification results in

this section naturally carries through.

The independence of the transitions for the two state variables x and w in Assumption

8 is often assumed in the literature (e.g., see the applications of DDC models reviewed

in Aguirregabiria and Mira (2010)). The assumption of known transition of w can be

rationalized by the fact that agents often have better understanding of some variables’

transition than others’. Especially, when w is a variable at macro level and its transition

does not depend on the choice, agents’ subjective expectations about its transition can

be accurate (see e.g., Manski (2004)).
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We maintain Assumption 6B regarding the subjective beliefs s(x′|x, a). That is, all

the elements of s(x′|x, a = K) are known. Given Assumption 8, we can express the

choice-specific value function as

va(x,w) = u(x,w, a)

+ β
∑J

x′=1

∑M

w′=1

[
− log pK(x′, w′) + vK(x′, w′)

]
s(x′|x, a)f(w′|w, a)

= u(x,w, a) + β
∑J

x′=1

[
− log paK(x′, w) + vaK(x′, w)

]
s(x′|x, a), (26)

where

log paK(x′, w) ≡
∑M

w′=1
log pK(x′, w′)f(w′|w, a),

vaK(x′, w) ≡
∑M

w′=1
vK(x′, w′)f(w′|w, a).

Similar to the finite horizon scenario, the difference between CCPs across actions provide

information on the variation of the subjective expectations associated with corresponding

actions. Specifically, the mapping between choice-specific value function and CCPs as in

Hotz and Miller (1993) leads to the following

ξi,K(x,w) ≡ log
( pi(x,w)

pK(x,w)

)
= v(x,w, i)− v(x,w,K)

= βSxi (x)[− logpiK(w) + viK(w)]− βSxK(x)[− logpKK(w) + vKK (w)]

+u(x,w, i), (27)

where

Sxi (x) = [s(x′ = 1|x, a), ..., s(x′ = J |x, a)],

logpiK(w) = [log piK(1, w), ..., log piK(J, w)]T ,

viK(w) = [viK(1, w), ..., viK(J, w)]T .

u(x,w,K) is not in equation (27) because of Assumption 7, i.e., u(x,w,K) = 0. This

normalization is necessary due to the non-identification results in the existing literature.

Note that in this equation, only CCPs are known, while the utility and the choice-specific

value function are yet to be identified. The main idea of identification is to eliminate both

the utility and the value function in equation (27).
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We first show that the choice-specific value function vK can be identified using a

fixed point relationship when normalization is imposed on action K. For choice a = K,

equation (26) is simplified as

vK(x,w) = β
∑J

x′=1

∑M

w′=1

[
− log pK(x′, w′) + vK(x′, w′)

]
s(x′|x,K)f(w′|w,K).

Rewritten in a matrix form,

vK = β[SxK ⊗ F w
K ]
[
− logpK + vK

]
, (28)

where vK is a JM × 1 vector defined as

vK ≡ [vK(x = 1, w = 1), · · · , vK(x = 1, w = M), · · · , vK(x = J, w = M)]T .

The JM × 1 vector of CCPs, logpK , is defined analogously. SxK and F w
K are J × J and

M ×M transition matrices, respectively, and are defined as follows.

Sxa ≡


Sxa (x = 1)

Sxa (x = 2)
...

Sxa (x = J)

 ; F w
a ≡


Fw
a (w = 1)

Fw
a (w = 2)

...

Fw
a (w = L)

 . (29)

Equation (28) allows us to identify vK as the following closed-form expression:3

vK = [I − β(SxK ⊗ F w
K )]−1[β(SxK ⊗ F w

K )(− logpK)]. (30)

Once the value functions for choice a = K are identified, we proceed to provide

conditions to eliminate the utility function in equation (27). This is accomplished by

varying w in the CCP ratio ξi,K(x,w) for a certain class of utility function, which is

specified in the following assumption:

Assumption 9 The agent’s preference is linear in w, u(x,w, a) = u1(x, a) + u2(x, a)w

for all choices a ∈ A and a 6= K.

3Following the proof of Corollary 1 in Appendix A.2, we can show that the absolute value of any
eigenvalue for β(Sx

K ⊗ Fw
K ) is less than 1. Therefore, all the eigenvalues of matrix I − β(Sx

K ⊗ Fw
K ) are

nonzero, i.e., it is invertible.
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The linearity of the utility function in w specified above nests the commonly used quasi-

linear utility function u(x,w, a) = u1(x, a)+w as a special case. In the empirical literature

of DDC models, linearity of utility function is often assumed, e.g., in Wang (2014) and

Fang and Wang (2015).

Let us define an operator ∆2
w as the second order difference of a function of w, g(w),

with respect to w.

∆2
wg(m) ≡ [g(w = m)− g(w = m− 1)]− [g(w = m+ 1)− g(w = m)]. (31)

Applying this operator to equation (27),

∆2
wξi,K(x,w)

= βSxi (x)[−∆2
w logpiK(w) + ∆2

wv
i
K(w)]− βSxK(x)[−∆2

w logpKK(w) + ∆2
wv

K
K (w)]

≡ βSxi (x)ṽi(w)− βSxK(x)ṽK(w). (32)

For any given x ∈ {1, 2, · · · , J}, the equation above contains J unknowns in Sxi (x). By

varying w, we may obtain enough restrictions to solve for Sxi (x) under an invertibility

condition imposed on the observables. To have enough restrictions, w takes at least two

more values than x, we consider w ∈ {0, 1, · · · , J + 1} and define

Ṽ i = [ṽi(1), ṽi(2), ..., ṽi(J)],

∆2
wξi,K(x) = [∆2

wξi,K(x, 1),∆2
wξi,K(x, 2), ...,∆2

wξi,K(x, J)].

A matrix form of equation (32) can be expressed as

∆2
wξi,K(x) = βSxi (x)Ṽ i − βSxK(x)Ṽ K . (33)

Note that SxK(x) is known given Assumption 6B. Thus, the agent’s subjective beliefs Sxi (x)

can be solved from the equation above if the following restriction is imposed.

Assumption 10 For any choice i ∈ A \K, the J × J matrix Ṽ i is invertible.

This assumption is directly testable because matrix Ṽ i only contains directly estimable

entries. Under assumption 10, we may solve for Sxi (x), i.e., s(·|x, a) with a closed-form:

Sxi (x) = β−1
(

∆2
wξi,K(x) + βSxK(x)Ṽ K

)
×
(
Ṽ i
)−1

. (34)
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Given that we have identified the subjective expectations, the utility function u(x,w, i)

is also identified from equation (27). We summarize the results as follows:

Theorem 3 Suppose that Assumptions 1-3, 6B, 7-10 hold. Then, the subjective beliefs

s(x′|x, a) for x, x′ ∈ {1, 2, ..., J} and a ∈ {1, 2, ..., K}, together with the utility function

u(x,w, a), are identified as a closed-form function of the CCPs p(a|x,w) and objective

state transition f(w′|w, a).

Remark 1. In the literature of DDC models, an exclusive variable often is used for

identification. For example, in Abbring and Daljord (2016) and Fang and Wang (2015)

an exclusive restriction is used to identify the discounting factor. Often, such an exclusive

variable Z is assumed to have no impacts on the agent’s preference while it does affect

the state variable’s transition. For example, there are two values of Z, denoted as z1

and z2, such that u(z1, a) = u(z2, a) and F (z′|Z = z1, a) 6= F (z′|Z = z2, a) for any

choice a. Furthermore, agents have rational expectations about the state transition of Z.

Assumption 9 nests a special case where W is an exclusive variable by allowing u2(X, a)

to be zero. Of course, in our case an additional restriction to W is that its state transition

is independent from that of X.

