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Abstract

This paper deals with the identification and estimation of dynamic games when players’
beliefs about other players’ actions are biased, i.e., beliefs do not represent the probability
distribution of the actual behavior of other players conditional on the information available.
First, we show that an exclusion restriction, typically used to identify empirical games, provides
testable nonparametric restrictions of the null hypothesis of equilibrium beliefs in dynamic
games with either finite or infinite horizon. We use this result to construct a simple Likelihood
Ratio test of equilibrium beliefs. Second, we prove that this exclusion restriction, together
with consistent estimates of beliefs at two points in the support of the variable involved in
the exclusion restriction, is suffi cient for nonparametric point-identification of players’ belief
functions as well as useful functions of payoffs. Third, we propose a simple two-step estimation
method. We illustrate our model and methods using both Monte Carlo experiments and an
empirical application of a dynamic game of store location by retail chains. The key conditions
for the identification of beliefs and payoffs in our application are the following: (a) the previous
year’s network of stores of the competitor does not have a direct effect on the profit of a firm,
but the firm’s own network of stores at previous year does affect its profit because the existence
of sunk entry costs and economies of density in these costs; and (b) firms’beliefs are unbiased
in those markets that are close, in a geographic sense, to the opponent’s network of stores,
though beliefs are unrestricted, and potentially biased, for unexplored markets which are farther
away from the competitors’network. Our estimates show significant evidence of biased beliefs.
Furthermore, imposing the restriction of unbiased beliefs generates a substantial attenuation
bias in the estimate of competition effects.
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1 Introduction

The principle of revealed preference (Samuelson, 1938) is a cornerstone in the empirical analysis

of decision models, either static or dynamic, single-agent problems or games. Under the principle

of revealed preference, agents maximize expected payoffs and their actions reveal information on

the structure of payoff functions. This simple but powerful concept has allowed econometricians to

use data on agents’decisions to identify important structural parameters for which there is very

limited information from other sources. Examples of parameters and functions that have been

estimated using the principle of revealed preference include, among others, consumer willingness to

pay for a product, agents’degree of risk aversion, intertemporal rates of substitution, market entry

costs, adjustment costs and switching costs, preference for a political party, or the benefits of a

merger. In the context of empirical games, where players’expected payoffs depend on their beliefs

about the behavior of other players, most applications combine the principle of revealed preference

with the assumption that players’beliefs about the behavior of other players are in equilibrium,

in the sense that these beliefs represent the probability distribution of the actual behavior of

other players conditional on the information available. The assumption of equilibrium beliefs plays

an important role in the identification and estimation of games, and as such, is a mainstay in

the empirical game literature. Equilibrium restrictions have identification power even in models

with multiple equilibria (Tamer, 2003, Aradillas-Lopez and Tamer, 2008, Bajari, Hong, and Ryan,

2010). Imposing these restrictions contributes to improved asymptotic and finite sample properties

of game estimators. Moreover, the assumption of equilibrium beliefs is very useful for evaluating

counterfactual policies in a strategic environment. Models where agents’beliefs are endogenously

determined in equilibrium not only take into account the direct effect of the new policy on agents’

behavior through their payoff functions, but also through an endogenous change in agents’beliefs.

Despite the clear benefit that the assumption of equilibrium beliefs delivers to an applied re-

searcher, there are situations and empirical applications where the assumption is not realistic and

it is of interest to relax it. There are multiple reasons why players may have biased beliefs about

the behavior of other players in a game. For instance, in games with multiple equilibria, players

can be perfectly rational in the sense that they take actions to maximize expected payoffs given

their beliefs, but they may have different beliefs about the equilibrium that has been selected. This

situation corresponds to the concept of strategic uncertainty as defined in Van Huyk, Battalio, and

Beil (1990) and Crawford and Haller (1990), and applied by Morris and Shin (2002, 2004), and

Heinemann, Nagel, and Ockenfels (2009), among others. For instance, competition in oligopoly in-

dustries is often prone to strategic uncertainty (Besanko et al., 2010). Dynamic games of oligopoly

competition are typically characterized by multiple equilibria, and the selection between two pos-

sible equilibria implies that some firms are better off but others are worse off. Firm managers do
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not have incentives to coordinate their beliefs in the same equilibrium. They can be very secretive

about their own strategies and face significant uncertainty about the strategies of their competi-

tors.1 Strategic uncertainty may also be an important consideration in the evaluation of a policy

change in a strategic environment. Suppose that to evaluate a policy change we estimate an em-

pirical game using data before and after a new policy is implemented. After the implementation

of the new policy, some players may believe that others’market behavior will continue according

to the same type of equilibrium as before the policy change, while others believe the policy change

has triggered the selection of a different type of equilibrium.2 Thus, at least for some period of

time, players’beliefs will be out of equilibrium, and imposing the restriction of equilibrium beliefs

may bias the estimates of the effects of the new policy.

While strategic uncertainty under multiple equilibria is a motivation for our study, generally

our approach fits any situation where players have limited capacity to reason, in which case it is

ideal to place no restriction on what they believe and what they believe that others believe and so

on. Indeed, studies in the literature of experimental games commonly find significant heterogeneity

in players’elicited beliefs, and that this heterogeneity is often one of the most important factors

in explaining heterogeneity in observed behavior in the laboratory.3 Imposing the assumption of

equilibrium beliefs in these applications does not seem reasonable. Interestingly, recent empirical

papers establish a significant divergence between stated or elicited beliefs and the beliefs inferred

from players’actions using, for example, revealed preference-based methods (see Costa-Gomes and

Weizsäcker, 2008, and Rutström and Wilcox, 2009). The results in our paper can be applied to

estimate beliefs and payoffs, using either observational or laboratory data, when the researcher

wants to allow for the possibility of biased beliefs but she does not have data on elicited beliefs, or

data on elicited beliefs is limited to only a few states of the world.

In this paper we study nonparametric identification, estimation, and inference in dynamic dis-

crete games of incomplete information when we assume that players are rational, in the sense that

each player takes an action that maximizes his expected payoff given some beliefs, but we relax

the assumption that these beliefs are in equilibrium. In the class of models that we consider, a

player’s belief is a probability distribution over the space of other players’actions conditional on

some state variables, or the player’s information set. Beliefs are biased, or not in equilibrium, if they

are different from the actual probability distribution of other players’actions conditional on the

state variables of the model. We consider a nonparametric specification of beliefs and treat these

probability distributions as incidental parameters that, together with the structural parameters in

payoff functions and transition probabilities, determine the stochastic process followed by players’
1See Morris and Shin (2002) for examples of models with strategic uncertainty and related experimental evidence.
2For example in a game of investment there may be high investment or low investment equilibria. Prior to the

policy change the game may be in the high investment equilibrium, and after the policy change one player believes that
this equilibrium will continue to prevail while the other player switches to behavior according to the low equilibrium.

3See Camerer (2003) and recent papers by Costa-Gomes and Weizsäcker (2008), and Palfrey and Wang (2009).
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actions. Our framework includes as a particular case games where the source of biased beliefs is

strategic uncertainty, i.e., every player has beliefs that correspond to an equilibrium of the game

but their beliefs are not ’coordinated’. However, our identification and estimation results do not

rely on this restriction and our approach is therefore not restricted to this case.

The recent literature on identification of games of incomplete information is based on two main

assumptions: (i) players’beliefs are in equilibrium such that they can be identified, or consistently

estimated, by simply using a nonparametric estimator of the distribution of players’actions condi-

tional on the state variables; and (ii) there is an exclusion restriction in the payoff function such that

there is a player-specific state variable which enters the payoff of the player and is excluded from

the payoffs of other players, but is known to other players and thus influences their beliefs (Bajari

et al., 2010, in static games of incomplete information, and Tamer, 2003, and Bajari, Hong and

Ryan, 2010, in static games of complete information). When players beliefs are not in equilibrium,

or when the exclusion restriction is not satisfied, the model is not identified.

In this context, this paper presents two main identification results. First, we show that the

exclusion restriction alone provides testable nonparametric restrictions of the null hypothesis of

equilibrium beliefs, which apply to dynamic games with either finite or infinite horizon. Under this

type of exclusion restriction, the observed behavior of a player identifies a function that depends

only on her beliefs about the behavior of other player, and not on her preferences. Under the null

hypothesis of equilibrium beliefs, this identified function of beliefs should be equal to the same

function but where we replace beliefs by the actual expected behavior of the other player. We

show that this result can be used to construct a formal test of the null hypothesis of equilibrium

beliefs, which a researcher can use before deciding whether or not to impose equilibrium restrictions

in estimation. The test statistic is a simple Likelihood Ratio of the (restricted) probability of

observing the data given equilibrium beliefs to the (unrestricted) probability of observing the data

with no assumptions about beliefs. This is the core result of our paper, and also serves to highlight

the fact that empirical games are often over-identified, as they assume equilibrium beliefs at every

point in the support.

Second, we prove that this exclusion restriction, together with consistent estimates of beliefs at

two points in the support of the player-specific state variable (i.e., the state variable that satisfies the

exclusion restriction), is suffi cient for nonparametric point-identification of players’belief functions

and useful functions of players’payoffs. We provide additional conditions under which payoffs are

fully identified. It is worth emphasizing that in deriving this result we impose no restrictions on the

evolution of beliefs, and that the result applies to games with either finite or infinite horizon. The

consistent estimates of beliefs at two points of the support may come either from an assumption

of unbiased beliefs at these points in the state space, or from data on elicited beliefs for some

values of the state variables. We also discuss four different approaches to select the values of the
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player-specific state variable where we impose the restriction of unbiased beliefs: (a) using the

test of unbiased beliefs; (b) testing for the monotonicity of beliefs and using this restriction; (c)

minimization of beliefs bias; and (d) most visited states.

Third, we propose a simple two-step non-parametric estimation method to recover beliefs and

payoffs from the data. Given that in most applications the researcher assumes a parametric spec-

ification of the payoff function, we also illustrate how one can extend the estimation method to

accommodate a parametric specification.

Finally, we illustrate our model and methods using both Monte Carlo experiments and an

empirical application of a dynamic game of store location by retail chains. We use Monte Carlo

experiments for two primary purposes. First, we study the properties of the test of equilibrium

beliefs under two different data generating processes, one where beliefs are in equilibrium (the

null is true) and one where they are not (the null is false). These experiments suggest that our

test has strong power to reject the null hypothesis when it is false, and has size close to the true

probability of type I error when the null is true. Second, we use the experiments to study the key

trade-off that a researcher faces when deciding whether or not to impose equilibrium restrictions:

the estimation bias induced by imposing equilibrium restrictions when they are not true against

the higher variance associated with ignoring equilibrium restrictions when they are true. To study

this issue, we estimate beliefs and payoffs with and without equilibrium restrictions in the same

two DGP’s that we use for assessing the test. The experiments show a significant bias when a

researcher wrongly imposes equilibrium restrictions. There is also a substantial loss in effi ciency

and an increase in finite sample bias when we do not impose equilibrium restrictions and they do

hold in the DGP. This underscores the importance of testing for equilibrium beliefs before deciding

on an estimation strategy, as it is costly to ignore equilibrium restrictions when they hold, and

costly to impose them when they do not.

To illustrate our model and methods in the context of an empirical application, we consider

a dynamic game of store location between McDonalds and Burger King. There has been very

little work on the bounded rationality of firms, as most empirical studies on bounded rationality

have concentrated on individual behavior.4 The key conditions for the identification of beliefs and

payoffs in our application are the following. The first condition is an exclusion restriction in a firm’s

profit function that establishes that the previous year’s network of stores of the competitor does

not have a direct effect on the profit of a firm, but the firm’s own network of stores at previous year

does affect its profit because of the existence of sunk entry costs and economies of density in these

costs. The second condition restricts firms’beliefs to be unbiased in those markets that are close,

in a geographic sense, to the opponent’s network of stores. However, beliefs are unrestricted, and

4An exception is the paper by Goldfarb and Xiao (2011) that studies entry decisions in the US local telephone
industry and finds significant heterogeneity in firms’beliefs about other firms’strategic behavior.

4



potentially biased, for unexplored markets which are farther away from the competitors’network.

Our estimates show significant evidence of biased beliefs for Burger King. More specifically, we find

that this firm underestimated the probability of entry of McDonalds in markets that were relatively

far away from McDonalds’network of stores. Furthermore, imposing the restriction of unbiased

beliefs generates a substantial attenuation bias in the estimate of competition effects.

This paper builds on the literature on estimation of dynamic games of incomplete information

(see Aguirregabiria and Mira, 2007, Bajari, Benkard and Levin, 2007, Pakes, Ostrovsky and Berry,

2007, and Pesendorfer and Schmidt-Dengler, 2008). All the papers in this literature assume that

the data come from a Markov Perfect Equilibrium. We relax that assumption.

Our research is also related to Aradillas-Lopez and Tamer (2008) who study the identification

power of the assumption of equilibrium beliefs in simple static games using the notion of level-k

rationality to construct informative bounds around players’behavior. In relaxing the assumption

of Nash equilibrium, they assume that players are level-k rational with respect to their beliefs about

their opponents’behavior, a concept which derives from the notion of rationalizability (Bernheim,

1984, and Pearce, 1984). Their approach is especially useful in the context of static two-player games

with binary or ordered decision variables under the condition that payoffs are supermodular in the

actions of the two players. These conditions yield a sequence of closed form bounds on players’choice

probabilities that grow tighter as the level of rationality k gets larger.5 However, the derivation

of bounds on choice probabilities in dynamic games is significantly more complicated. Even in

simple two-player binary-choice dynamic games with supermodular payoffs, the value function is

not supermodular at every value of the state variables (Aguirregabiria, 2008). As such, obtaining

bounds that shrink monotonically as the level of rationality of players increases is not possible in a

dynamic game, and the assumption of level-k rationality is of limited use. We are instead totally

agnostic about the level of players’rationality.

Our paper also complements the growing literature on the use of data on subjective expecta-

tions in microeconometric decision models, especially the contributions of Walker (2003), Manski

(2004), Delavande (2008), Van der Klaauw and Wolpin (2008), and Pantano and Zheng (2013). It

is commonly the case that data on elicited beliefs has the form of unconditional probabilities, or

probabilities that are conditional only on a strict subset of the state variables in the postulated

model. In this context, the framework that we propose in this paper can be combined with the

incomplete data on elicited beliefs in order to obtain nonparametric estimates of the complete con-

ditional probability distribution describing an individual’s beliefs. Most of these previous empirical

papers on biased beliefs consider dynamic single-agent models and beliefs about exogenous future

events. We extend that literature by looking at dynamic games and biased beliefs about other

5Other papers on the estimation of static games under rationalizability are Kline and Tamer (2012), Uetake and
Watanabe (2013), An (2010), and Gillen (2010).
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players’behavior.

The rest of the paper includes the following sections. Section 2 presents the model and basic

assumptions. In section 3, we present our identification results. Section 4 describes estimation

methods and testing procedures. Section 5 presents our Monte Carlo experiments. The empirical

application is described in section 6. We summarize and conclude in section 7.

2 Model

2.1 Basic framework

This section presents a dynamic game of incomplete information where N players make discrete

choices over T periods. We use indexes i, j ∈ {1, 2, ...N} to represent players, and the index −i to
represent all players other than i. T can be finite or infinite, and time is discrete and is indexed

by t ∈ {1, 2, ..., T}. Every period t, players simultaneously choose one out of A alternatives from

the choice set Y = {0, 1, ..., A − 1}. Let Yit ∈ Y represent the choice of player i at period t. Each
player makes this decision to maximize his expected and discounted payoff, Et(

∑T
s=0 β

sΠi,t+s),

where β ∈ (0, 1) is the discount factor, and Πit is his payoff at period t. The one-period payoff

function has the following structure:

Πit = πit(Yit,Y−it,Xt) + εit(Yit) (1)

πit(.) is a real-valued function. Y−it represents the current action of the other players. Xt is

a vector of state variables which are common knowledge for all players. εit ≡ (εit(0), εit(1), ...,

εit(A− 1)) is a vector of private information variables for firm i at period t.

The vector of common knowledge state variables is Xt, and it evolves over time according

to the transition probability function ft(Xt+1|Yt,Xt) where Yt ≡ (Y1t, Y2t, ..., YNt). The vector

of private information shocks εit is independent of Xt and independently distributed over time

and players. Without loss of generality, these private information shocks have zero mean. The

cumulative distribution function of εit is given by Git, which is strictly increasing on RA.

EXAMPLE 1: Dynamic game of market entry and exit. Consider N firms competing in a market.

Each firm sells a differentiated product. Every period, firms decide whether or not to be active in

the market. Then, incumbent firms compete in prices. Let Yit ∈ {0, 1} represent the decision of firm
i to be active in the market at period t. The profit of firm i at period t has the structure of equation

(1), Πit = πit(Yit,Y−it,Xt) + εit(Yit). We now describe the specific form of the payoff function

πit and the state variables Xt and εit. The average profit of an inactive firm, πit(0,Y−it,Xt), is

normalized to zero, such that Πit = εit(0). The profit of an active firm is πit(1,Y−it,Xt) + εit(1)

where:

πit(1,Y−it,Xt) = Ht

(
θMi − θDi

∑
j 6=i

Yjt

)
− θFCi0 − θFCi1 Zit − 1{Yit−1 = 0} θECi (2)
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The term Ht

(
θMi − θDi

∑
j 6=i Yjt

)
is the variable profit of firm i. Ht represents market size (e.g.,

market population) and it is an exogenous state variable. θMi is a parameter that represents the per

capita variable profit of firm i when the firm is a monopolist. The parameter θDi captures the effect

of the number of competing firms on the profit of firm i.6 The term θFCi0 + θFCi1 Zit is the fixed cost

of firm i, where θFCi0 and θFCi1 are parameters, and Zit is an exogenous firm-specific characteristic

affecting the fixed cost of the firm. The term 1{Yit−1 = 0} θECi represents sunk entry costs, where

1{.} is the binary indicator function and θECi is a parameter. Entry costs are paid only if the firm

was not active in the market at previous period. The vector of common knowledge state variables

of the game is Xt = (Ht, Zit, Yit−1 : i = 1, 2, ..., N). �

Most previous literature on estimation of dynamic discrete games assumes that the data comes

from a Markov Perfect Equilibrium (MPE). This equilibrium concept incorporates four main as-

sumptions.