Remark 2. If the transition of w does not depend on action, both the conclusion and

proof of Theorem 3 still hold. The only change is that some w-related terms will be

independent of choice, e.g., logpiK(w) and viK(w) in equation (27) will be the same for all

the choices. The main identification equation (33) will be

∆2
wξi,K(x) = βSxi (x)Ṽ − βSxK(x)Ṽ ,

where Ṽ is independent of choice and assumed to be invertible as Assumption 10. Finally,

Sxi (x) = β−1∆2
wξi,K(x)× Ṽ −1 + SxK(x). (35)

5 An Extension: Heterogeneous Beliefs

Agents may display heterogeneous preferences and/or beliefs about transition of the

same state variable. We show in this section that a DDC model with such heterogeneity

can also be identified using the results in previous sections. We focus our discussion on

the finite horizon case, and the procedure is readily applicable to the infinite horizon case.
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Suppose agents can be classified into H ≥ 2 types, and H is known to the econome-

trician.4 Let τ ∈ {1, 2, ..., H} denote the unobserved type (heterogeneity) such that all

agents of the same type have the same subjective expectations and preferences, denoted

as s(x′|x, a, τ) and u(x, a, τ), respectively. Note that we assume an agent’s type does

not change over time. Similarly, the CCPs for agents of type τ in period t is pt(a|x, τ).

We use an identification methodology for measurement error models to show that the

observed joint distribution of state variables and agents’ actions uniquely determines the

type-specific CCPs pt(a|x, τ) for all τ ∈ {1, 2, · · · , H}, with which we can apply the re-

sults of identification in Sections 3 to identify the heterogeneous expectations s(x′|x, a, τ)

and the utility functions u(x, a, τ) associated with type τ .

We start our identification arguments with the following assumptions.

Assumption 11 {at, xt, τ} follows a first-order Markov process.

The first-order Markov property of action and state variables is widely assumed in the

literature on DDC models. This assumption trivially holds with the assumption of first

order markov process of the state variable and the fact that agents’ decision only depends

on the current state. Under this assumption, the observed joint distribution is then

associated with the unobserved ones as follows:

Pr(at+l, ..., at+1, xt+1, at, xt, at−1, ..., at−l)

=
∑H

τ=1
Pr(at+l, ..., at+1|xt+1, τ) Pr(xt+1, at|xt, τ) Pr(τ, xt, at−1, ..., at−l). (36)

Let l be an integer such that H ≤ K l, where K and H are numbers of possible realizations

of at and τ , respectively.5 Suppose h(·) is a known function that maps the support of

(at+l, ..., at+1), K
l to that of τ , i.e., {1, 2, ..., H}. We define

at+ = h(at+l, ..., at+1),

at− = h(at−1, ..., at−l).

For a fixed pair (xt, xt+1), we may consider at+, at, and at− as three measurements of

the unobserved heterogeneity τ and use the results in Hu (2008) to identify the objective

4The number of type H might be inferred from the data, see e.g., Kasahara and Shimotsu (2009).
We assume a known H for ease of exposition.

5This restriction is satisfied in most of the empirical application where K = 2 and J is not very large.
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Pr(xt+1, at|xt, τ), which leads to identification of the CCPs pt(at|xt, τ).6 It is worth noting

that we assume that the support of at+ and at− happens to be the same as that of τ for

simplicity of our identification argument. Our results can be generalized straightforwardly

to that case where the support of at+ and at− is larger than that of τ .

For a given pair xt and xt+1 in X , we define a matrix

Mat+,xt+1,xt,at− = [f(at+ = i, xt+1, xt, at− = j)]i,j .

Assumption 12 For all (xt+1, xt) ∈ X ×X , matrix Mat+,xt+1,xt,at− has a full rank of H.

Note that assumption 12 is imposed on the matrix which can be estimated directly from

the data since both actions and states are observed. As a result, this assumption is

empirically testable.

The identification strategy in Hu (2008) requires an eigenvalue-eigenvector decompo-

sition of a matrix from algebra manipulation of some observed matrices. The uniqueness

of such a decomposition requires that the eigenvalues are distinctive and can be ordered,

which are guaranteed in the following two assumptions, respectively.

Assumption 13 For any given (xt+1, xt) ∈ X ×X , there exists a choice k ∈ A such that

Pr(at = k|xt+1, xt, τ = l) 6= Pr(at = k|xt+1, xt, τ = m) if l 6= m, and l,m ∈ {1, 2, · · · , H}.

Note that this assumption is imposed for one action k instead of for all of the possible

actions. Moreover, even though we cannot estimate the Pr(at = k|xt+1, xt, τ) directly

from the data, this assumption is still empirically testable since it is the eigenvalues of

matrix computed from the data.

Assumption 14 For any given xt+1 ∈ X , there exists a known m ∈ {1, 2, · · · , H} such

that Pr(at+ = m|xt+1, τ) is strictly monotonic in τ .

Recall that at+ is defined as h(at+l, ..., at+1) and h(·) can be any function that maps the

support Al to {1, 2, · · · , H}. Thus we have the flexibility to impose Assumption 14 by

choosing any suitable function h(·). In empirical applications, this assumption is often

implied by the model. Suppose we consider a dynamic investment problem with choices

6Similar results can also be found in Kasahara and Shimotsu (2009).
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being investing in stocks or not, and the choice crucially depends on an agent’s subjec-

tive expectations about stock returns. For illustration purpose, assume that agents have

homogenous preferences and heterogeneous expectations. The type τ captures the accu-

racy of subjective expectations (i.e., whether they are close to the ex post distribution of

returns) and takes three values “more accurate”, “medium accurate” and “less accurate”,

denoted as τ = 1, 2, and 3, respectively. We choose l = 2 such that the requirement

H ≤ K l is satisfied. h(·) maps the support of (at+1, at+2), {(0, 0), (0, 1), (1, 0), (1, 1)} to

{1, 2, 3}. One such mapping h(·) is

at+ =


1, if (at+1, at+2) = (0, 0),

2, if (at+1, at+2) = (0, 1) or (at+1, at+2) = (1, 0),

3, if (at+1, at+2) = (1, 1).

A natural monotonicity that satisfies Assumption 14 is that the more accurate the sub-

jective expectations, the higher probability agents choose to invest in both periods of t+1

and t+ 2, i.e.,

Pr(at+1 = 3|τ = 3) > Pr(at+1 = 3|τ = 2) > Pr(at+1 = 3|τ = 1).

We summarize the identification result in the following theorem.

Theorem 4 Suppose Assumptions 11, 12, 13, and 14 hold, then the joint distribution

Pr(at+l, ..., at, xt+1, xt, at−1, ..., at−l) uniquely determines the type-specific CCPs pt(at|xt, τ).

Proof: See the Appendix.

Provided that the type-specific CCPs pt(at|xt, τ) are identified, we can proceed to

identify both utility and subjective expectations for each type of agents using the results

in Section 3 and 4. Note that for agents with two different types, they may differ in sub-

jective expectations or preferences or both. The identified utility function and subjective

expectations for each type allow us to distinguish those three scenarios by comparison.
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6 Estimation and Monte Carlo Evidence

6.1 Estimation

Our identification result provides a closed-form solution to agent’s subjective expec-

tations in equations (13) or (18) for the finite horizon and equation (35) for the infinite

horizon, which imply closed-form estimators. One may follow the identification procedure

to estimate the subjective expectations directly. Agent’s preference then can be estimated

in a second step using the CCP approach based on Hotz and Miller (1993). A multi-step

estimation, however, is not efficient. Also, such a closed-form estimator involves the in-

verse of some observed matrices, so the performance of the estimator would be unstable

when these matrices are nearly singular. Thus, we instead propose a maximum likelihood

estimator for estimating the subjective expectations and agent’s preferences at one step.