ASSUMPTION MOD-1 (Payoff relevant state variables): Players’ strategy functions depend only

on payoff relevant state variables: Xt and εit. Also, a player’s belief about the strategy of other

players is a function of only common knowledge payoff relevant state variables, Xt. �

ASSUMPTION MOD-2 (Maximization of expected payoffs): Players are forward looking and max-

imize expected intertemporal payoffs given beliefs. �

ASSUMPTION MOD-3 (Unbiased beliefs on own future behavior): A player’s beliefs about his own

actions in the future are unbiased expectations of his actual actions in the future. �

ASSUMPTION ‘EQUIL’ (Unbiased or equilibrium beliefs on other players’ behavior): Strategy

functions are common knowledge, and players’ have rational expectations on the current and fu-

ture behavior of other players. That is, players’ beliefs about other players’ actions are unbiased

expectations of the actual actions of other players. �

First, let us examine the implications of imposing only Assumption MOD-1.7 The payoff-

relevant information set of player i is {Xt, εit}. The space of Xt is X . At period t, players observe
Xt and choose their respective actions. Let the function σit(Xt, εit) : X × RA → Y represent a
strategy function for player i at period t. Given any strategy function σit, we can define a choice

probability function Pit(y|x) that represents the probability that Yit = y conditional on Xt = x

given that player i follows strategy σit. That is,

Pit(y|x) ≡
∫

1 {σit (x, εit) = y} dGit (εit) (3)

6A more flexible specification allows for each firm j to have a different impact on the variable profit of firm i, i.e.,

Ht

(
θMi −

∑
j 6=i θ

D
ij Yjt

)
.

7Fershtman and Pakes (2012) study dynamic games where a player’s private information is serially correlated, e.g.,
time-invariant private information. In this context, the whole past history of a rival’s decisions contains information
about the ‘type’ (private information) of that rival. These authors propose a framework and a new equilibrium
concept (Experience-based equilibrium) to deal with this dimensionality problem.
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It is convenient to represent players’behavior using these Conditional Choice Probability (CCP)

functions. When the variables in Xt have a discrete support, we can represent the CCP function

Pit(.) using a finite-dimensional vector Pit ≡ {Pit(y|x) : y ∈ Y, x ∈ X} ∈ [0, 1]A|X |. Throughout

the paper we use either the function Pit(.) or the vector Pit to represent the actual behavior of

player i at period t.

Without imposing Assumption ‘Equil’(‘Equilibrium Beliefs’), a player’s beliefs about the behav-

ior of other players do not necessarily represent the actual behavior of the other players. Therefore,

we need functions other than σjt(.) and Pjt(.) to represent players i’s beliefs about the strategy

of other players. To maximize expected intertemporal payoffs at some period t, a player needs to

form beliefs about other players’behavior not only at period t but also at any other period t + s

in the future. Let B(t)i,t+s(y−i|xt+s) be the probability function that represents player i’s belief at
period t about the other players’actions at period t + s conditional on the common knowledge

state variables at that period. That is, in the beliefs function B(t)i,t+s the index t represents the time

period in which beliefs are formed, and the index t + s, with s ≥ 0, represents the time period

when the event that is the object of these beliefs occurs. In principle, this belief function may

vary with t due to players’learning and forgetting, or to other factors that cause players’beliefs

to change over time. When X is a discrete and finite space, we can represent function B(t)i,t+s(.)

using a finite-dimensional vector B
(t)
i,t+s ≡ {B

(t)
i,t+s(y−i|x)) : y−i ∈ YN−1, x ∈ X} ∈ [0, 1]A

N−1|X |.

Using this notation, Assumption ‘Equil’can be represented in vector form as B
(t)
i,t+s = Πj 6=iPj,t+s

for every player i, every t, and s ≥ 0.

The following assumption replaces the assumption of ‘Equilibrium Beliefs’and summarizes our

minimum conditions on players’beliefs.8

ASSUMPTION MOD-4: It is common knowledge that players’ private information εit is inde-

pendently distributed across players. This condition implies that a player’s beliefs should satisfy

the restriction that other players’actions are independent conditional on common knowledge state

variables: B(t)i,t+s(y−i|x) = Πj 6=i B
(t)
ij,t+s(yj |x), where B(t)ij,t+s(yj |x) represents the beliefs of player i

on the behavior of player j. �

Assumption MOD-4 can be seen as natural implication of Assumption MOD-1 and the assump-

tion that private information variables are independent across players. If a player knows that other

players’strategy functions depend only on payoff relevant state variables Xt and εit (i.e., Assump-

tion MOD-1) and that private information variables εit are independent across players, then this

8Assumptions MOD-1 and MOD-4 establish independence between players’private information in a single market.
While the model may potentially have multiple equilibria, which is a source of biased beliefs, coordination on an
equilibrium can not generate correlation in actions because behavior is conditional on the equilibrium being played.
In other words, if players are playing the same equilibrium, once we condition on that equilibrium and the state
variables, their actions remain independent. When we look at data from multiple markets, players’ actions and
beliefs can be correlated across markets. Our model with unobserved market-specific heterogeneity (section 3.2.8)
allows for this correlation.

8



player’s beliefs should satisfy the independence condition B(t)i,t+s(y−i|x) = Πj 6=i B
(t)
ij,t+s(yj |x). Note

also that assumption ‘Equil”implies assumption MOD-4 but, of course, it is substantially stronger.

Assumption MOD-4 substantially reduces the dimension of the beliefs function in games with

more than two players. For example, for a given player, and given value of X, t, and t + s, the

number of free beliefs decreases to (N − 1)(A− 1) from AN−1 − 1.

Our identification results, that we present in section 3, allow the belief functions B(t)ij,t+s to vary

freely both over t (i.e., over the period when these beliefs of player i are formed) and over t+s (i.e.,

over the period of player j’s behavior). In particular, our model and identification results allow

players to update their beliefs and learn (or not) over time t. As we explain in section 3, this does

not mean that we can identify beliefs B(t)ij,t+s at every pair of periods t and t + s with s ≥ 0. We

establish the identification of the payoff function and of contemporaneous beliefs B(t)ijt. However,

our identification results do not impose restrictions on beliefs B(t)ij,t+s for s > 0.

ASSUMPTION MOD-5: The state space X is discrete and finite, and |X | represents its dimension
or number of elements. �

For the rest of the paper, we maintain Assumptions MOD-1 to MOD-5 but we do not impose

the restriction of Equilibrium Beliefs. We assume that players are rational, in the sense that they

maximize expected and discounted payoffs given their beliefs on other players’behavior. These

assumptions are standard in the literature of empirical dynamic games and are a strict subset of the

assumptions required for Markov Perfect Equilibrium (MPE). Our departure from the literature is

that we do not impose assumption EQUIL. In this sense, we significantly relax the MPE assumption.

Our approach is agnostic about the formation of players’beliefs. Beliefs are allowed to evolve freely

over t and t+s in the DGP. Our assumptions are neither weaker nor stronger than rationalizability.

In particular, rationalizability not only imposes assumption MOD-2, i.e., players’are rational in

the sense that they maximize expected payoffs given their beliefs, but also that this rationality is

common knowledge among the players. We do not impose any restriction on common knowledge

rationality. However, rationalizability does not require assumptions MOD-3 and MOD-4.

2.2 Best response mappings

We say that a strategy function σit (and the associated CCP function Pit) is rational if for every

possible value of (Xt, εit) ∈ X × RA the action σit(Xt, εit) maximizes player i’s expected and

discounted value given his beliefs on the opponent’s strategy. Given his beliefs at period t, B
(t)
i =

{B(t)ij,t+s : s ≥ 0}, player i’s best response at period t is the optimal solution of a single-agent dynamic
programming (DP) problem. This DP problem can be described in terms of: (i) a discount factor,

β; (ii) a sequence of expected one-period payoff functions, {πB(t)i,t+s(yit+s,xt+s) + εit+s(yit+s) : s = 0,
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1, ..., T − t}, where

π
B(t)
it+s(yit+s,xt+s) ≡

∑
y−i∈YN−1

πit+s(yit+s,y−i,xt+s) B
(t)
it+s(y−i|xt+s) ; (4)

and (iii) a sequence of transition probability functions {fB(t)it+s (xt+s+1|yit+s,xt+s) : s = 0, 1, ...,

T − t}, where

f
B(t)
it+s (xt+s+1|yit+s,xt+s) ≡

∑
y−i∈YN−1

ft+s(xt+s+1|yit+s,y−i,xt+s) B(t)it+s(y−i|xt+s) (5)

Let V B(t)it+s (xt+s, εit+s) be the value function for player i’s DP problem given his beliefs at period t.

By Bellman’s principle, the sequence of value functions {V B(t)it+s : s ≥ 0} can be obtained recursively
using the following Bellman equation:

V
B(t)
it (xt, εit) = max

yit∈Y

{
v
B(t)
it (yit,xt) + εit(yit)

}
(6)

where vB(t)it (yit,xt) is the conditional choice value function

v
B(t)
it (yit,xt) ≡ π

B(t)
it (yit,xt) + β

∑
xt+1

∫
V
B(t)
it+1 (xt+1, εit+1) dGit(εit+1) f

B(t)
it (xt+1|yit,xt) (7)

Given his beliefs, the best response function of player i at period t is the optimal decision rule of

this DP problem. This best response function can be represented using the following threshold

condition:

{Yit = y} iff
{
εit(y

′)− εit(y) ≤ vB(t)it (y,xt)− vB(t)it (y′,xt) for any y′ 6= y
}

(8)

The best response probability (BRP) function is a probabilistic representation of the best re-

sponse function. More precisely, it is the best response function integrated over the distribution of

εit. In this model, the BRP function given Xt = x is:

Pr(Yit = y|x) =
∫

1
{
εit(y

′)− εit(y) ≤ vB(t)it (y,x)− vB(t)it (y′,x) for any y′ 6= y
}
dGit(εit)

= Λit

(
y; ṽ

B(t)
it (x)

)
where Λit (y; .) is the CDF of the vector {εit(y′)− εit(y) : y′ 6= y} and ṽBit (x) is the (A−1)×1 vector

of value differences {ṽB(t)it (y,x) : y = 1, 2, ..., A− 1} with ṽB(t)it (y,x) ≡ vB(t)it (y,x)− vB(t)it (0,x). For

instance, if εit(y)’s are iid Extreme Value type 1, the best response function has the well—known

logit form:

exp
{
ṽ
B(t)
it (y,x)

}
∑
y′∈Y exp

{
ṽ
B(t)
it (y′,x)

} (9)
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Therefore, under Assumptions MOD-1 to MOD-3 the actual behavior of player i, represented by

the CCP function Pit(.), satisfies the following condition:

Pit(y|x) = Λit

(
y; ṽ

B(t)
it (x)

)
(10)

This equation summarizes all the restrictions that Assumptions MOD-1 to MOD-3 impose on

players’choice probabilities. The right hand side of equation (10) is the best response function of a

rational player. The concept of Markov Perfect Equilibrium (MPE) is completed with assumption

‘Equil’ (‘Equilibrium Beliefs’). Under this assumption, players’ beliefs are in equilibrium, i.e.,

B
(t)
it+s = Πj 6=iPjt+s for every player i and every period t+ s with s ≥ 0. A MPE can be described

as a sequence of CCP vectors, {Pit : i = 1, 2, ..., N ; t = 1, 2, ..., T} such that for every player i
and time period t, we have that Pit(y|x) = Λit

(
y; ṽPit (x)

)
. In this paper, we do not impose this

equilibrium restriction.

As we mentioned in section 2.1, our model incorporates a concept of rationality in dynamic

games that is related but different to the concept of rationalizability. The notion of rationaliz-

ability, well-defined as a solution concept in static games, has no counterpart in the solution of

dynamic games. Although Pearce (1984) provides an extension of the notion of rationalizability

in static games to extensive form games, two problems with this notion exist. First, the ratio-

nalizable outcome may not be a sequential equilibrium (see the example on page 1044 of Pearce,

1984). Second, as shown by Battigalli (1997, page 44), in some extensive form games, allowing

for the possibility that rationality is not common knowledge provides an incentive for players to

strategically manipulate the beliefs of other players.

There are also substantial computational problems in the implementation of rationalizability

in dynamic games. Aradillas-Lopez and Tamer (2008) consider a static, two-player, binary-choice

game of incomplete information that is a specific case of our framework. Under the assumption

that players’payoffs are supermodular (or submodular) in players’decisions, they derive bounds

around players’conditional choice probabilities that are robust to the values of players’beliefs when

they are level-k rational, and show that the bounds become tighter as k increases. To extend this

approach to dynamic games, one needs to calculate lower and upper bounds of choice probabilities

with respect to beliefs not only on the opponents’current decisions but also on their decisions in the

future. In general, intermtemporal value functions are not supermodular or submodular in players’

decisions at every state, even in the simpler dynamic games. This complicates very substantially

the computation of these bounds. We discuss this issue in more detail in the appendix.
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3 Identification

3.1 Conditions on Data Generating Process

Suppose that the researcher has panel data with realizations of the game over multiple geographic

locations and time periods.9 We use the letter m to index locations. The researcher observes a

random sample of M locations with information on {yimt, xmt} for every player i ∈ {1, 2, ..., N}
over periods t ∈ {1, 2, ..., Tdata}, where Tdata denotes the number of periods observed in the data.
We emphasize here that the researcher may not observe all the periods in the model, which itself can

be finite or infinite horizon. That is, in general we have that Tdata ≤ T ≤ ∞, and our identification
results apply to both Tdata = T and Tdata < T .

We assume that Tdata is small and the number of local markets,M , is large. For the identification

results in this section we assume that M is infinite. We first study identification in a model where

the only unobservable variables for the researcher are the private information shocks {εimt}, which
are assumed to be independently and identically distributed across players, markets, and over time.

We relax this assumption in section 3.2.7 where we allow for time-invariant market-specific state

variables that are common knowledge to all the players but unobservable to the researcher.

We want to use this sample to estimate the structural ‘parameters’or functions of the model:

i.e., payoffs {πit, β}; transition probabilities {ft}; distribution of unobservables {Λit}; and beliefs
{B(t)it+s} for i ∈ {1, 2, ..., N} and t ∈ {1, 2, ..., Tdata}. Beliefs are allowed to evolve arbitrarily with t
and t+s in the DGP. For primitives other than players’beliefs, we make some assumptions that are

standard in previous research on identification of static games and of dynamic structural models

with rational or equilibrium beliefs.10 We assume that the distribution of the unobservables, Λit,

is known to the researcher up to a scale parameter. We study identification of the payoff functions

πit up to scale, but for notational convenience we omit the scale parameter.11 Following the

standard approach in dynamic decision models, we assume that the discount factor, β, is known to

the researcher. Finally, the transition probability functions {ft} are nonparametrically identified.
Therefore, we concentrate on the identification of the payoff functions πit and the belief functions

B
(t)
it+s and assume that {ft,Λit, β} are known.
Let P0

imt be the vector of CCPs with the true (population) conditional probabilities Pr(Yimt =

y|i,m, t,Xmt = x) for player i in market m at period t. Similarly, let B
(t)0
im be the vector of

probabilities with the true values of player i’s beliefs in market m at period t about behavior in all

future periods, i.e., B(t)0
im ≡ {B

(t)0
im,t+s : s ≥ 0}. Finally, let π0 ≡ {π0it : i = 1, 2; t = 1, 2, ..., T} be the

true payoff functions in the population. Assumption ID-1 summarizes our conditions on the Data

9 In the context of empirical applications of games in IO, a geographic location is a local market.
10See Bajari and Hong (2005), or Bajari et al (2010), among others.
11Aguirregabiria (2010) and Norets and Tang (2014) provide conditions for the nonparametric identification of the

distribution of the unobservables in single-agent binary-choice dynamic structural models. Those conditions can be
applied to identify the distribution of the unobservables in our model.

12



Generating Process.

ASSUMPTION ID-1. (A) For every player i, P0
imt is his best response at period t given his beliefs

B
(t)0
im and the payoff functions π0. (B) A player has the same beliefs in two markets with the same

observable characteristics X, i.e., for every two markets m and m′ with Xm,t+s = Xm′,t+s = x, we

have that B(t)0im,t+s(y−i|x) = B
(t)0
im′,t+s(y−i|x) = B

(t)0
i,t+s(y−i|x). �

Assumption ID-1 (A) establishes that players are rational in the sense that their actual behavior

is the best response given their beliefs. Assumption ID-1 (B) is common in the literature on estima-

tion of games under the restriction of equilibrium beliefs (e.g., Bajari, Benkard, and Levin, 2007,

or Bajari et al, 2010). Note that beliefs can vary across markets according to the state variables

in Xmt. This assumption allows players to have different belief functions in different markets as

long as these markets have different values of time-invariant observable exogenous characteristics.

For instance, beliefs could be a function of “market type,”which are determined by some market

specific time-invariant observable characteristics. If the number of market types is small (more pre-

cisely, if it does not increase with M), then we can allow players’beliefs to be completely different

in each market type. In section 3.2.8, we relax Assumption ID-1(B) by introducing time-invariant

common- knowledge state variables that are unobservable to the researcher. In that extended ver-

sion of the model, players’beliefs can vary across markets that are observationally equivalent to

the researcher.