Suppose the data include n agents’ actions and states in T + 1 periods, denoted

as {ait, xit}it, where i = 1, ..., n and t = 0, ..., T . We denote the parameters in payoff

functions, objective transitions, and subjective expectations as θu, θo, and θs, respectively.

Those parameters can be finitely or infinitely dimensional. We first present the likelihood

function of the data {ait, xit}it.

L(x1, ..., xT , a1, ...aT ;x0, a0, θu, θs, θo) = Πn
i=1Π

T
t=1pt(ait|xit, θu, θs)f(xit|xi,t−1, ait−1, θo),

where pt(ait|xit, θu, θs) is the CCPs in period t. The log-likelihood function is additively

separable in the following two components:

logL =
∑n

i=1

∑T

t=1
log pt(ait|xit, θu, θs) +

∑n

i=1

∑T

t=1
log f(xit|xit−1, ait−1, θo). (37)

As a result, we can estimate the preferences θu and the subjective expectations θs sepa-

rately from estimating the objective transition θu. Specifically, the parameters regarding

the objective state transition θo can be estimated by maximizing the log-likelihood func-

tion
∑n

i=1

∑T
t=1 log f(xit|xit−1, ait−1, θo), while the preferences θu and the subjective expec-

tations θs can be estimated from the log-likelihood function
∑n

i=1

∑T
t=1 log pt(ait|xit, θu, θs).

We use θ̂ to denote the estimator of the corresponding parameters.

Recall that we cannot non-parametrically identify all subjective expectations. Some

normalization has to be imposed such as subjective expectations associated with some

action K and/or state J are known. One potential possibility is that agents have rational
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expectations about some state transition so that we can use the objective transition of

these states in the estimation. Specifically, we divide the parameters associated with

subjective expectations into two parts: θs ≡ {θes, θns }, where θns and θes are the parts

to be normalized and estimated, respectively. θns can be obtained from the estimated

objective state transition θ̂o, denoted as θ̂ns . The parameters of preferences and subjective

expectations, θ ≡ {θu, θes} can be estimated through the following maximization,

max
θ,θes

∑n

i=1

∑T

t=1
log pt(ait|xit, θ, θ̂ns ). (38)

Since the representation of CCPs pt(ait|xit, θ, θns ) varies with the horizon of the models,

we present the estimators for both finite and infinite scenarios separately.

Finite horizon. For a finite horizon case, we use backward induction to back out CCPs

for each period t. Specifically, we start in the last period T̃ , the stopping period, in which

the choice-specific value function is the same as the per period flow utility. Then we move

to the next to last period, T̃ − 1. We can continue the procedure until we reach the first

period in our dataset. In this process, the iteration of value function and the relationship

between value function and CCP are characterized by equations (1) and (2), respectively.

Infinite horizon. In the case of infinite horizon, an individual’s decision problem can

be described as a fixed-point solution. We solve the CCPs from a fixed-point mapping as

developed in equation (3)

p = Ψ(p; θu, θs).

To estimate θ, we adopt a Nested Pseudo Likelihood Algorithm (NPL) as proposed in

Aguirregabiria and Mira (2002). To implement the algorithm, we start with an initial

guess for the CCPs. At the τ -th (τ ≥ 1) step of iteration, we take the following two steps.

• Step 1: given pτ , we obtain a new pseudo-likelihood estimate of θ, θτ , which satisfies

θτ = arg max
θ

N∑
i=1

T∑
t=1

log p(ait|xit; θ, θ̂ns ),

where p(ait|xit; θ) is an element of p satisfying the original mapping p = Ψ(pτ ; θ, θ̂ns ).
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• Step 2: we then update the CCPs using the new estimated structural parameters

θτ following the model

pτ+1 = Ψ(pτ ; θτ , θ̂ns ).

We iterate the steps above until p and θ converge. We refer to Kasahara and Shimotsu

(2008) for convergence of the estimator generated from the NPL algorithm to the MLE.

In particular, the NPL estimator converges to a MLE estimator at a super-linear, but less

than quadratic, rate.

The difference between our estimator and that in the existing literature lies in the

role of the subjective expectations in the estimation. Specifically, we estimate part of the

subjective expectations θes together with the payoff primitives θu. In contrast, the existing

literature assumes that the subjective expectations are the same as the objective state

transitions. They estimate the payoff primitives in the second step while θs is estimated

directly from data in the first step. If individuals do not have rational expectations, the

existing approach suffers from mis-specification and may result in biased estimation.

6.2 Monte Carlo Experiments

Here we present Monte Carlo results to illustrate the finite sample performance of the

proposed MLE estimator for the finite horizon case and the NPL estimator for the infinite

horizon case.

We consider a binary choice DDC model in both finite and infinite horizon scenarios.

First we set up the payoff primitives, the objective law of motion, and agent’s beliefs

about transition of the state variable, where the agent may or may not have perfect

expectations. Given these primitives, we solve for the optimal CCPs either by backward

induction or by contraction mapping, depending on the horizon of the model. We then

use the equilibrium CCPs to simulate agent’s actions and use the objective transition

matrices to simulate states. Next we estimate the the parameters of interest following the

estimators proposed in the previous section. In particular, we first estimate the objective

transition matrices using the frequency estimator. Then we estimate payoff primitives and

subjective expectations together by using MLE estimator and NPL estimator in finite and

infinite horizon cases, respectively. We also estimate the payoff primitives by imposing the

rational expectation assumption as in the existing literature for purposes of comparison.
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In the finite horizon case, the utility function is specified as follows,

u(a, x) =

0 + ε0, if a = 0,

ux + ε1, if a = 1,

where ε0 and ε1 are drawn from a mean-zero type-I extreme value distribution. We set

J = 3, i.e., the state variable x takes three values, so we have three utility parameters,

i.e., u1 = −2, u2 = 0.4, u3 = 2.1. The objective law of motion for the state variable x

conditional on the choice a = 0 and a = 1, is represented by the following 3× 3 matrices

TR0 =


0.8 0.1 0.1

0.2 0.6 0.2

0.1 0.19 0.71

 ; TR1 =


0.2 0.6 0.2

0.5 0.2 0.3

0.2 0.3 0.5

 ,
respectively. Let S0 and S1 denote agent’s subjective expectations on the law of motion for

action 0 and 1, respectively. We consider three different scenarios for the expectations: (1)

Agents have perfect expectations, i.e., S1 = TR1 and S0 = TR0. (2) Agents’ subjective

expectations about the state transition associated with action a = 1 are the same as its

objective counterpart, i.e., S1 = TR1; agents’ subjective expectations about the station

transition associated with action a = 0 deviates from the objective counterpart and is

expressed in the following matrix:

S0 =


0.9 0.05 0.05

0.1 0.8 0.1

0.05 0.095 0.855

 .
(3) Agent’s subjective expectations on the transition of one state x = J associated with

action a = 1 are the same as its objective counterpart, i.e., S1(3) = TR1(3); the beliefs on

the remaining law of motion deviate from their counterparts and are expressed as follows:

S0 =


0.9 0.05 0.05

0.1 0.8 0.1

0.05 0.095 0.855

 , S1 =


0.6 0.3 0.1

0.25 0.6 0.15

0.2 0.3 0.5

 .
Settings (2) and (3) correspond to Assumptions 6A and 6B, respectively. The identifica-
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tion requires J + 1 = 4 and 2 ∗ J = 6 periods of data in setting (2) and (3), respectively.

To compare the performance in the two setting, we simulate the data for 2∗J = 6 periods

regardless the setting.