In dynamic games where beliefs are in equilibrium, Assumption ID-1 effectively allows the

researcher to identify player beliefs. Under this assumption, conditional choice probabilities are

identified, and if beliefs are in equilibrium, the belief of player i about the behavior of player j is

equal to the conditional choice probability function of player j. When beliefs are not in equilibrium,

Assumption ID-1 is not suffi cient for the identification of beliefs. However, assumption ID-1 still

implies that CCPs are identified from the data. This assumption implies that for any player i, any

period t, and any value of (y,x), we have that P 0imt(y|x) = P 0it(y|x) = Pr(Yimt = y|Xmt = x), and

this conditional probability can be estimated consistently using the M observations of {Yimt,Xmt}
in our random sample of these variables. This in turn, as we will show, is important for the

identification of beliefs themselves.

For notational simplicity, we omit the market subindex m for the rest of this section.

ASSUMPTION ID-2 (Normalization of payoff function): The one-period payoff function πit is

normalized to zero for yit = 0, i.e., πit(0,y−it,xt) = 0 for any value (y−it,xt). �

Assumption ID-2 establishes a normalization of the payoff that is commonly adopted in many

discrete choice models: the payoff to one of the choice alternatives, say alternative 0, is normalized

to zero.12 The particular form of normalization of payoffs does not affect our identification results

12As is well-known, in discrete choice models preferences can be identified only up to an affi ne transformation.

13



as long as the normalization imposes AN−1|X | restrictions on each payoff function πit.

3.2 Identification of payoff and belief functions

In this subsection we examine different types of restrictions on payoffs and beliefs that can be used

to identify dynamic games.13 The main point that we want to emphasize here is that restrictions

that apply either only to beliefs or only to payoffs are not suffi cient to identify this class of models.

For instance, the assumption of equilibrium beliefs alone can identify beliefs but it is not enough

to identify the payoff function. We also show that an exclusion restriction that has been commonly

used to identify the payoff function can be exploited to relax the assumption of equilibrium beliefs.

3.2.1 Identification of value differences from choice probabilities

Let Pit(x) be the (A − 1) × 1 vector of CCPs (Pit(1|x), ..., Pit(A − 1|x)), and let ṽ
B(t)
it (x) be the

(A− 1)× 1 vector of differential values (ṽ
B(t)
it (1,x), ..., ṽB(t)it (A− 1,x)). The model restrictions can

be represented using the best response conditions Pit(x) = Λ
(
ṽ
B(t)
it (x)

)
, where Λ(v) is the vector-

valued function (Λ(1|v), Λ(2|v), ...,Λ(A − 1|v)). Given these conditions, and our normalization

assumption ID-2, we want to identify payoffs and beliefs.

For all our identification results, a necessary first step consists of the identification of the vector

of value differences ṽ
B(t)
it (x) from the vector of CCPs Pit(x). The following Theorem, due to Hotz

and Miller (1993, Proposition 3), establishes this identification result.

THEOREM (Hotz-Miller inversion Theorem). If the distribution function Git(ε) is continuously

differentiable over the whole Euclidean space, then, for any (i, t,x), the mapping Pit(x) = Λ
(
ṽ
B(t)
it (x)

)
is invertible such that there is a one-to-one relationship between the (A − 1) × 1 vector of CCPs

Pit(x) and the (A− 1)× 1 vector of value differences ṽ
B(t)
it (x). �

Let q(P) ≡ (q(1,P), q(2,P), ..., q(A−1,P)) be the inverse mapping of Λ such that if P =Λ (v)

then v = q(P). Therefore, ṽ
B(t)
it (x) = q(Pit(x)). For instance, for the multinomial logit case with

Λ(y|v) = exp{v(y)}/
∑
y′∈Y exp{v(y′)}, the inverse function q(Pit(x)) is q(y,Pit(x)) = ln(Pit(y|x))−

ln(Pit(0|x)).

We assume the researcher knows the distribution of private information and so identification is

not fully nonparametric in nature. However, the assumption that Λ is known to the researcher can

be relaxed to achieve full nonparametric identification. This has been proved before by Aguirre-

gabiria (2010) and Norets and Tang (2014) in the context of single-agent dynamic structural models

based on previous results by Matzkin (1992) for the binary choice case, and Matzkin (1993) for the

13Some of the discussion in this section is similar in spirit to Pesendorfer and Schmidt-Dengler’s (2008) discussion
on underidentification in dynamic games. However, they take beliefs as given (they are identified from CCPs in their
setting).
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multinomial case.14 As we do not consider this to be a focus of this paper, for the sake of simplicity,

we assume throughout that the distribution Λ is known.

Given that CCPs are identified and that the distribution function Λ and the inverse mapping

q(.) are known (up to scale) to the researcher, we have that the differential values ṽ
B(t)
it (x) are

identified. Then, hereafter, we treat ṽ
B(t)
it (x) as an identified object. To underline the identification

of the value differences from inverting CCPs, we will often use q(y,Pit(x)), or with some abuse of

notation qit(y,x), instead of ṽB(t)it (y,x).

3.2.2 Identification of payoffs and beliefs without exclusion restrictions

We can represent the relationship between value differences and payoffs and beliefs using a recursive

system of linear equations. For every period t and (yi,x)∈ [Y − {0}] × X , the following equation
holds:

qit(yi,x) = B
(t)
it (x)′

[
πit(yi,x) + c̃

B(t)
it (yi,x)

]
(11)

where B
(t)
it (x), πit(yi,x), and c̃Bit (yi,x) are vectors with dimension AN−1 × 1. B

(t)
it (x) is the

vector of contemporaneous beliefs at period t, {B(t)it (y−i|x) : y−i ∈ YN−1}; πit(yi,x) is a vector

of payoffs {πit(yi,y−i,x) : y−i ∈ YN−1}; c̃
B(t)
it (yi,x) is a vector of continuation value differences

{cB(t)it (yi,y−i,x)−cB(t)it (0,y−i,x) : y−i ∈ YN−1}, and cB(t)it (yt,xt) is the continuation value function

that provides the expected and discounted value of future payoffs given future beliefs, current state,

and current choices of all players:

c
B(t)
it (yt,xt) ≡ β

∫
V
B(t)
it+1 (xt+1, εit+1) dGit(εit+1) ft(xt+1|yt,xt) (12)

The system of equations (11) summarizes all the restrictions of the model. At first glance, this

system seems to have a recursive structure such that in a dynamic game with finite horizon and

Tdata = T one could proceed with a backwards induction argument, i.e., at the last period T , the

continuation values c̃
B(T )
iT are zero such that, under some restrictions, the observed behavior at

period T could identify payoffs and beliefs at period T ; then, given beliefs and payoffs at period

T , one could argue that the continuation values at T − 1, c̃
B(T−1)
iT−1 , are known. However, without

further restrictions on the evolution of beliefs over time, this recursive argument does not hold. For

instance, at period T − 1 the continuation values c̃
B(T−1)
iT−1 depend on beliefs formed at period T − 1

about the opponents’behavior at period T , i.e., B(T−1)i,T , but the beliefs identified from the observed

behavior at period T are beliefs formed at period T about the opponents’behavior at period T ,

i.e., B(T )i,T . In general, beliefs B
(T−1)
i,T and B(T )i,T will be different even though both are beliefs about

the behavior of other players at period T , e.g., players may learn over time.

14This identification result is based on the assumption that there is a special state variable(s) that enters additively
in the index ṽBit(X) and that has full support variation over the Euclidean space.
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A backwards induction approach to the identification of beliefs and payoffs is possible with

finite horizon, Tdata = T , and the additional restriction that beliefs are not updated over time (e.g.,

there is no learning), i.e., if we impose the restriction that, for any period t+ s, B(t)it+s is invariant

with respect to t. Our identification results do not impose this restriction.

The under-identification of dynamic games under the assumption of equilibrium beliefs but no

further restriction on payoffs has been noted and studied in previous papers such as Aguirregabiria

and Mira (2002), Pesendorfer and Schmidt-Dengler (2003), and Bajari et al. (2010), who propose

different versions of the exclusion restriction in Assumption ID-3(i) below to deal with this iden-

tification problem. Given this, it is not surprising that the model is not identified when we leave

beliefs unrestricted. Table 1 formally presents the number of parameters, restrictions, and over-

or under- identifying restrictions when beliefs are unrestricted (column A) and when beliefs are

restricted to be unbiased (column B). As a simple example, consider a binary choice game with two

players. For player i at period t, there are 2 payoff functions (one for each choice of j), one belief

and one continuation value difference to identify for each value of X, for a total of 4|X | unknown
parameters. As there are only |X | restrictions implied by players’behavior in the system of equa-

tions (11), the model is clearly underidentified without equilibrium beliefs. Assuming equilibrium

beliefs adds only |X | further restrictions, and the model is still underidentified.

3.2.3 Identification with exclusion restrictions

Assumption ID-3 presents nonparametric restrictions on the payoff function that, combined with

the assumption of equilibrium beliefs, are typically used for identification in games with equilibrium

beliefs (e.g., Bajari et al., 2010).

ASSUMPTION ID-3 (Exclusion Restriction): The vector of state variables Xt can be partitioned

into two subvectors, Xt = (St,Wt). The vectors St and Wt ∈ W satisfy the following conditions:

(i) St = (S1t, S2t, ..., SNt) ∈ SN where Sit ∈ S represents state variables that enter into
the payoff function of player i but not the payoff function of any of the other players.

πit (Yit,Y−it, Sit,S−it,Wt) = πit
(
Yit,Y−it, Sit,S

′
−it,Wt

)
for any S′−it 6= S−it (13)

(ii) The number of states in the support set S is greater or equal than the number of
actions A, i.e., |S| ≥ A.
(iii) The joint distribution of (Sit,S−it,Wt), over the population of M markets where

we observe these variables, has a strictly positive probability at every point in the joint

support set SN ×W.
(iv) The transition probability of the state variable Sit is such that the value of Si,t+1

does not depend on (Sit,S−it) once we condition on Yit and Wt, i.e., Pr(Si,t+1|Yit,St,Wt) =

Pr(Si,t+1|Yit,Wt). �
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The exclusion restriction in assumptions ID-3(i)-(ii) appears naturally in many applications

of dynamic games of oligopoly competition in Industrial Organization. The incumbent status,

capacity, capital stock, or product quality of a firm at period t− 1 are state variables that enter in

the firm’s payoff function at period t because there are investment and adjustment costs that depend

on these lagged variables. The firm’s payoff function at period t depends also on the competitors’

values of these variables at period t, but it does not depend on the competitors’values of these

variables at t− 1.

Importantly, the assumption that some of the variables which enter player j’s payoff function

are excluded from player i’s payoffs does not mean that player i does not condition his behavior

on those excluded variables. Each player conditions his behavior on all the (common knowledge)

state variables that affect the payoff of a player in the game, even if these variables are excluded

from his own payoff.

Assumption ID-3(iii) is a condition on the joint cross-sectional distribution of the state variables

(Sit,S−it,Wt) over the sample of M markets where we observe these variables. Since the state

variables (Sit,S−it,Wt) follow a Markov process, we can see Assumption ID-3(iii) as a condition

on the ergodic distribution of these variables.

Assumption ID-3(iv) restricts the transition probability, or transition rule, of the state variable

Sit. An important class of models that satisfies condition (iv) is when the state variable Sit is the

lagged decision, such that the transition rule for this state variable is Si,t+1 = Yit, that trivially

satisfies condition (iv). This is an important class of models because many dynamic games of

oligopoly competition belong to this class, e.g., market entry/exit, technology adoption, and some

dynamic games of quality or capacity competition, among others. Condition (iv) rules out some

interesting models too. In Example 2, we discuss two types of dynamic games of quality competition,

one that satisfies condition (iv) and the other does not. Similarly, Example 3 presents dynamic

games of machine replacement with and without condition (iv).

EXAMPLE 2: Consider a quality ladder dynamic game (e.g., Pakes and McGuire, 1994). The

player-specific state variable Sit is the firm’s quality at previous period and it has support set

S = {0, 1, ..., |S|}. The decision variable Yit is the change in the firm’s quality at period t. The
choice set has the following restrictions: Yit ∈ {−1, 0, 1} when 0 < Sit < |S|; Yit ∈ {0, 1} when
Sit = 0; and Yit ∈ {−1, 0} when Sit = |S|. The transition rule for the quality state variable is
Sit+1 = Sit + Yit. Given this transition rule, it is clear that this model does not satisfy condition

(iv). Now, consider a different dynamic game of quality competition with the same state variable Sit

but now the decision variable Yit is the firm’s quality at period t, that has also support {0, 1, ..., |S|}.
In this model, the transition rule for quality is Sit+1 = Yit that satisfies condition (iv). To capture

the idea (implicit in the quality ladder model) that it is very costly to change the level of quality in

more than one unit per period, this model can include in the profit function a convex adjustment
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cost function AC(Yit − Sit) such that AC(0) = 0, AC(x) > 0 for |x| 6= 0, and AC ′′(x) > 0.

The quality ladder model could be seen as this model when AC(x) = ∞ for |x| > 1. When the

adjustment cost function is finite-valued, this model is not exactly the quality ladder model but it

is clear that if the adjustment cost is large enough for quality changes |x| > 1, the two models are

observationally very similar. �

EXAMPLE 3: Consider a game version of a machine replacement model of investment. In this

class of models, the firm-specific endogenous state variable Sit is the age of firm i’s machine, with

support S = {1, 2, ..., |S|}, and the decision Yit ∈ {0, 1} is a binary variable that represents replacing
the machine by a new one (if Yit = 1) or keeping the old machine (if Yit = 0). The transition rule of

the endogenous state variable is Sit+1 = max{(1−Yit) Sit+1, |S|}}, that does not satisfy condition
(iv). This standard machine replacement model assumes that there is not a market for used capital

such that a firm can choose between only two options: keep its existing machine or buy a brand

new machine. Now, consider an alternative model that assumes that there is a market for used

machines where it is possible to buy machines of any age, from age 0 to age |S|. In this model,
the decision variable Yit ∈ {0, 1, ..., |S|} represents the age of the machine that the firm chooses

at period t. The transition rule of the state variable is Sit+1 = max{Yit + 1, |S|}, that satisfies
condition (iv). The transaction costs of using the second hand market can be captured by including

an adjustment cost function AC(Yit − Sit). �

Table 2 illustrates how the exclusion restriction in assumption ID-3 reduces the degree of under-

identification. Again, consider a binary choice two player game. As explained above, without

assumption ID-3, there are a total of 4|X | parameters to identify, 2|X | from payoffs, |X | from
beliefs and |X | from continuation value differences. Under the assumption of equilibrium beliefs,

both beliefs and continuation values are identified. Using assumption ID-3, the number of unknown

payoffparameters is reduced from 2|X | = 2|S|2|W| to 2|S| |W|. Given the |X | = |S|2|W| restrictions
from observed behavior, as long as |S| ≥ 2, payoffs are also identified.

Clearly, without any restriction on beliefs, the exclusion restriction is not enough to identify

the model. However, when the number of states in the set S is strictly greater than the number of
possible actions, the restrictions implied by equilibrium conditions overidentify payoffs. We show

now that these overidentifying restrictions provide a test of the null hypothesis of unbiased beliefs.

3.2.4 Tests of equilibrium beliefs and monotonicity in beliefs

Though Assumptions ID-1 to ID-3 are not suffi cient for the identification of payoffs and beliefs,

they provide enough restrictions to test the null hypothesis of unbiased beliefs. We present here

our test in a game with two players but the test can be extended to any number of players.

There are N = 2 players, i and j, the vector of state variables X is (Si, Sj ,W), and play-

ers’actions are Yi and Yj . Let s0j be an arbitrary value in the set S of the player-specific state
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variable. And let S(a) and S(b) be two different subsets included in the set S − {s0j} such that
they satisfy two conditions: (1) each of the sets has A − 1 elements; and (2) S(a) and S(b) have
at least one element that is different. Since |S| ≥ A + 1, it is always possible to construct two

subsets that satisfy these conditions. Given these sets, we can define the (A − 1) × (A − 1) ma-

trices of contemporaneous beliefs ∆B
(a)
it (si,w) and ∆B

(b)
it (si,w), where ∆B

(a)
it (si,w) has elements

{B(t)it (yj , si, sj ,w) − B(t)it (yj , si, s
0
j ,w) : for yj ∈ Y − {0} and sj ∈ S(a)}, and ∆B

(b)
it (si,w) has the

same definition but for subset S(b). Similarly, we can define matrices∆Q
(a)
it (si,w) and∆Q

(b)
it (si,w),

with elements {qit(yi, si, sj ,w)− qit(yi, si, s
0
j , ,w) : for yi ∈ Y − {0} and sj ∈ S(a)}, and matrices

∆P
(a)
jt (si,w) and ∆P

(b)
jt (si,w), with elements {Pjt(yj |si, sj ,w)− Pjt(yj |si, s0j ,w) : for yj ∈ Y −{0}

and sj ∈ S(a)}.

PROPOSITION 1: Suppose that assumptions MOD1 to MOD5 and ID-1 to ID-3 hold. Then:

(1.1) The (A−1)×(A−1)matrix of contemporaneous beliefs ∆B
(a)
it (si,w)

[
∆B

(b)
it (si,w)

]−1
is identified from the CCPs of player i as ∆Q

(a)
it (si,w)

[
∆Q

(b)
it (si,w)

]−1
;

(1.2) Under the assumption of unbiased beliefs, ∆B
(a)
it (si,w)

[
∆B

(b)
it (si,w)

]−1
is also

identified from the CCPs of the other player, j, as ∆P
(a)
jt (si,w)

[
∆P

(b)
jt (si,w)

]−1
;

(1.3) Combining (1.1) and (1.2), the assumption of unbiased contemporaneous beliefs

for player i implies the following (A− 1)2 restrictions between CCPs:

∆Q
(a)
it (si,w)

[
∆Q

(b)
it (si,w)

]−1
−∆P

(a)
jt (si,w)

[
∆P

(b)
jt (si,w)

]−1
= 0 �

Proof. In the Appendix.

Under the conditions of Proposition 1, for every value of (Si,W) we can use player i’s CCPs to

construct (A−1)2 values that according to the model depend only on the beliefs of player i and not

on payoffs, i.e., the observed behavior of player i identifies these functions of beliefs. Of course, if we

assume that beliefs are unbiased, we know that these beliefs are equal to the choice probabilities of

the other player, and therefore we have a completely different form, with different data, to identify

these functions of beliefs. If the hypothesis of equilibrium beliefs is correct, then both approaches

should give us the same result. Therefore, the restriction provides a natural approach to test for

the null hypothesis of equilibrium or unbiased beliefs.

We describe in detail how to implement a formal test for equilibrium beliefs in section 4.3 below.

EXAMPLE 4: Suppose that the dynamic game has two players making binary choices: N = 2 and

A = 2. Then, subsets S(a) and S(b) have only one element each: S(a) = {s(a)} and S(b) = {s(b)}
with s(a) 6= s0, s(b) 6= s0, and s(a) 6= s(b). By Proposition 1, for a given selection of (s0, s(a), s(b)),

and a given value of (Si,W), the hypothesis of unbiased beliefs implies one testable restriction.
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The restriction has this form:

qit(1, si, s
(a),w)− qit(1, si, s0,w)

qit(1, si, s(b),w)− qit(1, si, s0,w)
− Pjt(1|si, s(a),w)− Pjt(1|si, s0,w)

Pjt(1|si, s(b),w)− Pjt(1|si, s0,w)
= 0 (14)

It is clear that we can estimate nonparametrically all the components of this expression and imple-

ment a test. �

In addition to knowledge of whether beliefs are in equilibrium or not, researchers can be inter-

ested in other properties of the beliefs function. In some applications, it is economically interesting

to know whether beliefs are monotone in the player-specific variable. For example, in a model of

market entry with multiple number of stores, such as our empirical application in section 6, the

beliefs function represents the probability of opening a new store. One of the player-specific state

variables is the stock of stores opened at previous periods. The beliefs function can be increasing,

decreasing, or non-monotonic in the stock of opponent’s stores depending on a firm’s beliefs about

the opponent’s degree of cannibalization and economies of density.

Suppose that the state variable Sj is ordered. Without making any further assumptions, we can

in fact test whether beliefs functions are monotone with respect to this state variable. To see this,

consider again the case with A = 2. For a given value of (Si,W) and a given selection of values

{s(1), s(2), s(3)} such that s(1) < s(2) < s(3), define:

δit(s
(1), s(2), s(3)) ≡ qit(1, si, s

(3),w)− qit(1, si, s(2),w)

qit(1, si, s(2),w)− qit(1, si, s(1),w)
(15)

By Proposition 1 we know that δit(s(1), s(2), s(3)) is identified and is a function of player i’s con-

temporaneous beliefs about player j:

δit(s
(1), s(2), s(3)) =

B
(t)
ijt(1, si, s

(3),w)−B(t)ijt(1, si, s(2),w)

B
(t)
ijt(1, si, s

(2),w)−B(t)ijt(1, si, s(1),w)
(16)

Moreover, it is clearly the case that δit(s(1), s(2), s(3)) ≥ 0 if and only if the beliefs function B(t)ijt is

monotonic (either increasing or decreasing) in Sj . Therefore, in addition to a test of equilibrium

beliefs, we also have a test of monotonicity versus non-monotonicity of the beliefs function.

Note that the identification result in Proposition 1 applies both to non-stationary dynamic mod-

els (e.g., finite horizon, time-varying payoff and/or transition probability functions) and to infinite

horizon stationary models. Suppose that the researcher is willing to assume that the primitives

of the model, other than beliefs, satisfy the stationary conditions, i.e., infinite horizon and time-

invariant payoff and transition probability functions. Then, the identification result in Proposition

1 can be used to test for convergence of beliefs to a stationary equilibrium. More specifically, the

identification result can be applied to every period t in the sample such that the researcher can check

whether the belief biases captured by the expression ∆Q
(a)
it (si,w)

[
∆Q

(b)
it (si,w)

]−1
−∆P

(a)
jt (si,w)[

∆P
(b)
jt (si,w)

]−1
decline over time or not.
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3.2.5 Identification with exclusion restrictions and partially unbiased beliefs

The following assumption presents a restriction on beliefs that is weaker than the assumption of

equilibrium beliefs and that together with assumptions ID-1 to ID-3 is suffi cient to nonparametri-

cally identify beliefs and useful functions of payoffs in the model.

ASSUMPTION ID-4: Let S(R) ⊂ S be a subset of values in the set S, with dimension |S(R)| ≡ R

that is strictly smaller than |S|.

(i) For every state x = (s,w) with sj ∈ S(R), the contemporaneous beliefs of player i on
the behavior of player j, B(t)ijt(yj |x), are known to the researcher, either because beliefs

are unbiased at these states, i.e., B(t)ijt(yj |x) = Pjt(yj |x), or because the researcher has

information on elicited beliefs at these states.

(ii) Let P
(R)
−it(si,w) be the RN−1 × AN−1 matrix with elements {P−it(y−i|si, s−i,w) :

y−i ∈ YN−1, s−i ∈ S(R)−i }. For every period t and any value of (Si,W), this matrix has

rank AN−1.

Condition (i) establishes that there are some values of the opponents’stock variables S−i for

which the researcher has direct information on beliefs, either because at these states strategic

uncertainty disappears and beliefs about opponents’choice probabilities become unbiased, or al-

ternatively, because the researcher has data on elicited beliefs for a limited number of states. Since

S(R) is a subset of the space S, it is clear that Assumption ID-4(i) is weaker than the assumption
of equilibrium beliefs, or alternatively, it is weaker than the condition of observing elicited beliefs

for every possible value of the state variables. Note that the assumption does not necessarily mean

that there is a subset of markets where beliefs are always in equilibrium. The assumption says that

there is a subset of points in the state space such that a player’s beliefs are unbiased every time

that a point in that subset is reached, in any market. As such, in two markets m1 and m2, players

may have beliefs out of equilibrium at some time period t, but the state in market m1 may transit

to a point where beliefs are unbiased at period t+ 1 while the state in market m2 does not.

Condition (ii) is needed for the rank condition of identification. A stronger but more intuitive

condition than (ii) is that P−it(y−i|x) is strictly monotonic with respect to S−i over the subset

S(R)−i . That is, the actual choice probabilities of the other players depend monotonically on the
state variables in S−i. Note that this intuition only applies to the case where S−i is a scalar

variable, as would be the case in a two player game.

EXAMPLE 5: For the dynamic game in Example 1, we have that Sit = (Zit, Yi,t−1) such that the

space S is equal to Z × Y, with Z being the space of Zit and Y is the binary set {0, 1}. Suppose
that the set S(R) consists of a pair of values {z∗, 0} and {z∗, 1}, where z∗ is a particular point in
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the support Z. Assumption ID-4 establishes that for every value of Sit we have that:

B
(t)
it (1 | Sit, Sjt = [z∗, 0]) = Pjt(1 | Sit, Sjt = [z∗, 0])

B
(t)
it (1 | Sit, Sjt = [z∗, 1]) = Pjt(1 | Sit, Sjt = [z∗, 1])

(17)

That is, when the value of Zj is z∗, player i has unbiased beliefs about the behavior of player j

whatever is the value of Sit and Yjt−1. In this example, P
(R)
−it(Sit) is the 2× 2 matrix:

P
(R)
jt (Sit) =

[
Pjt(0 | Sit, Sjt = [z∗, 0]) , Pjt(1 | Sit, Sjt = [z∗, 0])
Pjt(0 | Sit, Sjt = [z∗, 1]) , Pjt(1 | Sit, Sjt = [z∗, 1])

]
(18)

Condition (ii) on the rank of P
(R)
jt is satisfied if Pjt(1|Sit, Sjt = [z∗, 0]) 6= Pjt(1|Sit, Sjt = [z∗, 1]),

i.e., if being an incumbent in the market at previous period has a non-zero effect on the probability

of being in the market at current period. This is a very weak condition that we expect to be always

satisfied in a dynamic game of market entry and exit. �

The choice of the subset S(R) of values where we impose the restriction of unbiased beliefs
seems a potentially important modelling decision. In subsection 3.2.6 below, we discuss different

approaches for the selection of subset S(R).
Proposition 2 presents our main result on the joint identification of beliefs and payoffs. It estab-

lishes the identification of contemporaneous beliefs, B(t)ijt, and of the payoffdifferences πit (yi,y−i, sai ,w)−
πit
(
yi,y−i, sbi ,w

)
for any pair of values sai and s

b
i of the player-specific state variable Sit. Consider

the order condition of identification for payoffs and beliefs under assumptions ID-1 to ID-4. When

the number of players in the game is two, this condition becomes R ≥ A, that can be satisfied for

models where the number of states |S| is strictly greater than the number of actions A. In games
with more than two players, we have that R ≥ A is not suffi cient to guarantee the order condition.
However, if the support of the player-specific state variable |S| is large enough, then for any number
of players N and any number of actions A, there is always a value of R between A and |S| such
that the order condition for identification is satisfied. More generally, note that the order condition

can be represented as:
1− (R/|S|)

1− (A/|S|)N−1
≤ 1

N − 1
(19)

If |S| is large enough such that R/|S| is close enough to 1, then it is clear that for any value of N

and A, it is possible to find a value of R strictly smaller than |S| that satisfies this condition.

PROPOSITION 2: Suppose that assumptions MOD1 to MOD5 and ID-1 to ID-4 hold, and: (i) R

is large enough such that the order condition [1− (R/|S|)] /
[
1− (A/|S|)N−1

]
≤ (N − 1)−1 holds;

and (ii) matrix Q
(R)
it (si,w), with dimension A × RN−1 and elements {qit(yi, si, s−i,w) : yi ∈ Y,

s−i ∈ S(R)−i }, has rank equal to A. Then, for dynamic games with either finite or infinite horizon
we have that for any period t in the sample:
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(2.1) The contemporaneous beliefs functions {B(t)ijt(yj |s,w) : j 6= i} are nonparametri-
cally identified everywhere.

(2.2) Function gBit (yi,y−i, si,w) ≡ πit (yi,y−i, si,w) + c̃Bit (yi,y−i,w) is nonparametri-

cally identified everywhere.

(2.3) For any two values of Sit, say (sa, sb) the payoff difference πit(y,y−i, sa,w) −
πit(y,y−i, sb,w) is identified everywhere. �

Proof. In the Appendix.

Remark 1. The condition that the rank of Q
(R)
it (si,w) is equal to A, in condition (ii), is satisfied if

the conditional choice probability function of player i is strictly monotonic in S−i over the subset

S(R)−i . That is, the actual choice probabilities of the other players depend monotonically on the
state variables in S−i. Note that for the identification of the payoff function we need that beliefs

(or the choice probabilities of players other than i) depend monotonically on S−i over the subset

S(R)−i . And for the identification of beliefs we also need that the choice probability of the own player
i depends on S−i over the subset S(R)−i . That is, to identify beliefs we need that player i is playing
a game such that the values of the state variables of the other players affect his decision through

the effect of these variables in their beliefs. If the other players’actions do not have any effect on

the payoff of player i, then his beliefs do not have any effect on his actions and therefore his actions

cannot reveal any information about his beliefs.

Remark 2. In games with only two players, we can get identification of payoffs and beliefs by

imposing the restriction of unbiased beliefs at only R = A values of the player-specific state variable.

When the number of players increases, identification requires that we impose the restriction of

unbiased beliefs in an increasing fraction of states. For instance, in a binary choice model (A = 2)

with |S| = 10 states, the minimum value of the ratio R/|S| to achieve identification is 20% in

a model with two players, 72% with three players, 87% with four players, 93% with five players,

and so on. In the limit, as the number of players goes to infinity, identification requires that the

ratio R/|S| goes to one, i.e., in the limit we need to impose the restriction of unbiased beliefs at
every possible state. This result is quite intuitive given that, as the number of players increases,

the number of parameters in the payoff function increases exponentially according to the function

AN−1. Nevertheless, when the number of players is not too large, such as N ≤ 5, beliefs and payoff

differences are identified even when we allow beliefs to be biased in a non-negligible fraction of

states.

Remark 3. Proposition 2 emphasizes how an exclusion restriction, that is common in applications

of dynamic games, provides identification of contemporaneous beliefs and payoff differences under

very weak restrictions on players’beliefs and on their evolution over time. However, this Propo-

sition does not provide full identification of payoffs, only of payoff differences. A possible way to
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obtain full identification of payoffs is to impose one further restriction on payoffs. If, for every value

of (yi,y−i,w), one of the |S| payoff values πit (yi,y−i, si,w) is known, either through a normaliza-

tion or because the researcher has data on payoffs at these points, then payoffs are immediately

identified everywhere.15 For instance, in some applications of interest, particularly in empirical IO,

only the number of competitors taking an action, not the identity of the competitors, enters in a

player’s payoff. The number of payoff parameters is substantially reduced in such applications and

identification can be achieved even if we allow beliefs to be biased in a large fraction of states.

Also, if beliefs do not evolve over time so that B(t)ijt+s is constant with respect to t and the game

has a finite horizon, the model is identified. In such a case the researcher can use a backwards

induction argument as discussed above in Section 3.2.2. This is a very strong assumption, and we

do not consider it further here.

For the rest of the paper we focus our attention on dynamic games with two players. We use

subindexes i and j to represent the two players.

3.2.6 Where to assume unbiased beliefs?

As we mentioned above, the choice of the subset S(R) where we impose the restriction of unbiased
beliefs is a potentially important modelling decision. Here we describe three different approaches

that may help the researcher when making this modelling decision.

(a) Applying the test of equilibrium beliefs. Consider a two-player binary-choice version of the

game. We can apply the test of unbiased beliefs to any possible triple of values of the excluded

state variable, say (s
(a)
j , s

(b)
j , s

(c)
j ). If a triple passes the test (i.e., its p-value if greater than say

10%), we can select two of the values in the triple as members of the set S(R) where we impose
the restriction of unbiased beliefs. If multiple triples pass the test, then we can select two values

from the triple that has the largest p-value in the test. This approach can be simply generalized

to games with any number of players and choice alternatives.

To implement this method, especially in a case where the set of possible triples has large

cardinality, the researcher needs to account for the fact that this is a problem of multiple testing.

If decisions about the individual hypotheses are based on the unadjusted marginal p-values, pure

sampling error will eventually lead the researcher to find triples in the sample where the null

hypothesis of equilibrium beliefs can not be rejected, even if this is not true in the population.

Bonferroni’s correction is a simple and well-known approach to adjust p-values for multiple testing.

The survey paper by Romano, Shaikh, and Wolf (2010) describes recent developments based on

resampling that result in an improved ability to reject false hypotheses.

15 If s∗ is the value of S where payoffs are known, the researcher can use the identified difference πit (yi,y−i, s∗,w)−
πit (yi,y−i, si,w) to recover πit (yi,y−i, si,w) for any si, and then continue substituting in payoff differences to
recover all other payoffs.
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The effective application of this approach to select the points in the set S(R) requires an ad-
ditional condition. For the two-player binary-choice game, the DGP should be such that beliefs

are unbiased at no less than three points in the support set S. If beliefs are unbiased at only two
points, then, in general, the test of unbiased beliefs will reject the null hypothesis at any triple

and we cannot detect the points with unbiased beliefs using this approach. More generally, in a

two-player game with A choice alternatives, to detect A points with unbiased beliefs, we need that

in the DGP there are at least A+ 1 points where beliefs are unbiased.

(b) Testing for the monotonicity of beliefs and using this restriction. Suppose that the state variable

Sj is ordered and the CCP function Pjt(yj |si, sj) is strictly monotonic in this state variable. In
subsection 3.2.4 above, we showed that we can use our estimate of δq ≡ [qit(1, si, Sj = s(3))−
qit(1, si, Sj = s(2))] / [qit(1, si, Sj = s(2))− qit(1, si, Sj = s(1))] to test for the monotonicity of the

beliefs function B(t)ijt with respect to Sj , i.e., strict monotonicity implies that δq > 0. Suppose that

we cannot reject the strict monotonicity of the beliefs function. Then, if the data generating process

is such that the player-specific variable has a large support on the real line, the monotonicity of

both CCPs and beliefs implies that the CCP function Pjt and the beliefs function B
(t)
ijt converge to

each other at extreme points of the support, and it is natural to assume unbiased beliefs at these

extreme points.

(c) Minimization of the player’s beliefs bias. Every choice of the set S(R) implies a different estimate
of payoffs and of the beliefs at states within and outside the set S(R), and therefore a different
distance between the vector of player contemporaneous beliefs B

(t)
ijt and the actual CCPs of player

j, i.e.,
∥∥∥B(t)

ijt −Pjt

∥∥∥. The researcher may want to be conservative and minimize the departure of his
model with respect to the paradigm of rational expectations or unbiased beliefs. If that is the case,

the researcher can select the set S(R) to minimize a bias criterion such as the distance
∥∥∥B(t)

ijt −Pjt

∥∥∥.
In our empirical application, in section 6, we apply these arguments to justify our selection of the

points in the state space where we impose the restriction of unbiased beliefs. We should note that the

model selection methods proposed in this section can introduce a finite sample bias in our estimators

of structural parameters and our inference using those estimators. This is the well-known problem

of pre-testing (Leeb and Potscher, 2005) that is pervasive in many applications in econometrics.