For the infinite horizon setting, we also consider a case where agents’ choice is binary

but there are two state variable x and w. Based on the identification conditions, the

payoff function is assumed as follows

u(a, x, w) =

0 + ε0, if a = 0;

u1(x) + u2(x)w + ε1, if a = 1,
(39)

where ε0 and ε1 are drawn from mean-zero type-I extreme value distribution. Both state

variables are assumed to be discrete. Specifically, x ∈ {x1, x2} and w ∈ {w1, w2, w3, w4}.
The objective state transition processes for x and w are assumed to be stationary and

action-specific. We represent all objective transition matrices in the following

TRw
0 =


0.6 0.2 0.2 0

0.1 0.75 0.15 0

0.04 0.1 0.8 0.06

0.01 0.08 0.1 0.81

 ; TRw
1 =


0.7 0.1 0.15 0.05

0.2 0.65 0.05 0.1

0.04 0.01 0.9 0.05

0.02 0.18 0.1 0.7

 ;

TRx
0 =

[
0.6 0.4

0.45 0.55

]
; TRx

1 =

[
0.1 0.9

0.5 0.5

]
.

Agents have rational expectations about the transition of w but may have subjective

expectations about transition of x. Specifically, we consider two settings for Monte Carlo

experiments: (1) Agents have rational expectations; that is, the agent’s beliefs on the

state evolution are the same as the objective counterparts, i.e., Swa = TRw
a , Sxa = TRx

a,

a ∈ {0, 1}. (2) Agents’ subjective expectations satisfy Assumptions 6A and 8. Specifically,

Swa = TRw
a , a ∈ {0, 1} and Sx1 = TRx

1 , while Sx0 6= TRx
0 . In particular,

Sx0 =

[
0.7 0.3

0.3 0.7

]
.

We again estimate the models in both settings with and without imposing the rational

expectation assumption.

With the above frameworks, we estimate the objective state transition in the first step
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using frequency estimator. Based on the objective state transition and the normalization

condition, we estimate the payoff primitive and the subjective expectations together.7 The

estimations are conducted for every scenarios with sample sizes n = 300, 600, 1000, 2500

and standard errors are computed using 1000 replications.

We present the results of Monte Carlo experiments for the finite horizon case in Tables

1-4, and for the infinite horizon case in Tables 5-6. Three main messages can be seen. First,

the proposed estimator performs well across different settings for moderate sample sizes.

The parameters of the utility function are estimated better than those of the subjective

expectations. It is worth noting that our estimator is robust to rational expectations;

i.e., the estimates track the true parameter values quite closely, even when the data

are generated from rational expectations. In such a case, as shown in Tables 1 and 3,

the standard errors of our estimates are larger than in the approach without estimating

agents’ subjective expectations. Second, failing to account for subjective expectations

may lead to significant estimation bias. Specifically, when the data are generated from

subjective expectations, the estimated parameters of the utility function from imposing

rational expectations are not consistent and are far from the true values. This can be

seen in Tables 2 and 4, where estimates of u1, u2 and u3 are significantly different from

the true parameters, by 27%, 40% and 22%, respectively. The differences persist as the

sample size increases from 300 to 2500. Finally, in the finite horizon case, the results in

settings (2) and (3) do not differ significantly. This implies that normalization itself does

not affect our estimation significantly.

7 Empirical Illustration: Women’s Labor Force Par-

ticipation

In this section, we apply the proposed method to study women’s labor force participa-

tion. Specifically, we investigate whether households have rational expectation about their

income evolution and how imposing rational expectations will affect our understanding of

their labor force participation decisions.

7Note that we check the full rank condition such as Assumptions 4 and 5A before we move to the
estimation step.
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7.1 Data and model specification

The PSID is a longitudinal survey consisting of a nationally representative sample of

over 18,000 individuals living in 5,000 families in the United States. The original sample

was re-interviewed annually starting from 1968 to 1997 and biennially afterward. We

only use data collected before 1997, since our identification relies on variation in CCPs

in consecutive years. More importantly, the PSID collects data on annual income and

female labor force participation for the preceding calendar year.

We construct an annual employment profile for each woman between ages of 39 and

60, where 60 is assumed to be the end period of labor participation decision process. The

distribution of women by years of data is shown in Table 7. The sample consists of 1767

women who are not evenly distributed over the number of years of participation data.

Almost 16% of them have all 17 years of data and more than a half of them have over 15

years of data. Table 8 presents the summary statistic of our sample, where we aggregate

the information of those women who are observed at least for six periods (for the purpose

of identification, as discussed below). The table indicates a relative large variation of

household income. Over half of the women across all years are employed status. On

average, the women in our sample have high school eduction and the majority of them

are aged between 42 to 55.

Each household in the sample is assumed to maximize the present value of utility over

a known finite horizon by choosing whether or not the wife works in each discrete period.8

This framework fits into a finite horizon scenario because women typically are out of labor

force when they reach 60 years old, e.g., see Eckstein and Wolpin (1989). A household’s

utility function is specified as

u(a, x, ε) =

0 + ε0, if a = 0,

ux + ε1, if a = 1,

where ε0 and ε1 are drawn from a mean-zero type-I extreme value distribution and are

assumed to be independent over time, a is a binary variable equals 1 if the wife works

during period t, and 0 otherwise; x is the household income. The discount factor β is set

to be 0.95. We discretize household income into three values (J = 3) and label x = 1, 2, 3

8We assume that a woman and her husband jointly decide whether she works or not.
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as low, medium, and high income, respectively.

x =


1, if household income ≤ 17, 000,

2, if 17, 000 < household income ≤ 150, 000,

3, if household income > 150, 000.

We use the setting of Theorem 1, where identification requires at least 2J = 6 periods of

observations. Thus, we exclude women with observations fewer than 6 periods from our

sample.

The inter-temporal link for the household comes through income evolution over time.

Specifically, household income in the future depends on current household income and

the wife’s working status. Households hold subjective expectations about the income

transition s(x′|x, a), and take into account such a transition in their dynamic decisions.

We assume that the subjective expectations are homogenous even women in our sample

differ in age and education. We believe that homogeneity of subjective expectations is a

reasonable first-order approximation because we only focus on women between ages 39 to

60, and arguably they are all experienced enough such that age and eduction could not

affect their subjective expectations significantly. The homogeneity assumption is also a

response to the relative small sample size. If the sample size is large enough, we can allow

dependence of subjective expectations on a rich set of covariates and conduct our analysis

conditional on the covariates.

Recall that identification requires that households’ beliefs are partly known, as stated

in Assumption 6A. In this application, we assume that the belief about future income

distribution for households with high incomes and the wife working, s(x′|x = 3, a = 1),

is known to be the transition observed in the data. We believe this is a reasonable

assumption because the income for a high income household is less uncertain. Moreover,

they may not qualify for some social welfare programs as the low income households do,

so it is relative easier for them to predict their income if the wife quits her job.

As in Eckstein and Wolpin (1989), we make some key working assumptions in the

specification above. First, we ignore the choice of hours of work and we treat labor

supply as a discrete work/no-work decision. Second, we ignore husband’s labor force

participation decisions. Third, we focus on the decision of women after age 39 so as to

avoid model fertility decisions. Finally, marriage is taken as exogenously given.
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7.2 Estimation results

Our estimation results are presented in Table 9.9 The top panel provides estimates of

transition matrices and parameters of utility under subjective expectations. For compar-

ison, in the bottom panel we include the estimates after imposing rational expectations,

where the objective transitions of household income are estimated using simple frequency

estimators. Table 9 reveals clear discrepancies between subjective expectations and ratio-

nal expectations about state transitions, conditional on both working and not working.

For example, conditional on medium income, agents believe that if the wife works then

with 55.6% probability their income will remain to be medium in the next period; with

probability of 24.3% and 20.1%, they would move to the low and high income categories.

By contrast, the objective transitions indicate that with probability 92.1% a household

would stay in the medium income category, much higher than the result of 55.6%. It is

possible that they will fall into low and high income categories, but the probabilities of

6.9% and 1.1% respectively are much lower than what is perceived by agents.