The sampling error at the model selection stage is not independent of the sampling error in the

post-selection parameter estimates, and it can affect and distort the sampling distributions of these

estimates. Different authors have advocated using bootstrap methods to construct correct post-

selection inference methods. Recent work by Leeb and Potscher (2005, 2006) shows the limitations

of some of these methods. In a recent paper, Berk et al. (2013) propose a new method to perform

valid post model selection inference. Their method consists in doing simultaneous inference of the

parameter estimates for all the possible models that can be selected. This method can be applied
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to our problem.

3.2.7 Unobserved market-specific heterogeneity

In Assumption ID-1 we require that a player has the same beliefs at any two markets with the same

observable characteristics (to the econometrician). While this restriction16 is strictly weaker than

the assumption of equilibrium beliefs (which assumes common and correct beliefs across observa-

tionally equivalent markets), in some applications it can be quite restrictive and it is important to

know whether it can be relaxed, and at what cost.

We can allow for non-common beliefs across observationally identical markets by including a

common knowledge (to players) market level unobservable, say ωm. Suppose that the unobservable

variable ωm is i.i.d. across markets with a distribution that has finite support. Payoff, beliefs, and

CCP functions include variable ω as an argument, i.e., πit(Y,X, ω), B(t)ijt(Yj |X, ω), and Pit(Yi|X, ω).

Suppose, for the moment, that the CCP function Pit(Yi|X, ω) is identified for every value (Yi,X, ω).

Under this condition, it is straightforward to show that our identification results in Propositions 1

and 2 extend to this model. Therefore, the only new identification problem associated to including

unobserved market heterogeneity comes from the identification of the CCPs Pit(Yi|X, ω).

Kasahara and Shimotsu (2009) (hereafter KS) study the identification of CCPs and the distrib-

ution of unobserved types in nonparametric finite-mixture Markov decision models.17 Proposition

4 in KS provides identification conditions when the problem is non-stationary, i.e., time-dependent

CCPs and transition probabilities. Given the inherent non-stationarity of our model (since beliefs

are not restricted over time), this is the relevant result in our context. The conditions for identifi-

cation in KS Proposition 4 always hold in our model, except for one condition. They assume that

the transition probability function ft(Xt+1|Yt,Xt) has full support over the whole state space X ,
i.e., ft(Xt+1|Yt,Xt) > 0 for all t and any (Xt+1,Yt,Xt). This condition rules out dynamic models

with a deterministic transition rule for some state variables, e.g., games of market entry.

4 Estimation and Inference

Our constructive proofs of the identification results in Propositions 1-3 suggest methods for estima-

tion and testing of the nonparametric model. Section 4.1 presents our test for the null hypothesis of

unbiased beliefs. Section 4.2 provides a description of a nonparametric estimation method. In most

empirical applications, the payoff function is parametrically specified. For this reason, in section

4.3 we extend the estimation method to deal with parametric models. In the Appendix, we derive

the asymptotic properties of the estimators and tests.

16See also Otsu, Pesendorfer, and Takahashi (2016) for a procedure to test for this restriciton.
17Hu and Shum (2013) extend identification results in Kasahara and Shimotsu (2009) to a richer model with

time-variant serially correlated unobserved heterogeneity with a Markov chain structure.
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4.1 Test of unbiased beliefs

Recall from Proposition 1 above that unbiased beliefs for player i implies the following (A − 1)2

restrictions between CCPs of players i and j:

∆Q
(a)
it (si,w)

[
∆Q

(b)
it (si,w)

]−1
−∆P

(a)
jt (si,w)

[
∆P

(b)
jt (si,w)

]−1
= 0 (20)

Remember that, by Hotz-Miller inversion Theorem, qit(yi|x) is a known function of the vector

of CCPs Pit(x), i.e., qit(yi|x) ≡ Λ−1(yi,Pit(x)). In the context of the two player binary choice

model,18 the subsets S(a) and S(b) are single element sets: S(a) = {s(a)} and S(b) = {s(b)}. For each
s(k) ∈ Sj \ {s(a), s(b)} it is possible to show that the following restrictions hold if player i’s beliefs
are unbiased:

Λ−1(Pit(1|si, s(k),w))− Λ−1(Pit(1|si, s(a),w))

Λ−1(Pit(1|si, s(b),w))− Λ−1(Pit(1|si, s(a),w))
=
Pjt(1|si, s(k),w)− Pjt(1|si, s(a),w)

Pjt(1|si, s(b),w)− Pjt(1|si, s(a),w)
(21)

There are |Sj | − 2 such restrictions for each value of (Si,W), for a total of |Si||W| (|Sj | − 2)

restrictions.19

Consider the nonparametric multinomial model where the probabilities are the CCPs of players

i and j̇. The log-likelihood function of this multinomial model is:

` (Pi,Pj) =
∑
m,t

yimt lnPit(xmt) + (1− yimt) ln [1− Pit(xmt)]

+
∑
m,t

yjmt lnPjt(xmt) + (1− yjmt) ln [1− Pjt(xmt)]
(22)

where Pi and Pj are the vectors of CCPs for player i and j, respectively, for every value period t

and every value of Xmt. These vectors of CCPs are the ‘parameters’of this nonparametric model.

The null hypothesis of unbiased beliefs imposes the set of restrictions (21) on the parameters Pi

and Pj .

A Likelihood Ratio (LR) Test seems a natural candidate for testing the set of restrictions (21)

implied by the null hypothesis of unbiased beliefs. The Likelihood Ratio test statistic is given by:

LR = 2
[
`
(
P̂u
i , P̂

u
j

)
− `
(
P̂c
i , P̂

c
j

)]
(23)

where
(
P̂u
i , P̂

u
j

)
is the Unconstrained Maximum Likelihood estimator of (Pi,Pj) from the non-

parametric multinomial likelihood in (22), i.e., the frequency estimator of the CCPs, and
(
P̂c
i , P̂

c
j

)
is the Constrained Maximum Likelihood estimator of (Pi,Pj) given the set of restrictions in (21).

Under mild regularity conditions, the asymptotic distribution of this likelihood ratio is Chi-squared

with Tdata |Si| |W| (|Sj | − 2) degrees of freedom.20

18The extension to several players and actions is straightforward.
19The restrictions hold automatically for k = a or k = b.
20 In principle, we could also have used a standard Lagrange Multiplier (LM) test. This is asymptotically equivalent

to the test we present here.
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4.2 Estimation with nonparametric payoff function

Nonparametric estimation proceeds in two steps.

Step 1: Nonparametric estimation of CCPs and transition probabilities. For every player, time

period, and state value x and x′, we estimate CCPs Pit(yi|x), and (if necessary) the transition

probabilities ft(x′|y,x). We also construct estimates of qit(yi,x) by inverting the mapping Λ, i.e.,

qit(yi,x) = Λ−1(yi,Pit(x)).

Step 2: Estimation of preferences and beliefs. We select the subset S(R) with the values of Sj for
which we assume that player i’s beliefs are unbiased. Given this set and the estimates in step 1, we

construct, for any period t and any value of (Yi, Si,W), the matrix R × A matrix P
(R)
−it(si,w) as

defined in Assumption ID-4, and the R× 1 vector q
(R)
it (yi, si,w) with elements {qit(yi, si, s−i,w) :

S−i ∈ S(R)−i }. Remember that the function gBit (yi, yj , si,w) is the function the sum of current payoff

and continuation values, i.e., πit (yi, yj , si,w) + c̃Bit (yi, yj ,w), and let gBit (yi, si,w) be the A × 1

vector with gBit (yi, yj , si,w) for every value of yj . Then, we apply the following formulas.

(i) In the proof of Proposition 2 we show that gBit (yi, si,w) is identified as:

gBit (yi, si,w) =
[
P
(R)
−it(si,w)′ P

(R)
−it(si,w)

]−1
P
(R)
−it(si,w)′ q

(R)
it (yi, si,w) ; (24)

(ii) In that proof, we also show that contemporaneous beliefs are identified using the following

expression,21

B
(t)
it (x) =

[
G̃it(x)

]−1
qit(x) (25)

where: B
(t)
it (x) is an A×1 vector with {B(t)it (yj |x) : yj ∈ Y}; qit(x) is an A×1 vector with elements

{qit(1,x), ..., qit(A − 1,x)} at rows 1 to A − 1, and a 1 at the last row; and G̃it(x) is an A × A
matrix where the element (yi, yj + 1) is gBit (yi, yj , si,w) and the last row of the matrix is a row of

ones. (iii) Finally, by definition of the function gBit (yi,y−i, si,w) we have that

πit(yi, yj , si,w)− πit(yi, yj , s∗,w) = gBit (yi, yj , si,w)− gBit (yi, yj , s∗,w) (26)

for some value s∗ of the player-specific state variable that we take as a benchmark. Then, we can

apply the |S| restrictions in Proposition 3(i) to obtain the payoffs πit(yi, yj , si,w).

In the appendix, we prove the consistency and asymptotic normality of the estimators of payoffs

and beliefs that apply this procedure.

21There is a somewhat subtle relationship between our idenfitication result here and the literature on nonparametric
identification of finite mixture models (for example Hall and Zhou (2003) and Kasahara and Shimotsu (2009)). In
particular, the result that payoffs are identified if beliefs are known and invertible at a suffi ciently large subset of points
in the state space has a parallel with the structure of finite mixture of distributions with an exclusion restriction. In
that literature such an identification result is not particularly useful, as it requires knowledge of the mixture weights
at different values of the excluded variable. In the present context it is motivated through elicited beliefs or theoretical
assumptions.
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4.3 Estimation with parametric payoff function

In most applications the researcher assumes a parametric specification of the payoff function. A

class of parametric specifications that is common in empirical applications is the linear in parameters

model:

πit(Yit, Yjt, Sit,Wt) = h(Yit, Yjt, Sit,Wt) θit (27)

where h(Yi, Yj , Si,W) is a 1×K vector of known functions, and θit is a K × 1 vector of unknown

structural parameters in player i’s payoff function. Let θi be the vector with all the parameters in

the payoff of player i: θi ≡ {θit : t = 1, 2, ..., Tdata}.

EXAMPLE 6: Consider the dynamic game in Example 1. The profit function in equation (2) can

be written as h(Yit, Yjt, Sit,Wt) θi, where the vector of parameters θi is (θMi , θ
D
i , θ

FC
i0 , θ

FC
i1 , θ

EC
i )′

and

h(Yit, Yjt, Sit,Wt) = Yit { Ht, −HtYjt, − 1, − Zi,− 1{Yit−1 = 0} } � (28)

To estimate θi we propose a simple three steps method. The first two-steps are the same as for

the nonparametric model.

Step 3: Given the estimates from step 2, we can apply a pseudo maximum likelihood method in

the spirit of Aguirregabiria and Mira (2002) to estimate the structural parameters θi. Define the

following pseudo likelihood function for the model with i.i.d. extreme value ε′s:

Q(θi,Bi,Pi) ≡
M∑
m=1

Tdata∑
t=1

log

 exp
{
h̃B,Pit (yimt,xmt) θi + ẽB,Pit (yimt,xmt)

}
∑A−1
yi=0

exp
{
h̃B,Pit (yi,xmt) θi + ẽB,Pit (yi,xmt)

}
 (29)

h̃B,Pit (yi,x) is the discounted sum of the expected values of {h(yjt+syjt+s,xt+s) : s = 0, 1, ..., T − t}
given that the state at period t is x, that player i chooses alternative yi at period t and then

behaves according to the choice probabilities in P, and believes that player j behaves according to

the probabilities in B. And ẽB,Pit (yi,x) is also a discounted sum, but of expected future values of∑A−1
yi=0

Pit+s(yi|xmt+s) [γ− lnPit+s(yi|xmt+s)], that represents the expected value of εim,t+s(Yimt+s)
when Yim,t+s is optimally chosen, and γ is Euler’s constant. From steps 1 and 2, we have consistent

estimates of CCPs, P̂i, and beliefs, B̂i. Then, a consistent pseudo maximum likelihood estimator of

θi is defined as the value θ̂
(1)
i that maximizes Q(θi, B̂i, P̂i). Note that the sample criterion function

Q(θi, B̂i, P̂i) is just the log likelihood function of a Conditional Logit model with the restriction

that the parameter multiplying the discounted sum ẽB,Pit is equal to 1. The estimator is root-M

consistent and asymptotically normal.22

22 Iterative procedures can often be used to improve on the finite sample properties of two step estimators in dy-
namic games which can suffer from imprecise nonparametric estimates in the first step (Aguirregabiria and Mira
2007, Kasahara and Shimotsu 2012). In principle, steps 1 to 3 here can also be applied recursively to try to improve
the statistical properties of our estimators. Though the resulting K-step estimator is consistent and asymptotically
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5 Monte Carlo Experiments

We use Monte Carlo experiments to illustrate the identification, estimation, and inference frame-

work presented in previous sections. We study the ability of our test to reject the null hypothesis

when it is false (the power of the test), and how frequently we reject the null when it is in fact

true (the size of the test). We also study a key trade-off that a researcher faces when deciding to

impose equilibrium restrictions on the data in the estimation of a dynamic game. By imposing the

assumption of equilibrium beliefs the researcher is able to rely on the identification power afforded

by the equilibrium restrictions, which results in more precise estimates. This is particularly relevant

in small samples. However, the identification power associated with equilibrium restrictions comes

with a price - the possibility of biased estimates if the restrictions are not true in the DGP (the

model is mis-specified) We study the magnitude of this bias in the context of a simple application.

The model we consider in our experiments is a particular case of the dynamic game of market

entry and exit in Example 1. We consider an infinite horizon game with two players. The per

period profit functions of the two players are given by:

π1mt(1, Y2mt,Xmt) = (1− Y2mt) θM1 + Y2mt θ
D
1 − θFC01 − (1− Y1mt−1) θEC1

π2mt(1, Y1mt,Xmt) = (1− Y1mt) θM2 + Y1mt θ
D
2 − θFC02 − θFC12 Z2mt − (1− Y2mt−1) θEC2

(30)

We normalize the profits to not being active to be zero for both players: π1mt(0, Y2mt,Xmt) =

π2mt(0, Y1mt,Xmt) = 0. The players’payoffs to being active are symmetric except for the variable

Z2mt which enters player 2’s payoffs but not player 1’s. Z2mt is an exogenous time variant char-

acteristic which affects the fixed cost of player 2, but does not have a (direct) effect on the payoff

of player 1. Following the notation in previous sections, we can describe the vector of observable

state variables by Xmt = (S1mt, S2mt) with S1mt = Y1mt and S2mt = (Z2mt, Y2mt−1).

We focus on the estimation of the parameters in player 1’s payoff and beliefs functions. Given

the payoff structure in equation (30) above, only the payoffs and beliefs of player 1 are identified

under our identification assumptions.23 We can re-write the payoff function as:

π1t(1, Y2mt,Xmt) = α1 − δ1 Y2mt + Y1m,t−1 θ
EC
1 (31)

normal, stronger restrictions are needed to guarantee that these iterations improve the asymptotic or/and finite sam-
ple properties of the estimator relative to the two-step estimator. In the context of dynamic games with equilibrium
beliefs, Kasahara and Shimotsu (2012) show that in the sequence of K-step estimators the finite sample bias declines
monotonically only if the mapping associated to this iterative procedure satisfies a local contraction property. Pe-
sendorfer and Schmidt-Dengler (2010) illustrate with an example that this iterative procedure can converge to an
inconsistent estimator if the local contraction property does not hold. In our model with biased beliefs, the iterative
mapping is different and the finite sample properties of these K-step estimators require further investigation.
23Specifically, there is no variable with at least three points of support (i.e., A+1 = 3) that enters player 1’s payoffs

directly and does not enter player 2’s payoffs directly. In principle Y1mt−1 could play the role of the player-specific
variable for identifying player 2’s payoffs and beliefs, but since it can only take two values it is always at an “extreme
point".

30



where the parameters α1 and δ1 are defined as α1 ≡ θM1 − θFC01 − θEC1 and δ1 ≡ θM1 − θD1 . The
exogenous variable Z2mt is independently and identically distributed over markets and time, with

a discrete uniform distribution with support {−2,−1, 0, 1, 2}. This variable is key to identify the
payoffs and beliefs of player 1. Essentially Z2mt plays the role of an instrument in the sense that it

satisfies an exclusion restriction. It affects player 1’s payoffs only through its effect on the behavior

of player 2.

We keep all the parameters in the payoff functions constant across all experiments. These

values are: α1 = α2 = 2.4; δ1 = δ2 = 3.0; θFC2 = −1.0; θEC1 = θEC2 = 0.5; β1 = β2 = 0.95; Z2mt

∼ i.i.d. Uniform with support {−2,−1, 0,+1,+2}. To provide an economic interpretation for the
magnitude of these parameters note that: the firm 1’s entry cost represents 17.1% of its average

profit as a monopolist; firm 1’s reduction in profit from monopoly to duopoly is 103.4%; and firm’s

2 profit as a monopolist increases by 81.6% when Z2 goes from −2 to 2. For Experiment B with

biased beliefs, λ1 = λ2 = 1 if Z2 ∈ {−2, 2} and λ1 = λ2 = 0.5 if Z2 ∈ {−1, 0, 1}. In each experiment
we consider, the sample is comprised by a total of M = 500 markets and Tdata = 5 periods of data.

This is a realistic sample size, and in fact is precisely the size of the sample we consider in our

empirical application in section 6. We approximate the finite sample distribution of the estimators

using 10, 000 Monte Carlo replications. The initial conditions for the endogenous state variables

{Y1m0, Y2m0} are drawn uniformly at random.
We implement two experiments. In experiment U players’beliefs are in equilibrium, the DGP is

a Markov Perfect Equilibrium from the model. In experiment players’have biased beliefs according

to the following model. For each player i ∈ {1, 2} and any market m and period t, beliefs are

B
(t)
imt(xmt) = λim(xmt) Pjmt(xmt), where λim(xmt) ∈ [0, 1] is an exogenous function that captures

player i’s bias in beliefs. Note that, given this specification of the DGP, beliefs are endogenous

because they depend on the other player’s choice probabilities that, of course, are endogenous.

Therefore, to obtain these beliefs we need to solve for a particular equilibrium or fixed point

problem. Given λ1m(.) and λ2m(.), players’choice probabilities P1m(xmt) and P2m(xmt) solve a

fixed point problem that we could describe as a biased beliefs Markov Perfect Equilibrium such

that Pim(y|xmt) = Λ
(
y; ṽBi (xmt)

)
and Bim = λim Pjm. We fix the following values for the bias

functions λim:

λim(xmt) =


1 if z2mt ∈ {−2, 2}

0.5 if z2mt ∈ {−1, 0, 1}
(32)

That is, if the exogenous characteristic z2mt is at an ‘extreme’value, i.e., z2mt ∈ {−2, 2}, then there
is not any strategic uncertainty or bias beliefs: players’beliefs are in equilibrium. However, if z2mt

lies in the interior of the support set, then beliefs are biased. More specifically, when beliefs are

biased, both players are over-optimistic such that they underestimate (by 50%) the probability of

the opponent will be active in the market. Note that given our choice of distribution of z2mt, beliefs
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are (on average) out of equilibrium at 60% of the sample observations.

5.1 Test of Equilibrium Beliefs

Figures 1 and 2 present the results of applying our test to simulated data from the two experiments.

To construct these figures: (i) we have calculated the LRT statistic for each of the 10,000 simulated

sample; (ii) we have constructed a very fine grid of values in the interval [0, 0.15] for the significance

level (or size) of the test, α; and (iii) for each value α in this grid, we have obtained the corresponding

critical value in the probability distribution of the Chi-square with 16 degrees of freedom, χ216(α),

and then computed the frequency of simulated samples where the LRT statistic is greater than this

critical value, i.e., the empirical frequency for rejecting the null hypothesis. Figures 1 and 2 present

these empirical frequencies for every value of α. We also present the 45 degree line.

Figure 1 corresponds to the experiment with biased beliefs (B). The empirical frequency pre-

sented in figure 1 is the power of the test, i.e., the probability of rejecting the null hypothesis when

it is false. This empirical probability of rejection is very close to one for any conventional value of

α, showing that the test has strong power to reject the hypothesis of equilibrium beliefs when it is

false.

Figure 2 deals with the experiment with unbiased beliefs (U). Here we see that the empirical

frequency of rejecting the null tracks the true probability (i.e., significance level) very closely. That

is, the test has the appropriate size, and we do not systematically over or under reject the null when

it is true, at least given the DGP we are considering here. The asymptotic Chi-square distribution

is a good approximation to the distribution of the test statistic under a realistic sample size.

5.2 Estimation of Preferences and Beliefs

Tables 3 and 4 summarize the remainder of the results of our experiments. Table 3 reports the

Mean Absolute Bias (MAB) and the standard deviation from the Monte Carlo distribution of the

estimators of payoffs, beliefs and choice probabilities. Table 4 presents MABs when we consider a

large sample with one million observations. The motivation behind these experiments is to study

the consequences of imposing the restriction of unbiased beliefs when it does not hold in the DGP,

and to evaluate the loss of precision of our estimates when we do not impose the restriction of

unbiased beliefs.

(a) Benchmark. Columns (5) and (6), in table 3 present MABs and standard deviations of

estimates when beliefs are unbiased in the DGP and we impose this restriction in the estimation.

This is the typical estimation framework in the dynamic games literature with a DGP that satisfies

the assumptions that are typically maintained. In parentheses, we report the corresponding statistic

as percentage of the true value of the parameter. The bias in the estimates of payoff parameters

ranges from 6% for the parameter that captures competition effects (δ1) to 18% for the entry

32



cost parameter (θEC1 ). The estimates of beliefs and CCPs are quite precise: MABs and standard

deviations for these estimates are always smaller than 9% of the true value.

(b) Loss of precision when relaxing the assumption of unbiased beliefs. The main purpose of

experiments “U" is to evaluate the loss of identification power in a finite sample when we do not

impose the restrictions of equilibrium beliefs. Columns (7) and (8) correspond to an estimation of

the model that does not impose equilibrium restrictions but where the data comes from a population

or DGP where beliefs are in equilibrium. We can see there is a price to pay for not exploiting the

equilibrium restrictions: mean absolute bias and standard deviation increase substantially when we

do not enforce the assumption of equilibrium beliefs. The standard deviation of the payoff estimates

is 2-3 times larger when we do not impose the equilibrium restrictions. For instance, for the payoff

parameter δ1 that measures the competition effect, the bias increases from 5.9% to 19.4%, and

the standard deviation increases from 4.5% to 17.0%. This highlights the value of being able to

test for equilibrium beliefs before deciding on an estimation strategy, as relaxing the assumption

of equilibrium beliefs does not come for free. Nevertheless, when we do not impose equilibrium

restrictions, the estimates are still quite informative about the true value of the parameters. Note

finally that the loss of precision in the estimation of beliefs and CCPs is substantially less severe

than in the estimation of payoffs.

(c) Consequences of imposing the assumption of equilibrium beliefs when it is not true. In

experiment “B" (columns 1-4 of table 3) the DGP is such that beliefs are not in equilibrium.

Comparing columns 1 and 3, we can see the increase in bias induced by imposing the assumption

of equilibrium beliefs incorrectly. The bias increases from 12.8% to 21.7% for the parameter α1,

and from 9.5% to 15.2% for parameter δ1. Surprisingly, the bias of the estimate of the entry cost

parameter actually decreases when we wrongly impose equilibrium restrictions. This is a finite

sample property, and we have confirmed this point by implementing an experiment with 1,000,000

observations and a single Monte Carlo simulation, that we report in table 4. Columns 1 and 2 in

table 4 show that the MABs of the entry cost parameter is only 0.6% when equilibrium restrictions

are not imposed and it increases to 10.2% when these restrictions are wrongly imposed. Going

back to columns 1 to 4 in table 3, we can see that though the precision of the estimates decreases

significantly when we do not impose equilibrium restrictions, the combination of bias and variance

shows very significant gains in the estimates of payoffs and beliefs when we allow for biased beliefs.

In sum, the experiments illustrate that it can be very important to choose the appropriate

estimation framework given the DGP. Not imposing equilibrium beliefs in estimation when beliefs

are in equilibrium in the DGP is costly in terms of precision and finite sample bias, while incorrectly

imposing equilibrium restrictions in estimation can be very costly both in terms of finite sample and

asymptotic bias. This underscores the importance of testing for equilibrium beliefs before deciding

on an estimation strategy.
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6 Empirical Application

We illustrate our model and methods with an application of a dynamic game of store location.

Recently there has been significant interest in the estimation of game theoretic models of market

entry and store location by retail firms. Most studies have assumed static games: see Mazzeo

(2002), Seim (2006), Jia (2008), Zhu and Singh (2009), and Nishida (2014), among others. Holmes

(2011) estimates a single-agent dynamic model of store location by Wal-Mart. Beresteanu and

Ellickson (2005), Suzuki (2013), and Walrath (2016) propose and estimate dynamic games of store

location.

We study store location of McDonalds (MD) and Burger King (BK) using data for the United

Kingdom during the period 1991-1995. The dataset was collected by Otto Toivanen and Michael

Waterson, who use it in their paper Toivanen and Waterson (2005). We divide the UK into local

markets (districts) and study these companies’decision of how many stores, if any, to operate in

each local market. The profits of a store in a market depends on local demand and cost conditions

and on the degree of competition from other firms’stores and from stores of the same chain. There

are sunk costs associated with opening a new store, and therefore this decision has implications

for future profits. Firms are forward-looking and maximize the value of expected and discounted

profits. Each firm has uncertainty about future demand and cost conditions in local markets. Firms

also have uncertainty about the current and future behavior of the competitor.

In this context, the standard assumption is that firms have rational expectations about other

firms’ strategies, and that these strategies constitute a Markov Perfect Equilibrium. Here we

relax this assumption. The main question that we want to analyze in this empirical application is

whether the beliefs of each of these companies about the store location strategy of the competitor

are consistent with the actual behavior of the competitor. The interest of this question is motivated

by Toivanen and Waterson (2005) empirical finding that these firms’entry decisions do not appear

to be sensitive to whether the competitor is an incumbent in the market or not. As we have

illustrated in our Monte Carlo experiments, imposing the restriction of equilibrium beliefs can

generate an attenuation bias in the estimation of competition effects when this restriction is not

true in the DGP. We investigate here this possible explanation.24

24The nature of the econometric bias in the parameters that represent strategic interactions depends on the rela-
tionship between true and rational beliefs. It is useful to illustrate this issue using a simple model. Suppose that
the relationship between qi(x) and the true beliefs Bi(x) is qi(x) = π0 + π1 Bi(x), where π0 and π1 are structural
parameters from the payoff function. Suppose that the relationship between actual beliefs Bi(x) and the rational
beliefs Pj(x) is Bi(x) = f(Pj(x)), where f(.) is a continuous and differentiable function in the space of probabili-
ties. And suppose that the researcher imposes the restriction of rational beliefs, such that he estimates the model
qi(x) = π0+π1 Pj(x)+e, where by construction the error term e is equal to π1[f(Pj(x))−Pj(x)]. It is straightforward
to show that under mild regularity conditions the least square estimator of the parameter π1 converges in probability
to π1 f ′(Ex[Pj(x)]), where f ′(.) is the derivative of the function f(.). In this case, we have an attenuation bias in the
estimator of the parameter π1 iff f ′(Ex[Pj(x)]) < 1. Note that this condition is different to a condition on the level
of the bias of beliefs. That is, the condition f ′(Ex[Pj(x)]) < 1 is compatible with Ex[Bi(x)] being either smaller or
larger than Ex[Pj(x)].
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6.1 Data and descriptive evidence

Our working sample is a five year panel that tracks 422 local authority districts (local markets),

including the information on the stock and flow of MD and BK stores into each district. It also

contains socioeconomic variables at the district level such as population, density, age distribution,

average rent, income per capita, local retail taxes, and distance to the UK headquarters of each

of the firms. The local authority district is the smallest unit of local government in the UK, and

generally consists of a city or a town sometimes with a surrounding rural area. There are almost

500 local authority districts in Great Britain. Our working sample of 422 districts does not include

those that belong to Greater London.25 The median district in our sample has an area of 300

square kilometers and a population of 95,000 people.26 Table 5 presents descriptive statistics for

socioeconomic and geographic characteristics of our sample of local authority districts.

Table 6 presents descriptive statistics on the evolution of the number of stores for the two

firms.27 In 1990, MD had more than three times the number of stores of BK, and it was active

in more than twice the number of local markets than BK. Conditional on being active in a local

market, MD had also significantly more stores per market than BK. These differences between MD

and BK have not declined significantly over the period 1991-1995. While BK has entered in more

new local markets than MD (69 new markets for BK and 48 new markets for MD), MD has opened

more stores (143 new stores for BK and 166 new stores for MD).

Table 7 presents the annual transition probabilities of market structure in local markets as

described by the number of stores of the two firms. According to this transition matrix, opening a

new store was an irreversible decision during this sample period, i.e., no store closings are observed

during this sample period. In Britain during our sample period, the fast food hamburger industry

was still young and expanding, as shown by the large proportion of observations/local markets

without stores (41.6%). Although there is significant persistence in every state, the less persistent

market structures are those where BK is the leader. For instance, if the state is "BK = 1 &

MD = 0", there is a 20% probability that the next year MD opens at least one store in the market.

Similarly, when the state is "BK = 2 & MD = 1", the chances that MD opens one more store the

next year are 31%.

Table 8 presents estimates of reduced form Probit models for the decision to open a new store.

We obtain separate estimates for MD and BK. Our main interest is in the estimation of the effect

25The reason we exclude the districts in Greater London from our sample is that they do not satisfy the standard
criteria of isolated geographic markets.
26As a definition of geographic market for the fast food retail industry, the district is perhaps a bit wide. However, an

advantage of using district as definition of local market is that most of the markets in our sample are geographically
isolated. Most districts contain a single urban area. And, in contrast to North America where many fast food
restaurants are in transit locations, in UK these restaurants are mainly located in the centers of urban areas.
27Toivanen and Waterson present a detailed discussion of why the retail chain fast food hamburger industry in the

UK during this period can be assumed as a duopoly of BK and MD.
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of the previous year’s number of stores (own stores and competitor’s stores) on the probability

of opening new stores. We include as control variables population, GDP per capita, population

density, proportion of population 5-14, proportion population 15-29, average rent, and proportion

of claimants of unemployment benefits. To control for unobserved local market heterogeneity we

also present two fixed effects estimations, one with county fixed effects and the other with local

district fixed effects.28 We only report estimates of the marginal effects associated with the dummy

variables that represent previous year number of stores. The main empirical result from table 8 is

that, regardless of the set of control variables that we use, the own number of stores has a strong

negative effect on the probability of opening a new store but the effect of the competitor’s number

of stores is either negligible or even positive. This finding is very robust to different specifications

of the reduced form model and it is analogous to the result from the reduced form specifications in

Toivanen and Waterson (2005). The estimate of the marginal effect of the number of own stores

increases significantly when we control for unobserved heterogeneity using fixed effects. However,

the estimated marginal effect of the number of competitor’s stores barely changes. The estimates

show also a certain asymmetry between the two firms: the absence of response to the competitor’s

number of stores is more clear for BK than for MD. In particular, when BK has three stores in the

market there is a significant reduction in MD’s probability of opening a new store. This negative

effect does not appear in the reduced form probit for BK.

Taken at face value, the empirical evidence suggests that Burger King is either indifferent to

or prefers to enter in markets where McDonald’s already has a presence. This behavior cannot

be rationalized by standard static models of market entry where firms compete and sell substitute

products. In such a model, Burger King’s current profit is always higher (ceteris paribus) if it enters

in a market where McDonalds is not present than if its entry is in a market where McDonalds already

has a store. In the case of complementary goods, a firm may like to locate near another to capitalize

positive spillover effects on business/traffi c. However, it seems quite reasonable to consider that a

MD store and a BK store are substitutes from the point of view of consumer demand at a given

point in time. We discuss below other possible sources of positive spillover effects. We explore three,

non-mutually exclusive, explanations for BK’s observed behavior: (a) spillover effects; (b) forward

looking behavior (dynamic game); and (c) biased beliefs about the behavior of the competitor.

(a) Spillover effects. The competitor’s presence may have a positive spillover effect on the profit

of a firm. There are several possible sources of this spillover effect. For example one firm may

infer from another’s decision to open a store in a particular market that market conditions are

favorable (informational spillover effects). Alternatively, one firm may benefit from another firm’s

entry through cost reductions, or from product expansion through advertising. As such, we allow
28With only five observations (time periods) per district, the estimator with district fixed-effects may contain sub-

stantial biases. Despite its potential bias, the comparison of the district-FE estimator with the county-FE estimator
and the estimator without fixed effects provide some interesting results.
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for the possibility of spillover effects in our specification of demand, but since we do not have

price and quantity data at the level of local markets, we do not try to identify the source of the

spillover effect. While the natural interpretation of the spillover effect in the context of our model

is a product expansion due to an advertising effect of retail stores, this should be interpreted as a

reduced form’specification of different possible spillover effects.

(b) Forward looking behavior. Opening a store is a partly irreversible decision that involves signif-

icant sunk costs. Therefore, it is reasonable to assume that firms are forward looking when they

make this decision. Moreover, dynamic strategic effects may help explain the apparent absence of

competitive effects when we study behavior in the context of a static model of entry. Suppose that

firms anticipate, with some uncertainty, the total number of hamburger stores that a local market

can sustain in the long-run given the size and the socioeconomic characteristics of the market. For

simplicity, suppose that this number of "available slots" does not depend on the ownership of the

stores because the products sold by the two firms are very close substitutes. In this context, firms

play a game where they ‘race’to fill as many ‘slots’as possible with their own stores. Diseconomies

of scale and scope may generate a negative effect of the own number of stores on the decision of

opening new stores. However, in this model, during most of the period of expansion the number

of slots of the competitor has zero effect on the decision of opening a new store. Only when the

market is filled or close to being filled do the competitor’s stores have a significant effect on entry

decisions.

(c) Biased beliefs. Competition in actual oligopoly industries is often characterized by strategic

uncertainty. Firms face significant uncertainty about the strategies of their competitors. Although

MD and BK should know a lot about each others strategies from a long history of play, the UK in

the early 90s represented a relatively new market.29 So while MD and BK likely know the possible

strategies and thus the set of potential equilibria, the firms are competing for the first time in a new

setting and may have not been sure, particularly during the initial stages of competition, which

of the equilibria would be played by the opponent. While the possible equilibrium best responses

are common knowledge, there is strategic uncertainty about which of these will be played. In the

context of our application, it may be the case that MD’s or/and BK’s beliefs overestimate the

negative effect of the competitor’s stores on the competitor’s entry decisions. For instance, if MD

has one store in a local market, BK may believe that the probability that MD opens a second store

is close to zero. These over-optimistic beliefs about the competitor’s behavior may generate an

apparent lack of response of BK’s entry decisions to the number of MD’s stores.

29See Toivanen and Waterson (2011) for an historical account of the early years of the hamburger fast food restaurant
industry in UK. McDonalds opened its first restaurant in UK in 1974, but it was not until 1981 that it opened outlets
outside the London area. Burger King started operating in UK in 1988 after acquiring Wimpy.