Another important observation from comparing subjective expectations and objective

transitions is that agents have an asymmetric judgement about income transitions. For

example, using the estimates conditional on not working, agents are overly optimistic

about the probabilities of their income transitioning to medium (24.3% v.s. 6.9%) and

high (20.1% v.s. 1.1%) conditional on current low income and overly pessimistic about the

probabilities of their income decreasing to low (45.0% v.s. 0.7%) and medium (30.5% v.s.

23.7%) if the current income is high. This is consistent with some survey data suggesting

asymmetric beliefs of agents. For example, Heimer, Myrseth, and Schoenle (2017) find

discrepancies between the surveyed mortality beliefs and the actuarial statistics from the

Social Security administration, and those discrepancies are different across age groups.

Estimated preferences under subjective expectations and rational expectations share

a similar pattern: women prefer to work if their households’ incomes are medium or high

while they prefer not to work if their current income is low. Nevertheless, our estimates

indicate that the utility of working is highest for those whose income is medium, while

under rational expectations the highest utility is for high income woman.

Based on the estimates in Table 9, we conduct a counterfactual analysis to investigate

how the discrepancies in estimated income transitions and households’ preferences affect

9Before estimating the model parameters, we test the rank of the observed matrix ∆ξi,K and find
that it is full rank, i.e., Assumption 5A holds.
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women’s labor force participation. Specifically, we simulate households’ CCPs for the last

six periods using the estimates of preference parameters under subjective expectations,

and the estimated income transitions under subjective expectations and rational expecta-

tions in Table 9. The simulated CCPs and the percentage differences presented in Table 10

suggest heterogenous impacts of subjective expectations on labor participation: If women

with low and medium income hold rational expectations, they will be more likely to work.

Our estimates show that for a low-income woman at age 55, the simulated probabilities

of working are 45.9% and 47.5% under subjective expectations and rational expectations,

respectively, a difference of 3.42%. For a medium-income woman of the same age, the

difference probability of working is 2.34%. However, women with high incomes would be

6.19% less likely to work under rational expectations.

The findings from our counterfactual analysis have important policy implications.

If a government aims to promote labor participation among women, its policies should

distinguish among different income groups. For example, helping low-income women

become aware of their actual income evolution potentially might increase their labor force

participation, while such an approach might not work for women with high incomes.

8 Concluding Remarks

This paper studies dynamic discrete models with agents holding subjective expecta-

tions about the state transition, where these beliefs may be different from the objective

transition observed in the data. We show that agents’ subjective expectations and pref-

erences are nonparametrically identified in both finite and infinite horizon cases. The

identification power in finite case comes from variation of CCPs across time, while the

identification power in infinite case comes from the information of an additional state vari-

able. We propose to estimate the model using a maximum likelihood estimator, and we

present Monte Carlo evidence illustrating that our estimator performs well with mid-sized

samples. Applying our method to PSID data, we illustrate that households do not hold

rational expectations about their income transitions, and the discrepancies between their

subjective expectations and rational expectations may lead to a significant difference in

women’s labor participation. Our estimates also shed light on how subjective expecta-

tions affects agents’ dynamic decisions and what policies would be appropriate in order

to improve labor participation among women.
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A direction for future research is to relax some important assumptions in this paper,

e.g., invariant subjective expectations, and to incorporate learning into the model. While

our method is introduced in the context of discrete choice, we might be able to extend

it to dynamic models with continuous choices, e.g., life-cycle consumption problems. We

are considering these possibilities for future work.
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Appendix

A Proofs

A.1 Proof of Theorem 1

The proof of Theorem 1 is sketched in the main text. Therefore, we only provide

proofs for the main steps used to derive Theorem 1.

Proof of equation (6). In the dynamic setting we consider, the optimal choice at in

period t is

at = arg maxa∈A{vt(x, a) + εt(a)},

where vt(xt, a) is the choice-specific value function. The ex ante value function at t can

be expressed as

Vt(x) =

∫ ∑
a∈A

1{a = at}
[
vt(xt, a) + εt(a)

]
g(εt)dεt

= log
{∑

a∈A
exp

[
vt(x, a)

]}
,

where the second equality is obtained under the assumption that εt is distributed according

to a mean zero type-I extreme value distribution. The conditional choice probability is

for i ∈ A

pt(a = i|x) =
exp

[
vt(x, i)

]∑
a∈A exp

[
vt(x, a)

] .
We may further simplify Vt(x) with i = K as follows:

Vt(x) = − log pt(a = K|x) + vt(x, a = K)

≡ − log pt,K(x) + vt,K(x).

Given that the state variable x has support X = {1, 2, ..., J}, we define a row vector

of J − 1 independent subjective expectations as follows:

Sa(x) = [s(x′ = 1|x, a), s(x′ = 2|x, a), ..., s(x′ = J − 1|x, a)].
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Notice that Sa(x) contains the same information as s(x′|x, a). We consider the choice-

specific value function

vt(x, a)

= u(x, a) + β
∑J

x′=1
Vt+1(x

′)s(x′|x, a)dx′

= u(x, a) + β
∑J

x′=1

[
− log pt+1,K(x′) + vt+1,K(x′)

]
s(x′|x, a)

= u(x, a) + β
∑J

x′=1

[
− log pt+1,K(x′) + vt+1,K(x′)

]
s(x′|x, a)

+β
[
− log pt+1,K(J) + vt+1,K(J)

][
1−

∑J−1

x′=1
s(x′|x, a)

]
= u(x, a) + β

∑J−1

x′=1

[
− log pt+1,K(x′) + log pt+1,K(J)

+vt+1,K(x′)− vt+1,K(J)
]
s(x′|x, a) + β

[
− log pt+1,K(J) + vt+1,K(J)

]
.

(A.1)

We then obtain the choice-specific value function in (6) of the main text.

vt(x, a)

= u(x, a) + βSa(x)(− logpt+1,K + vt+1,K) + β
[
− log pt+1,K(J) + vt+1,K(J)

]
.

Proof of equation (11). We now focus on the value function corresponding to choice

a = K and ∆vt+1,K , where

∆vt,K ≡ vt,K − vt−1,K

=


vt,K(x = 1)− vt,K(J)

vt,K(x = 2)− vt,K(J)

...

vt,K(x = J − 1)− vt,K(J)

−


vt−1,K(x = 1)− vt−1,K(J)

vt−1,K(x = 2)− vt−1,K(J)

...

vt−1,K(x = J − 1)− vt−1,K(J)

 .

To further simplify each element of ∆vt,K , we take the difference of (6) for xt = x and

xt = J when a = K,

[vt(x,K)− vt(J,K)] = [u(x,K)− u(J,K)] + β
[
SK(x)− SK(J)

]
(− logpt+1,K + vt+1,K).
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Similarly, for the time period t− 1 we have

[vt−1(x,K)− vt−1(J,K)] = [u(x,K)− u(J,K)] + β
[
SK(x)− SK(J)

]
(− logpt,K + vt,K).

The difference between the two equations above is

[vt(x,K)− vt(J,K)]− [vt−1(x,K)− vt−1(J,K)] = β
[
SK(x)− SK(J)

]
(−∆ logpt+1,K + ∆vt+1,K)

Rewrite it in matrix form, we obtain equation (11),

∆vt,K = vt,K − vt−1,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K). (A.2)

Identification of Si−SK and S̃K. The DDC model is characterized by the following

two sets of equations: The choice probabilities are associated with subjective expectations

and value functions through

∆ξt,i,K = β[Si − SK ][−∆ logpt+1,K + ∆vt+1,K ], (A.3)

and the choice-specific value function evolves according to

∆vt,K = βS̃K(−∆ logpt+1,K + ∆vt+1,K). (A.4)

By eliminating the unknown value functions in these two equations, we are able to find

the direct relationship between the observed choice probabilities and the subjective expec-

tations. Specifically, the full rank condition in Assumption 4 guarantees the invertibility

of Si − SK , then from (A.3), we have

[Si − SK ]−1∆ξt,i,K = β(−∆ logpt+1,K + ∆vt+1,K). (A.5)

Applying the equation above to the period of t− 1,

[Si − SK ]−1∆ξt−1,i,K = β(−∆ logpt,K + ∆vt,K)

= β[−∆ logpt,K + βS̃K(−∆ logpt+1,K + ∆vt+1,K)],

44



where the term β(−∆ logpt+1,K +∆vt+1,K) can be replaced by the left-hand-side of (A.5),

S̃K [Si − SK ]−1∆ξt,i,K − β−1[Si − SK ]−1∆ξt−1,i,K = ∆ logpt,K . (A.6)

That is

[S̃K [Si − SK ]−1 − β−1[Si − SK ]−1]

(
∆ξt,i,K

∆ξt−1,i,K

)
= ∆ logpt,K . (A.7)

This equation implies that the choice probabilities may be directly associated with the

subjective expectations. In the equation above, both S̃K and [Si − SK ]−1 contain (J −
1)× (J − 1) unknowns. For a given t, the matrix equation contains J − 1 equations. To

identify S̃K and Si−SK , we augment (A.7) by varying time to introduce more equations.

Suppose that we observe data for 2J − 2 periods. Define a (2J − 2)× (2J − 2) matrix

∆ξi,K ≡
[ ∆ξt1,i,K ∆ξt2,i,K ... ∆ξt2J−2,i,K

∆ξt1−1,i,K ∆ξt2−1,i,K ... ∆ξt2J−3,i,K

]
(A.8)

and a (J − 1)× (2J − 2) matrix

∆ logpK ≡
[
∆ logpt1,K ,∆ logpt2,K , ...,∆ logpt2J−2,K

]
, (A.9)

where both ∆ξi,K and ∆ logpK are observed directly from data. Now (J − 1)× (2J − 2)

equations are available, and we organize them into a matrix equation,[
S̃K [Si − SK ]−1, −β−1[Si − SK ]−1

]
∆ξi,K = ∆ logpK , (A.10)

where
[
S̃K [Si−SK ]−1, −β−1[Si−SK ]−1

]
is a matrix of dimension of (J−1)× (2J−2).

Under Assumption 5A, [Si − SK ] and S̃K are solved with a closed-form expression

with a known β as follows:[
S̃K [Si − SK ]−1, −β−1[Si − SK ]−1

]
= ∆ logpK [∆ξi,K ]−1, (A.11)

Given the definition of S̃K , we have identified SK(x) − SK(J) for x ∈ {1, 2, ..., J − 1}.
Assumption 6A normalizes SK(J) to a known distribution, and therefore, we fully re-

cover SK(x) for x ∈ {1, 2, ..., J}, i.e., SK . Therefore, all the subjective probabilities Si
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are identified from Si − SK with a closed-form. QED.

A.2 Proof of Corollary 1

Proof of equation (19) Considering u(x,K) = 0, we can derive the following expres-

sion of agents’ choice-specific value function for choice K,

vt(x,K) = β
∑J

x′=1

[
− log pt+1,K(x′) + vt+1,K(x′)

]
s(x′|x,K)

= βS†K(x)[− logp†t+1,K + v†t+1,K ]

= βS†K(x)(− logp†t+1,K) + [βS†K(x)]2[− logp†t+2,K + v†t+2,K ]

...

=
T∑

τ=t+1

[−βS†K(x)]τ−t(logp†τ,K) + [βS†K(x)]T−tv†T,K , t 6= T. (A.12)

Similarly, for all other choices a 6= K,

vt(x, a) = u(x, a) + βS†a(x)[− logp†t+1,K + v†t+1,K ]

= log pt,a − log pt,K + vt(x,K).

Applying both the iterated expression in (A.12) and the Hotz-Miller relationship, we

obtain

u(x, a)− β[S†a(x)− S†K(x)]
∑T

τ=t+2
[−βS†K(x)]τ−t−1(logp†τ,K)

= log pt,a(x)− log pt,K(x) + β[S†a(x)− S†K(x)] logp†t+1,K + [βS†K(x)]T−t−1v†T,K .

(A.13)

The equation above builds up a link between an agent’s preference and the value at the

last period, and it holds for t = 1, 2, · · ·T − 2, x = 1, 2, · · · , J . Using the matrix notation
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below,

ua ≡


u(x = 1, a)

u(x = 2, a)
...

u(x = J, a)

 ;S†a =


S†a(x = 1)

S†a(x = 2)
...

S†a(x = J)

 , a ∈ A.

we obtain a matrix form of (A.13)

ua − β(S†a − S
†
K)
∑T

τ=t+2
(−βS†K)τ−t−1(logp†τ,K)

= log p†t,a − logp†t,K + β(S†a − S
†
K) logp†t+1,K + (βS†K)T−t−1v†T,K . (A.14)

Consider another time period t + t′ ∈ {2, · · · , T − 2} with t′ ∈ {1, 2, · · · , T − 3}, the

equation above is

ua − β(S†a − S
†
K)
∑T

τ=t+t′+2
(−βS†K)τ−t−t

′−1(logp†τ,K)

= log p†t+t′,a − logp†t+t′,K + β(S†a − S
†
K) logp†t+t′+1,K + (βS†K)T−t−t

′−1v†T,K .(A.15)

Eliminating the unknown value v†T,K from the two equations above, we obtain

[
I − (βS†K)t

′]
ua

= β(S†a − S
†
K)
[ T∑
τ=t+2

(−βS†K)τ−t−1(logp†τ,K)−
T∑

τ=t+t′+2

(−βS†K)τ−t−t
′−1(logp†τ,K)

]
+ logp†t,a − logp†t,K + β(S†a − S

†
K) logp†t+1,K

−(βS+
k )t

′
[

logp†t+t′,a − logp†t+t′,K + β(S†a − S
†
K) logp†t+t′+1,K

]
. (A.16)

It is clear from (A.16) that ua is identified if I − (βS†K)t
′

is invertible since all the terms

on the right-hand-side of this equation are known. Recall that S†K is a Markov transition

matrix with each row summing up to one. Therefore all the eigenvalues of S†K have

absolute values being less than or equal to 1, and 1 is an eigenvalue of S†K (see e.g., Levin

and Peres (2017), p.160). Let us denote the J eigenvalues of S†K as λ1, · · · , λJ such that

0 ≤ |λ1| ≤ |λ2| ≤ · · · |λJ | = 1. (A.17)
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For any discount factor β ∈ (0, 1) and t′ ∈ {1, 2, · · · , T − 3}, the eigenvalues of (βS†K)t
′

are (βλ1)
t′ , · · · , (βλJ)t

′
. From (A.17), we have

0 ≤ |(βλ1)t
′| ≤ · · · |(βλJ)t

′ | < 1. (A.18)

The eigenvalues of matrix I − (βS†K)t
′

are 1 − (βλ1)
t′ , · · · , 1 − (βλJ)t

′
. It is clear from

(A.18) that all the eigenvalues of I − (βS†K)t
′

are nonzero. Therefore, I − (βS†K)t
′

is an

invertible matrix, and ua can be identified by multiplying
[
I − (βS†K)t

′]−1
from left to

the right-hand-side of (A.16). This proof holds for all a ∈ A and a 6= K. QED.

A.3 Proof of Theorem 4

The first-order Markov process {at, xt, τ} indiciates

Pr(at+, xt+1, at, xt, at−) =
∑H

τ=1
Pr(at+|xt+1, τ) Pr(xt+1, at|xt, τ) Pr(τ, xt, at−),

(A.19)

with at+ = h(at+l, ..., at+1) and at− = h(at−1, ..., at−l).