37



6.2 Model

Consider two retail chains competing in a local market. Each firm sells a differentiated product

using its stores. Let Kimt ∈ {0, 1, ..., |K|} be the state variable that represents the number of stores
of firm i in market m at period t− 1. And let Yimt ∈ {0, 1, ..., A− 1} be the number of new stores
that firm i opens in the market during period t.30 Following the empirical evidence during our

sample period, we assume that opening a store is an irreversible decision. Also, for almost all the

observations in the data we have that Yimt ∈ {0, 1}, and therefore we consider a binary choice
model for Yimt, i.e., A = 2.31

The total number of stores of firm i in market m at period t is Nimt ≡ Kimt + Yimt. Firm i

is active in the market at period t if Nimt is strictly positive. Every period, the two firms know

the stocks of stores in the market, Kimt and Kjmt, and simultaneously choose the new (additional)

number of stores, Yimt and Yjmt. Firm i’s total profit function is equal to variable profits minus

entry costs and minus fixed operating costs: Πimt = V Pimt − ECimt − FCimt.
The specification of the variable profit function is:

V Pimt = (Wm γ) Nimt
[
θV P0i + θV Pcan,iNimt + θV Pcom,iNjmt

]
(33)

Wm is a vector of exogenous market characteristics such as population, population density, per-

centage of population in age group 15-29, GDP per capita, and unemployment rate. γ is a vector

of parameters where the coeffi cient associated to the Population variable in Wmt is normalized to

one. Therefore, the index Wmγ is measured in number of people and we interpret it as "market

size". According to this specification, the term θV P0i + θV Pcan,i Nimt + θV Pcom,i Njmt represents variable

profits per-capita and per-store. θV P0i + θV Pcan,i is the variable profit (per capita) when firm i has

a single store in the market. The term θV Pcan,iNimt captures cannibalization effects between stores

of the same chain as well as possible economies of scale and scope in variable costs. The term

θV Pcom,iNjmt captures the effect of competition from the other chain.

Entry cost have the following form:

ECimt = 1{Yimt > 0}
[
θEC0i + θECK,i 1{Kimt > 0}+ θECZ,i Zimt + εit

]
(34)

1{.} is the indicator function, and θEC0i , θECK,i , and θECZ,i are parameters. θEC0i is an entry cost that is

paid the first time that the firm opens a store in the local market. θEC0i +θECK,i is the cost of opening

a new store when the firm already has stores in the market. If there are economies of scope in the

operation of multiple stores in a market, we expect the parameter θECK,i to be negative such that the

30We abstract from store location within a local market and assume that every store of the same firm has the same
demand.
31The empirical distributions of store openings in our sample are the following. For McDonalds: zero stores, 1,954

observations (92.6%); one store, 146 (6.9%); two stores, 10 (0.5%). For Burger King: zero stores, 1,982 observations
(93.9%); one store, 115 (5.5%); two stores, 11 (0.5%); three stores, 2 (0.1%).
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entry cost of the first store is greater than the entry cost of additional stores. Zimt represents the

geographic distance between market m and the closest market where firm i has stores at period

t − 1 (i.e., Zimt is zero if Kimt > 0). The term θECZ,i Zimt tries to capture economies of density as

in Holmes (2011). The random variable εit is a private information shock in the cost of opening a

new store, and it is i.i.d. normally distributed.32

The specification of fixed costs is:

FCimt = 1{Nimt > 0}
[
θFC0i + θFClin,i Nimt + θFCqua,i(Nimt)

2
]

(35)

θFC0i is a lump-sum cost associated with having any positive number of stores in the market. The

term θFClin,i Nimt + θFCqua,i (Nimt)
2 takes into account that operating costs may increase (or decline)

with the number of stores in a quadratic form.

Given this specification, the vector of state variables involved in the exclusion restriction of

Assumption ID-3 is Sjmt = (Kjmt, Zjmt). A firm’s variable profit and fixed cost depend on both

his own and his opponents current number of stores, Nimt and Njmt. These two components of

the profit function do not incorporate an exclusion restriction. Instead, our exclusion restrictions

appear in the specification of the entry cost function. The entry cost of firm i depends on his own

stock of stores at previous period, Kimt, and on the distance from market m to the closest store

of the chain at year t− 1, Zimt. However, the competitors’number of stores in the previous year,

Kjmt, and the distance from market m to the closest store of the competitor in the previous year,

Zjmt, do not directly affect the current profit of the firm. This satisfies the exclusion restriction

in assumption ID-3. Of course a firm’s beliefs about the probability distribution of the opponents’

choice, Yjmt, depend on Sjmt = (Kjmt, Zjmt).

Note that the stock variable Kjmt does enter player i’s payoffs through the current number of

stores, i.e., Njmt = Kjmt + Yjmt. However, the number of stores of the competitor is in fact his

decision at period t. The game can be described either using as decisions variables the incremental

number of stores, Yjmt, or the number of stores, Njmt. We have preferred using the incremental

number of stores as the decision variable to emphasize that it is a binary choice model. Therefore,

once we condition on the competitor’s current number of stores Njmt (i.e., the competitor’s current

decision), the competitor’s stock of stores, Kjmt, is inconsequential for player i’s payoff. However,

firm j cares about his own stock because the cost of adding new stores to his existing stock depends

on how many he already has open.

The maximum value of Kimt in the sample is 13, but it is less than or equal to three for 99%

of the observations in the sample. We assume that the set of possible values of Kimt is {0, 1, 2, 3},
32Here we assume that the entry decision is made and the entry cost is paid at the same year that the store

opens and starts operating in the market. In other words, we assume there is no “time-to-build", or at least that
it is substantially shorter than one year. This timing assumption is quite realistic for franchise stores of large retail
chains.
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where Kimt = 3 represents a number of stores greater or equal than three. When Kimt = 3,

we impose the restriction that firm i does not open additional stores in this market: Pimt(1|xmt,
Kimt = 3) = 0. The variable Zimt, that represents the distance to the closest chain store, is

discretized into 8 cells of 30 miles intervals: Zimt = 1 represents a distance of less than 30 miles,

Zimt = 2 for a distance of between 30 and 60 miles, ..., Zimt = 7 for a distance of between 180

and 210 miles, and Zimt = 8 for a distance greater than 210 miles. Market characteristics in the

vector Wm have very little time variability in our sample and we treat them as time invariant state

variables in order to reduce the dimensionality of the state space.33 Therefore, the set S is equal
to {0, 1, 2, 3}× {1, 2, ..., 8} and it has 32 grid points, and the whole state space X is equal to S ×S
and it has 1, 024 points.

Assumption ID-4, which restricts beliefs over a subset of the state space, takes the following

form in this application. We assume that the two firms have unbiased beliefs about the entry

behavior of the opponent in markets which are relatively close to the opponents network, i.e., for

small values of the distance Zjmt. However, beliefs may be biased for markets that are farther away

to the opponent’s network. More formally, we assume that:

Bimt(yj |xmt) = Pjmt(yj |xmt) if zjmt ≤ z∗ (36)

We have estimated the model for different values of z∗. The main intuition behind this assumption

is that markets that are far away from a firm’s network are unexplored markets for which there is

more strategic uncertainty.

The selection of the points in the support of Z where we impose the restriction of unbiased

beliefs is based on the criteria that we have proposed in section 3.2.6 above. Criterion ‘testing

for the monotonicity of beliefs and using this restriction’: the probabilities of market entry for BK

and MD are strictly decreasing in their own distance variable Z. Furthermore, we cannot reject

the monotonicity of beliefs with respect to this player-specific variable. According to this criterion,

we could impose unbiased beliefs either at the smallest or at the largest values in the support of

variable Z. Criterion ‘minimization of the player’s beliefs bias’: we have estimated the model

under different selections for the points in the support of Z where we impose unbiased beliefs. In

table 9, we present estimates under two different selections for unbiased beliefs: Z ∈ {0, 1} and
Z ∈ {0, 1, 2}. The estimation results are very similar under these two selections. We have also
estimated the model imposing unbiased beliefs at the largest values of Z, i.e., Z ∈ {6, 7, 8}. The
estimation results were quite different. In particular, we obtained substantially larger biases for

beliefs. Therefore, a conservative criterion, based on minimizing the deviation with respect to the

33For those market characteristics with some time variation, we fix their values at their means over the sample
period. We have also estimated the model using different values, such as the value at the first year in the sample, or
at the last year (i.e., perfect forecast), and all the estimated parameters did not change up to the fourth significant
digit.
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paradigm of unbiased beliefs, recommends imposing the restriction of unbiased beliefs at small

values of the player-specific state variable.

Our assumption on players’beliefs implies that the degree of bias in firms’beliefs declines over

time with the geographic expansion of these retail chains. When the retail chains have suffi ciently

expanded geographically, we have that the distances zjmt become smaller than the threshold value

z∗ such that firms’beliefs become unbiased for every market and state. The probability of this

event increases over time. It is straightforward to check if this condition is satisfied for every market

and firm in the data after some year in the sample. For our choices of the threshold value z∗, this

condition is almost, but not exactly, satisfied in the last year of our sample, 1995.

6.3 Estimation of the structural model

Table 9 presents estimates of the dynamic game under three different assumptions on beliefs.

Columns (1) and (2) present estimates under the assumption that beliefs are unbiased for every

value of the state variables. In columns (3) and (4), we impose the restriction of unbiased beliefs

only when the distance to the competitor’s network is shorter than 60 miles, i.e., z∗ = 2. In columns

(5) and (6), beliefs are unbiased when that distance is shorter than 30 miles , i.e., z∗ = 1. For

each of these three scenarios, the proportion of observations at year 1995 for which we impose the

restriction of unbiased beliefs is 100%, 38%, and 29%, respectively.

(a) Estimation with unbiased beliefs. The estimation shows substantial differences between

estimated parameters in the variable profit function of the two firms. The parameter θV Pcan is negative

and significant for BK but positive and also statistically significant for MD. Cannibalization effects

dominate in the case of BK. In contrast, economies of scope in variable profits seem important

for MD. The estimates of the parameter that captures the competitive effect, θV Pcom, are smaller

in magnitude than the estimates of θV Pcan, but they are statistically significant. According to these

estimates the competitive effect of MD’s market presence on BK’s profits is smaller than the reverse

effect.

The estimates of fixed cost parameters illustrates a similarity across firms in the structure of

fixed costs of operation. The fixed operating cost increases linearly, not quadratically, with the

number of stores, and the lump-sum component of the cost is relatively small. However, there a

substantial economic differences between the firms in the magnitude of these costs. The fixed cost

that BK pays per additional store is almost twice the fixed cost MD pays.

Entry costs are particularly important in this setting because they play a key role in the iden-

tification of the dynamic game, through the exclusion restrictions. The estimates of these costs

are very significant, both statistically and economically. Entry costs depend significantly on the

number of installed stores of the firm, K, and on the distance to the firm’s network, Z. The signs of

these effects, negative for θECK and positive for θECZ , are consistent with the existence of economies
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of scope and density between the stores of the same chain. McDonalds has smaller entry costs, and

a larger absolute value of the parameter θECK , which indicates that there are stronger economies of

scope in the network of McDonalds stores.

In summary, the estimated model with unbiased beliefs shows significant differences in the

variable profits and entry costs of the firms. Cannibalization is stronger between BK stores, while

MD exhibits substantial economies of scope both in variables profits and entry costs. Competition

effects seem relatively weak but statistically significant.

(b) Tests of unbiased beliefs. Our test of unbiased beliefs clearly rejects the null hypothesis for

BK, with a p-value of 0.00029, though we cannot reject the hypothesis of unbiased beliefs for MD.34

(c) Estimation with biased beliefs. As expected, (bootstrap) standard errors increase signifi-

cantly when we estimate the model allowing for biased beliefs. Nevertheless, these standard errors

are not large and the estimation provides informative and meaningful results. Comparing these

parameter estimates with those in the model with equilibrium restrictions, the most important

changes are in the parameters of variable profits of BK. In particular, the estimate of the parame-

ter that measures the competitive effect of MD on BK is now more than twice the initial estimate

with equilibrium beliefs. In contrast to the result with unbiased beliefs, we find that the competi-

tive effect of MD on BK is stronger that the effect of BK on MD. This result is consistent with the

findings in our Monte Carlo experiments: imposing the restriction of unbiased beliefs when it is

incorrect introduces a "measurement error" in beliefs which in turn generates an attenuation bias

in the estimate of the parameter associated with the strategic interactions. For the identification

of this structural parameter the sample variation in beliefs plays an important role.

Interestingly, BK’s estimated profit function has a lower level when we allow for biased beliefs

than when we enforce unbiased beliefs: variable profits are lower, and fixed costs and entry costs

are larger. This is fully consistent with our finding that the bias in BK’s beliefs are mostly in

the direction of underestimating the true probability that MD will enter in unexplored markets.

If we impose the assumption of unbiased beliefs, BK’s profit must be relatively high in order to

rationalize entry into markets where MD is also likely to enter or to expand its number of stores.

Once we take into account the over-optimistic beliefs of BK about the behavior of MD, revealed

preference shows that BK profits are not as high as before. In fact, in the estimates that allow for

biased beliefs we find that the differences in the profit function of MD and BK are even larger.

(d) Implications of biased beliefs on BK’s profits. Finally, we have implemented a counterfactual

experiment to obtain a measure of the effects of biased beliefs on BK’s profits in the UK, or more

specifically on its profits in the set of local markets that we include in our analysis, that excludes

Greater London districts. We compare the value of BK’s profits during years 1991 to 1994 given its

actual entry decisions with this firm’s profits if its entry decisions were based on unbiased beliefs

34To implement this test we use a vector δ̂i = {δ̂i(Si) : Si ∈ S} of |S| = 32 statistics.

42



on MD’s behavior. According to our estimates, having unbiased would increase BK’s total profits

in these markets by the following magnitudes: 2.78% in year 1991, 2.11% in 1992, 1.20% in 1993,

and 0.87% in 1994. Remember that biased beliefs occur in markets which are relatively far away

from the firm’s network of stores, that these markets are relatively smaller, and that biased beliefs

decline over time in the sample period as the result of geographic expansion. Though the magnitude

of these gains from correct beliefs seem modest in this case, they also illustrate that they can be

substantial for firms smaller than Burger King that operate only in a few local markets where

beliefs are biased.

7 Conclusion

This paper studies a class of dynamic games of incomplete information where players’beliefs about

the other players’ actions may not be in equilibrium. We present new results on identification,

estimation, and inference of structural parameters and beliefs in this class of games when the

researcher does not have data on elicited beliefs, or these data are limited to players’beliefs at

only some values of the state variables. Specifically, we propose a new test of the null hypothesis

that beliefs are in equilibrium. This test is based on standard exclusion restrictions in dynamic

games. We also derive suffi cient conditions under which payoffs and beliefs are point identified.

These conditions then lead naturally to a sequential estimator of payoffs and beliefs. We illustrate

our model and methods using both Monte Carlo experiments and an empirical application of a

dynamic game of store location by McDonalds and Burger King. They key conditions for the

identification of beliefs and payoffs in our application are the following. The first condition is an

exclusion restriction in a firm’s profit function that establishes that the previous year’s network

of stores of the competitor does not have a direct effect on the profit of a firm, but the firm’s

own network of stores at previous year does affect its profit through the existence of sunk entry

costs and economies of density in these costs. The second condition restricts firms’beliefs to be

unbiased in those markets that are close, in a geographic sense, to the opponent’s network of stores.

However, beliefs are unrestricted, and potentially biased, for unexplored markets which are farther

away from the competitors’network. Our estimates show significant evidence of biased beliefs for

Burger King. We find that Burger King underestimated the probability of entry of McDonalds

in markets that were relatively far away from McDonalds’ network of stores. Furthermore, we

find that imposing the restriction of unbiased beliefs, when this restriction is rejected, generates a

substantial attenuation bias in the estimation of the competition effects.
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APPENDIX

[A.1] Aradillas-Lopez and Tamer’s bounds approach in dynamic games

The purpose of this part of the appendix is to explain why Aradillas-Lopez and Tamer’s bounds

approach, while useful for identification and estimation of static binary choice games, has very

limited applicability to dynamic games. Aradillas-Lopez and Tamer (2008) (we use the abbreviation

ALT from now on) consider a static, two-player, binary-choice game of incomplete information. The

model they consider can be seen as a specific case of our framework. To see this, consider the final

period of the game T in our model. For the sake of notational simplicity, we omit here the vector of

state variables X as an argument of payoff and belief functions. At the last period T , the decision

problem facing the players is equivalent to that of a static game. At period T there is no future and

the difference between the conditional choice value functions is simply the difference between the

conditional choice current profits. For the binary choice game with two players, the Best Response

Probability Function (BRP) function is:

PiT (1) = Λ
(
B
(T )
iT (0) [πiT (1, 0)− πiT (0, 0)] +B

(T )
iT (1) [πiT (1, 1)− πiT (0, 1)]

)
(A.1.1)

ALT assume that players’payoffs are submodular in players’decisions (Yi,Yj), i.e., for every value

of the state variables X, we have that [πit(1, 0) − πit(0, 0)] > [πit(1, 1) − πit(0, 1)]. Under this

restriction, they derive informative bounds around players’conditional choice probabilities when

players are level-k rational, and show that the bounds become tighter as k increases. For instance,

without further restrictions on beliefs (i.e., rationality of level 1), player i’s conditional choice

probability PiT (1) takes its largest possible value when B
(T )
iT (1) = 0, and it takes its smallest

possible value when beliefs are B(T )iT (0) = 1. This result yields informative bounds on the period T

choice probabilities of player i:

Λ (πiT (1, 1)− πiT (0, 1)) ≤ PiT (1) ≤ Λ (πiT (1, 0)− πiT (0, 0)) (A.1.2)

These bounds on conditional choice probabilities can be used to "set-identify" the structural para-

meters in players’preferences.