Note that we have reduced the support of at+l, ..., at+1 to that of τ by the mapping

h(·). We define the following matrices for given xt, xt+1 and at = k,

Mat+,xt+1,k,xt,at− =
[

Pr(at+ = i, xt+1, k, xt, at− = j)
]
i,j

Mat+,xt+1,τ =
[

Pr(at+ = i|xt+1, τ = j)
]
i,j

Mτ,xt,at− =
[

Pr(τ = i, xt, at− = j)
]
i,j

Dxt+1,k|xt,τ = diag
{

Pr(xt+1, k|xt, τ = 1), ...,Pr(xt+1, k|xt, τ = L)
}

Dk|xt+1,xt,τ = diag
{

Pr(k|xt+1, xt, τ = 1), ...,Pr(k|xt+1, xt, τ = L)
}
.

(A.20)

Equation (A.19) is equivalent to

Mat+,xt+1,k,xt,at− = Mat+|xt+1,τDxt+1,k|xt,τMτ,xt,at− . (A.21)
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Similarly, we have

Mat+,xt+1,xt,at− = Mat+|xt+1,τDxt+1|xtMτ,xt,at− , (A.22)

where the matrices are defined analogously to those in (A.20) based on the following

equality

∑K

at=1
Pr(at+, xt+1, at, xt, at−)

=
∑L

τ=1
Pr(at+|xt+1, τ)

[∑K

at=1
Pr(xt+1, at|xt, τ)

]
Pr(τ, xt, at−)

=
∑L

τ=1
Pr(at+|xt+1, τ) Pr(xt+1|xt, τ) Pr(τ, xt, at−).

Assumption 12 implies that matrices Mat+|xt+1,τ and Mτ,xt,at− are both invertible. We may

then consider

Mat+,xt+1,k,xt,at−M
−1
at+,xt+1,xt,at− = Mat+|xt+1,τDxt+1,k|xt,τD

−1
xt+1|xtM

−1
at+,xt+1,τ

≡ Mat+|xt+1,τDk|xt+1,xt,τM
−1
at+,xt+1,τ

(A.23)

This equation above shows an eigenvalue-eigenvector decomposition of an observed matrix

on the left-hand side. Assumptions 13 and 14 guarantee that this decomposition is unique.

Therefore, the eigenvector matrix Mat+|xt+1,τ , i.e., Pr(at+|xt+1, τ) is identified. We can

recover the matrix Mτ,xt,at− from (A.22). The distribution f(xt+1, at|xt, τ), and therefore

Pr(at|xt, τ) = pt(at|xt, τ) by integrate out xt+1, can then identified from equation (A.19)

due to the invertibility of matrix Mat+,xt+1,τ . QED.
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B Tables

Table 1: Finite Horizon: normalization of S1(x3) (DGP: rational expectations)

Estimates with subjective beliefs Estimates with rational expectation
True N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1 -2 -2.04 -2.01 -2.01 -2.01 -2.01 -2.00 -2.00 -2.01
(0.23) (0.16) (0.13) (0.08) (0.16) (0.12) (0.09) (0.06)

u2 0.4 0.38 0.39 0.40 0.41 0.40 0.40 0.41 0.40
(0.24) (0.16) (0.12) (0.08) (0.18) (0.13) (0.11) (0.06)

u3 2.1 2.16 2.16 2.13 2.12 2.10 2.10 2.10 2.10
(0.36) (0.25) (0.18) (0.11) (0.25) (0.18) (0.12) (0.08)

S0(1,1) 0.9 0.85 0.85 0.85 0.86
(0.12) (0.08) (0.08) (0.04)

S0(2,1) 0.07 0.22 0.24 0.21 0.22
(0.21) (0.21) (0.20) (0.18)

S0(3,1) 0.03 0.03 0.03 0.03 0.03
(0.04) (0.04) (0.03) (0.03)

S0(1,2) 0.03 0.10 0.11 0.10 0.08
(0.14) (0.11) (0.10) (0.07)

S0(2,2) 0.87 0.56 0.52 0.57 0.57
(0.43) (0.41) (0.39) (0.37)

S0(3,2) 0.06 0.07 0.06 0.06 0.06
(0.11) (0.08) (0.07) (0.05)

S1(1,1) 0.2 0.25 0.23 0.24 0.22
(0.22) (0.22) (0.21) (0.18)

S1(2,1) 0.5 0.39 0.38 0.40 0.43
(0.21) (0.19) (0.16) (0.14)

S1(1,2) 0.6 0.50 0.54 0.52 0.57
(0.45) (0.43) (0.41) (0.36)

S1(2,2) 0.2 0.34 0.35 0.33 0.29
(0.35) (0.33) (0.29) (0.24)
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Table 2: Finite Horizon: normalization of S1(x3)(DGP: subjective beliefs)

Estimates with subjective beliefs Estimates with rational expectation
True N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1 -2 -2.02 -2.00 -2.00 -2.00 -2.55 -2.54 -2.54 -2.53
(0.21) (0.15) (0.12) (0.07) (0.19) (0.15) (0.11) (0.07)

u2 0.4 0.43 0.40 0.40 0.40 0.25 0.24 0.25 0.24
(0.27) (0.19) (0.13) (0.09) (0.20) (0.14) (0.11) (0.06)

u3 2.1 2.22 2.20 2.15 2.13 2.54 2.56 2.56 2.56
(0.59) (0.37) (0.26) (0.16) (0.30) (0.21) (0.15) (0.10)

S0(1,1) 0.7 0.55 0.57 0.58 0.60
(0.23) (0.21) (0.18) (0.15)

S0(2,1) 0.2 0.29 0.29 0.30 0.33
(0.20) (0.19) (0.17) (0.15)

S0(3,1) 0.1 0.11 0.09 0.10 0.10
(0.15) (0.11) (0.10) (0.09)

S0(1,2) 0.1 0.28 0.26 0.25 0.23
(0.29) (0.28) (0.25) (0.23)

S0(2,2) 0.6 0.43 0.42 0.39 0.35
(0.41) (0.38) (0.35) (0.31)

S0(3,2) 0.19 0.20 0.19 0.17 0.18
(0.26) (0.19) (0.17) (0.14)

S1(1,1) 0.2 0.26 0.26 0.27 0.26
(0.22) (0.21) (0.21) (0.20)

S1(2,1) 0.5 0.38 0.36 0.36 0.36
( 0.26) (0.22) (0.20) (0.18)

S1(1,2) 0.6 0.48 0.48 0.45 0.47
(0.43) (0.42) (0.41) (0.39)

S1(2,2) 0.2 0.38 0.39 0.40 0.38
(0.33) (0.33) (0.32) (0.29)
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Table 3: Finite Horizon: normalization of SK (DGP: rational expectations)

Estimates with subjective beliefs Estimates with rational expectation
True N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1 -2 -2.01 -2.00 -2.01 -2.01 -2.01 -2.00 -2.00 -2.01
(0.22) (0.15) (0.12) (0.07) (0.16) (0.12) (0.09) (0.06)

u2 0.4 0.42 0.42 0.42 0.41 0.40 0.40 0.41 0.40
(0.18) (0.14) (0.12) (0.07) (0.18) (0.13) (0.11) (0.06)

u3 2.1 2.16 2.13 2.13 2.12 2.10 2.10 2.10 2.10
(0.34) (0.24) (0.18) (0.11) (0.25) (0.18) (0.12) (0.08)

S0(1,1) 0.9 0.84 0.85 0.86 0.87
(0.13) (0.08) (0.08) (0.05)

S0(2,1) 0.07 0.21 0.18 0.15 0.11
(0.21) (0.20) (0.18) (0.12)

S0(3,1) 0.03 0.03 0.03 0.03 0.04
(0.05) (0.05) (0.04) (0.04)

S0(1,2) 0.03 0.12 0.10 0.10 0.09
(0.14) (0.11) (0.10) (0.08)

S0(2,2) 0.87 0.59 0.65 0.70 0.78
(0.43) (0.39) (0.36) (0.24)

S0(3,2) 0.06 0.07 0.06 0.06 0.05
(0.12) (0.08) (0.08) (0.06)

Table 4: Finite Horizon: normalization of SK (DGP: subjective beliefs)

Estimates with subjective beliefs Estimates with rational expectation
True N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1 -2 -2.00 -1.99 -2.00 -2.00 -2.55 -2.54 -2.54 -2.53
(0.22) (0.16) (0.13) (0.08) (0.19) (0.15) (0.11) (0.07)

u2 0.4 0.39 0.40 0.40 0.40 0.25 0.24 0.25 0.24
(0.20) (0.14) (0.12) (0.08) (0.20) (0.14) (0.11) (0.06)

u3 2.1 2.20 2.14 2.12 2.11 2.54 2.56 2.56 2.56
(0.40) (0.27) (0.19) (0.12) (0.30) (0.21) (0.15) (0.10)

S0(1,1) 0.7 0.53 0.55 0.56 0.59
(0.25) (0.22) (0.22) (0.18)

S0(2,1) 0.2 0.24 0.24 0.22 0.22
(0.20) (0.18) (0.15) (0.11)

S0(3,1) 0.1 0.10 0.10 0.11 0.11
(0.12) (0.11) (0.10) (0.09)

S0(1,2) 0.1 0.34 0.32 0.31 0.27
(0.33) (0.31) (0.30) (0.26)

S0(2,2) 0.6 0.52 0.52 0.55 0.56
(0.40) (0.35) (0.31) (0.22)

S0(3,2) 0.19 0.18 0.19 0.17 0.18
(0.22) (0.18) (0.16) (0.14)
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Table 5: Infinite Horizon: normalization of Sx
1 (DGP: rational expectations)

Estimates with Subjective beliefs Estimates with Rational Expectation
TRUE N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1(x1) 0.1 0.08 0.09 0.09 0.09 0.10 0.11 0.10 0.10
(0.16) (0.11) (0.08) (0.06) (0.17) (0.12) (0.09) (0.06)

u1(x2) 0.2 0.21 0.21 0.21 0.20 0.20 0.20 0.20 0.20
(0.18) (0.12) (0.10) (0.07) (0.18) (0.13) (0.10) (0.06)

u2(x1) 0.2 0.16 0.16 0.17 0.18 0.20 0.20 0.20 0.20
(0.09) (0.08) (0.07) (0.06) (0.06) (0.05) (0.03) (0.02)

u2(x2) -0.2 -0.18 -0.17 -0.19 -0.20 -0.20 -0.20 -0.20 -0.20
(0.10) (0.08) (0.08) (0.07) (0.07) (0.05) (0.04) (0.02)

S0(1,1) 0.6 0.84 0.81 0.77 0.71
(0.33) (0.33) (0.36) (0.36)

S0(2,1) 0.45 0.30 0.29 0.37 0.44
(0.44) (0.42) (0.44) (0.43)

Table 6: Infinite Horizon: normalization of Sx
1 (DGP: subjective beliefs)

Estimates with Subjective beliefs Estimates with Rational Expectation
TRUE N=300 N=600 N=1000 N=2500 N=300 N=600 N=1000 N=2500

u1(x1) 0.1 0.09 0.09 0.09 0.10 0.11 0.11 0.11 0.11
(0.16) (0.11) (0.09) (0.06) (0.17) (0.12) (0.09) (0.06)

u1(x2) 0.2 0.21 0.19 0.19 0.19 0.19 0.18 0.19 0.19
(0.17) (0.13) (0.10) (0.07) (0.17) (0.13) (0.10) (0.06)

u2(x1) 0.2 0.18 0.19 0.19 0.19 0.22 0.22 0.22 0.22
(0.09) (0.08) (0.07) (0.06) (0.06) (0.04) (0.03) (0.02)

u2(x2) -0.2 -0.20 -0.20 -0.21 -0.21 -0.23 -0.22 -0.23 -0.23
(0.10) ( 0.09) (0.09) (0.08) (0.06) (0.05) (0.04) (0.02)

S0(1,1) 0.7 0.81 0.77 0.76 0.72
(0.33) (0.35) (0.34) (0.31)

S0(2,1) 0.3 0.28 0.33 0.36 0.35
(0.42) (0.43) (0.43) (0.40)

Table 7: Distribution of observations by number of years of employment data

# years 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# obs 97 90 114 101 92 97 98 103 81 109 97 86 97 91 65 74 275
cum % 0.05 0.11 0.17 0.23 0.28 0.33 0.39 0.45 0.49 0.56 0.61 0.66 0.71 0.77 0.80 0.84 1.00
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Table 8: Descriptive Statistics

Sample size Mean Std. Dev. 5-th pctile median 95-th pctile
age 23, 225 48.77 5.97 40 48 59
education† 23, 225 3.96 1.86 1 4 7
annual income (10K $) 23, 225 5.76 6.00 0.67 4.81 13.31
employment 23, 225 .58 .49 0 1 1

† Education is classified into nine groups. 1: 0-5 grades; 2: 6-8 grades; 3: some high school;
4: completed high school; 5: 12 grades plus non-academic training; 6: college, no degree; 7:
college, bachelors degree; 8: college, advanced or professional degree, some graduate work;
9: not reported.

Table 9: Estimates of Income Transitions and Preference Parameters

transition a = 0 transition a = 1

low medium high low medium high
preference

param.

sub. exp.
low 0.394 0.355 0.252 0.565 0.283 0.152 -0.096

(0.050) (0.038) (0.019) (0.118) (0.103) (0.028) (0.122)
medium 0.243 0.556 0.201 0.330 0.432 0.238 0.572

(0.039) (0.064) (0.027) (0.054) (0.091) (0.038) (0.065)
high 0.450 0.305 0.245 — — — 0.443

(0.072) (0.043) (0.031) — — — (0.163)

rational exp.
low 0.747 0.250 0.002 0.752 0.247 0.002 -0.161

(0.015) (0.015) (0.001) (0.017) (0.016) (0.001) (0.123)
medium 0.069 0.921 0.011 0.039 0.947 0.014 0.502

(0.004) (0.004) (0.001) (0.002) (0.003) (0.002) (0.051)
high 0.007 0.237 0.756 0.002 0.297 0.701 0.633

(0.005) (0.035) (0.036) (0.002) (0.035) (0.035) (0.243)

Table 10: Simulated Conditional Choice Probabilities

sub. exp. rational exp. percentage diff.
x = 1 x = 2 x = 3 x = 1 x = 2 x = 3 x = 1 x = 2 x = 3

t = 55 0.45885 0.63041 0.64955 0.47511 0.64550 0.61166 -3.42% -2.34% 6.19%
t = 56 0.45892 0.63040 0.64931 0.47519 0.64502 0.61162 -3.42% -2.27% 6.16%
t = 57 0.45913 0.63039 0.64856 0.47530 0.64431 0.61146 -3.40% -2.16% 6.07%
t = 58 0.45989 0.63047 0.64612 0.47546 0.64325 0.61109 -3.27% -1.99% 5.73%
t = 59 0.46286 0.63147 0.63800 0.47571 0.64165 0.61035 -2.70% -1.59% 4.53%
t = 60 0.47608 0.63926 0.60894 0.47608 0.63926 0.60894 0.00% 0.00% 0.00%
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