In their setup, the monotonicity of players’ payoffs in the decisions of other players implies

monotonicity of players’BRP functions in the beliefs about other players actions. This type of

monotonicity is very convenient in their approach, not only from the perspective of identification,

but also because it yields a very simple approach to calculate upper and lower bounds on conditional

choice probabilities. In particular, the maximum and minimum possible values of the CCPs are

reached when the belief probability is equal to 0 or 1, respectively. Unfortunately, this property

does not extend to dynamic games, even the simpler ones. We now discuss this issue.

Consider the two-players, binary-choice, dynamic game at some period t smaller than T . To

obtain bounds on players’choice probabilities analogous to the ones obtained at the last period,

we need to find, for every value of the state variables X, the value of beliefs B(t) that generate the

smallest (and the largest) values of the best response probability Λ(v
B(t)
it (1,X)−vB(t)it (0,X)). That

is, we need to minimize (or maximize) this best response probability with respect to the vector of
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beliefs {B(t)it , B
(t)
it+1, ...,B

(t)
iT }. Without making further assumptions, this best response function is

not monotonic in beliefs at every possible state. In fact, this monotonicity is only achieved under

very strong conditions not only on the payoff function but also on the transition probability of the

state variables and on belief functions themselves.

Therefore, in a dynamic game, to find the largest and smallest value of a best response (and

ultimately the bounds on choice probabilities) at periods t < T , one needs to explicitly solve a

non-trivial optimization problem. In fact, the maximization (minimization) of the BRP function

with respect to beliefs is a extremely complex task. The main reason is that the best response

probability evaluated at a value of the state variables depends on beliefs at every period in the

future and at every possible value of the state variables in the future. Therefore, to find bounds

on best responses we must solve an optimization problem with a dimension equal to the number

of values in the space of state variables times the number of future periods. This is because, in

general, the maximization (or minimization) of a best response with respect to beliefs does not

have a time-recursive structure except under very special assumptions (see Aguirregabiria, 2008).

For instance, though B(T )iT (1|x) = 0 maximizes the best response at the last period T , in general

the maximization of a best response at period T − 1 is not achieved setting B(T−1)iT (1|x) = 0 for

any value x. More generally, the beliefs from period t to T that provide the maximum (minimum)

value of the best response at period t are not equal to the beliefs from period t to T that provide

the maximum (minimum) value of the best response at t− 1. So at each point in time we need to

re-optimize with respect to beliefs about strategies at every period in the future. That is, while the

optimization of expected and discounted payoffs has the well-known time-recursive structure, the

maximization (or minimization) of the value of BRP functions does not.

[A.2] Integrated Value Function and Continuation Values

Our proofs of Propositions 1 - 3 apply the concepts of the integrated value function and the con-

tinuation value function. The integrated value function is defined as V̄ B(t)it (Xt) ≡
∫
V
B(t)
it (Xt, εit)

dGit(εit) (see Rust, 1994). Applying this definition to the Bellman equation, we obtained the

integrated Bellman equation:

V̄
B(t)
it (xt) =

∫
max
yi∈Y

{
v
B(t)
it (yi,xt) + εit(yi)

}
dGit(εit)

=
∫

max
yi∈Y

{
π
B(t)
it (yi,xt) + β

∑
xt+1

V̄
B(t)
it+1 (xt+1) f

B
it (xt+1|yi,xt) + εit(yi)

}
dGit(εit)

(A.2.1)

where it is understood that the function V̄
B(t)
it+1 depends on current beliefs about future events,

that is, B(t)it+1, B
(t)
it+2... and so on. The expected payoff function π

B
it by contrast depends only on

contemporaneous beliefs B(t)it . If {εit(0), εit(1), ..., εit(A− 1)} are i.i.d. extreme value type 1, the
integrated Bellman equation has the following closed-form expression:

V̄
B(t)
it (xt) = γ + ln

( ∑
yi∈Y

exp

{
πBit (yi,xt) + β

∑
Xt+1

V̄
B(t)
it+1 (xt+1) f

B
it (xt+1|yi,xt)

})
(A.2.2)
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where γ is Euler’s constant. In the case of a finite horizon model with beliefs that do not vary over

time (i.e., B(t)it+s = B
(t′)
it+s for every pair of periods t and t

′), with knowledge of payoffs and beliefs,

we could use this formula to obtain the integrated value function by backwards induction, starting

at the last period T .

The continuation value function provides the expected and discounted value of future payoffs

given current choices of all the players and beliefs of player i about future decisions. It is defined

as:

cBit (yt,xt) ≡ β
∑
xt+1

V̄
B(t)
it+1 (xt+1) ft(xt+1|yt,xt) (A.2.3)

Note that continuation values cBit depend on beliefs for decisions at periods t+ 1 and later, but not

on beliefs for decisions at period t. By definition, the relationship between the conditional choice

value function vB(t)it and the continuation value function cB(t)it is the following:

v
B(t)
it (yi,x) =

∑
y−i∈YN−1

[
πit(yi,y−i,x) + cBit (yi,y−i,x)

]
B
(t)
it (y−i|x) (A.2.4)

Finally, we define two other objects that will be useful in what follows. First, the continuation

value differences:

c̃Bit (y−i,x) ≡ cBit (1,y−i,x)− cBit (0,y−i,x) (A.2.5)

and the sum of current payoffs and the continuation value differences:

gBit (yi,y−i,x) ≡ πit(yi,y−i,x) + c̃Bit (y−i,x) (A.2.6)

[A.3] Proof of Proposition 1

The proof has two parts. First, we show that given CCPs of player i only, it is possible to identify

a function that depends on beliefs of players but not on payoffs. Second, under the assumption

of equilibrium beliefs, the identified function of beliefs can be also identified using only CCPs of

player j. Therefore, we have identified the same object using two different sources of data. If the

hypothesis of equilibrium beliefs is correct, the two approaches should give us the same result, but

if beliefs are biased the two approaches provide different results. This can be used to construct a

test statistic.

There are N = 2 players, i and j, the vector of state variables X is (Si, Sj ,W), and players’

actions are yi and yj . Under Assumption ID-3(iv), the transition of the state variables has the form

ft(Xt+1|Yt,Wt) and we have that continuation values cBit (Yt,Xt) do not depend on St. Therefore,

the restrictions of the model can be written as:

qit(yi,x) = B
(t)
it (x)′ gBit (yi, si,w) (A.3.1)

where B
(t)
it (x) and gBit (yi, si,w) are A × 1 vectors. For notational simplicity and without loss of

generality, we omit W for the rest of this proof.

Let s0j be an arbitrary value in the set S. And let S(a) and S(b) be two different subsets included
in the set S −{s0j} such that they satisfy two conditions: (1) each of these sets has A− 1 elements;
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and (2) S(a) and S(b) have at least one element that is different. Since |S| ≥ A + 1, it is always

possible to construct two subsets that satisfy these conditions. Given one of these subsets, say S(a),
we can construct the following system of A− 1 equations:

∆q
(a)
it (yi, si) = ∆B

(a)
it (Si) g̃it(yi, si) (A.3.2)

where: ∆q
(a)
it (yi, si) is an (A−1)×1 vector with elements {qit(yi, si, sj)−qit(yi, si, s0j ) : for sj ∈ S(a)};

∆B
(a)
it (si) is a (A−1)×(A−1)matrix with elements {B(t)it (yj , si, sj)−B(t)it (yj , si, s

0
j ) : for yj ∈ Y−{0}

and sj ∈ S(a)}; and g̃it(yi, si) is a (A − 1) × 1 vector with elements {gBit (yi, yj , si) − gBit (yi, 0, si) :

yj ∈ Y}. Using the other subset, S(b), we can construct a similar system of A− 1 equations. Given

that matrices ∆B
(a)
it (si) and ∆B

(b)
it (si) are non-singular, we can use these systems to obtain two

different solutions for g̃it(yi, si):

g̃it(yi, si) =
[
∆B

(a)
it (si)

]−1
∆q

(a)
it (yi, si)

=
[
∆B

(b)
it (si)

]−1
∆q

(b)
it (yi, si)

(A.3.3)

For given si, we have these two solutions of g̃it(yi, si) for every value of yi in the set Y − {0}.
Putting these A− 1 solutions in matrix form, we have:[

∆B
(a)
it (si)

]−1
∆Q

(a)
it (si) =

[
∆B

(b)
it (si)

]−1
∆Q

(b)
it (si) (A.3.4)

where ∆Q
(a)
it (si) and ∆Q

(b)
it (si) are (A − 1) × (A − 1) matrices with columns ∆q

(a)
it (yi, si) and

∆q
(b)
it (yi, si), respectively. Given that ∆Q

(a)
it (si) is an invertible matrix, we can rearrange the

previous system in the following way:

∆B
(a)
it (si)

[
∆B

(b)
it (si)

]−1
= ∆Q

(a)
it (si)

[
∆Q

(b)
it (si)

]−1
(A.3.5)

This expression shows that we can identify the (A−1)×(A−1)matrix∆B
(a)
it (si)

[
∆B

(b)
it (si)

]−1
that

depends only on beliefs, using only the CCPs of player i. That is, we can identify (A− 1)× (A− 1)

objects or functions of beliefs.

Under the assumption of unbiased beliefs, we can use the CCPs of the other player, j, to identify

matrix ∆B
(a)
it (si)

[
∆B

(b)
it (si)

]−1
:

∆B
(a)
it (si)

[
∆B

(b)
it (si)

]−1
= ∆P

(a)
jt (si)

[
∆P

(b)
jt (si)

]−1
(A.3.6)

where ∆P
(a)
jt (si) is (A − 1) × (A − 1) matrix with elements {Pjt(yj , si, sj) − Pjt(yj , si, s

0
j ) : for

yj ∈ Y−{0} and sj ∈ S(a)}, and∆P
(b)
jt (si) has a similar definition. Therefore, under the assumption

of unbiased beliefs by player i the CCPs of player i and player j should satisfy the following (A−1)2

restrictions:

∆Q
(a)
it (si)

[
∆Q

(b)
it (si)

]−1
−∆P

(a)
jt (si)

[
∆P

(b)
jt (si)

]−1
= 0 (A.3.7)

These restrictions are testable. �
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[A.4] Proof of Proposition 2

Proposition 2. Part (2.2). Identification of values. The restrictions of the model that come
from best response behavior of player i can be represented using the following equation. For any

(yi,x) ∈ Y × X ,
qit(yi,x) = B

(t)
it (x)′

[
πit(yi,x) + c̃Bit (yi,x)

]
(A.4.1)

where B
(t)
it (x) , πit(yi,x), and c̃Bit (yi,x) are vectors with dimension AN−1 × 1 containing beliefs,

payoffs, and continuation values, respectively, for every possible value of y−i in the set YN−1.
Recalling our definition: gBit (yi,x) ≡ πit(yi,x) + c̃Bit (yi,x), we can re-write equation A.4.1 as

qit(yi,x) = Bit(x)′ gBit (yi,x), and gBit (yi,x) is also a vector with dimension AN−1 × 1.

Let S(R)−i be the set [S(R)]N−1. By assumption ID-4, for any x such that s−i ∈ S(R)−i we have

that B(t)it (y−i|x) = P−it(y−i|x) and P−it(y−i|x) is known to the researcher. Consider the system

of equations formed by equation (A.4.1) at a fixed value of (yi, si,w) and for every value of s−i in

S(R)−i . This is a system of RN−1 equations, and we can represent this system in vector form using

the following expression:

q
(R)
it (yi, si) = P

(R)
−it(si) gBit (yi, si) (A.4.2)

where P
(R)
−it(si) is the R

N−1 × AN−1 matrix {P−it(y−i|si, s−i) : y−i ∈ YN−1, s−i ∈ S(R)−i }. Under
conditions (i)-(ii) in Proposition 2, matrix P

(R)
−it(si)

′P
(R)
−it(si) is non-singular and therefore we can

solve for vector gBit (yi, si) in the previous system of equations:

gBit (yi, si) =
[
P
(R)
−it(si)

′ P
(R)
−it(si)

]−1
P
(R)
−it(si)

′ q
(R)
it (yi, si) (A.4.3)

This expression shows that, given continuation values at period t, the vector of payoffs gBit (yi, si)

is identified, i.e., part (b) of Proposition 2.

Proposition 2. Part (2.1). Identification of beliefs. Now, we show the identification of

the beliefs function for states outside the subset S(R)−i . Again, we start with the system equations

implied by the best response restrictions, but now we take into account that the vector gBit (yi, si)

is identified and then look at the identification of beliefs at states x with s−i outside the subset

S(R)−i . We stack equation (A.3.1) for every value of yi ∈ Y − {0} to obtain a system of equations.

Note that B
(t)
it (x) is a vector of AN−1 probabilities, one element for each value of y−i in YN−1.

The probabilities in this vector should sum to one, and therefore, B
(t)
it (x) satisfies the restriction

1′Bit(x) = 1, where 1 is a vector of ones. Therefore, we have the following system of A equations:

qit(x) = Ṽit(x) B
(t)
it (x) (A.4.4)

qit(x) is an A × 1 vector with elements {qit(1,x), ..., qit(A − 1,x)} at rows 1 to A − 1, and a 1

at the last row. And Ṽit(x) is an A × AN−1 matrix where rows 1 to A − 1 are gBit (1, si,w)′, ...,

gBit (A− 1, si,w)′, and the last row of the matrix is a row of ones. Since the values gBit (yi,y−i, si,w)

are identified from Proposition 2.2, we have that matrix Ṽit(x) is identified. We now prove that

condition (ii) implies that matrix Ṽit(x) is non-singular. Our proof of part (b) implies that:

Ṽit(x) = Q
(R)
it (si) P

(R)
−it(si)

[
P
(R)
−it(si)

′ P
(R)
−it(si)

]−1
(A.4.5)
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and Q
(R)
it (si) is the A×R matrix with q

(R)
it (yi, si)

′ at the first A− 1 rows, and ones at the last row.

By Assumption ID-4, P
(R)
−it(si) is full column rank, and then a suffi cient condition for Ṽit(x) to be

non-singular matrix is that Q
(R)
it (si) has rank A, which is a condition in Proposition 2. Therefore,

the vector of beliefs B
(t)
it (x) is identified as:

B
(t)
it (x) =

[
Ṽit(x)

]−1
qit(x) (A.4.6)

Proposition 2. Part (2.3): Identification of payoff differences. Consider the function

gBit (yi,y−i, si) at two different values of si, say s
(a) and s(b), i.e., gBit (yi,y−i, s

(a)) = πit(yi,y−i, s(a))+

c̃Bit (y−i) and gBit (yi,y−i, s
(b)) = πit(yi,y−i, s(b)) + c̃Bit (y−i). By assumption ID-3(iv), variable si

enters gBit (yi,y−i, si) through the current payoff. Therefore, the difference: gBit (yi,y−i, s
(a)) −

gBit (yi,y−i, s
(b)) gives the payoff difference:

gBit (yi,y−i, s
(a))− gBit (yi,y−i, s(b)) = πit(yi,y−i, s

(a))− πit(yi,y−i, s(b)) � (A.4.7)

[A.5] Asymptotic distribution of two-step estimators

The derivation of the asymptotic distribution of our two-step estimators of payoffs and beliefs is an

application of properties of two-step semiparametric estimators as shown in Newey (1994), Andrews

(1994), and McFadden and Newey (1994). In fact, given our maintained assumption that the space

of state variables X is discrete and finite, all the structural functions in our model live in a finite

dimensional Euclidean space. Therefore, we do not need to apply stochastic equicontinuity results,

as in Newey (1994) and Andrews (1994), to show root-M consistency and asymptotic normality

of these estimators. Here we apply results in Newey (1984) who provides a methods of moments

interpretation of sequential estimators.

We begin by establishing the consistency and asymptotic normality of our estimator of CCPs.

The estimator of the CCP Pit(y|x) is based on the moment condition:

E [1{Xmt = x} (1{Yimt = y} − Pit(y|x))] = 0 (A.5.1)

In vector form, we have the system, E [fx(Xmt, Yimt,Pit,x)] ≡ E [1{Xmt = x} (1Yimt −Pit,x)] = 0,

where 1Yimt and Pit,x are the (A − 1) × 1 vectors 1Yimt ≡ {1{Yimt = y} : y = 1, 2, ..., A− 1} and
Pit,x ≡ {Pit(y|x) : y = 1, 2, ..., A− 1}, respectively. The corresponding sample moment condition
that defines the estimator P̂it,x is:

∑M
m=1 fx(Xmt, Yimt, P̂it,x) = 0. For notational simplicity, for

the rest of this Appendix we omit the player and time subindexes (i, t) from variables, parameters,

and functions. As the observations are i.i.d. across markets, this estimator satisfies the standard

regularity conditions for consistency and asymptotic normality of the Method of Moments estimator,

such that as M goes to infinity, we have that P̂x →p Px, and

√
M
(
P̂x −Px

)
→d N

(
0 , F−1x Ωff F−1′x

)
(A.5.2)

where Fx ≡ E [∂fx(X, Y,Px)/∂P′x] and Ωff ≡ E [fx(X, Y,Px) fx(X, Y,Px)′].
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We now establish the consistency and asymptotic normality of the estimator of the function

gBit (yi,y−i,X). This implies the distribution of the estimator of payoffs πBit (yi,y−i,X) is also consis-

tent and asymptotically normal as, by Proposition 3, payoffs are a deterministic, linear combination

of gBit (yi,y−i,X). The population restrictions that our estimator of payoff must satisfy at a given

value of (yi, Si,W) are given by:

q
(R)
i (yi, Si,W)−P(R)(Si,W) gBi (yi, Si,W) = 0 (A.5.3)

Or in vector form, for any value of yi (and omitting the player subindex i), hS,W(Px,πS,W) ≡
q(R)(., S,W) − P(R)(., S,W) πS,W(., S,W) = 0. In the just-identified nonparametric model, the

estimator ĝS,W of the vector of payoffs gS,W is the value that solves the system of equations

hS,W(P̂x, π̂S,W) = 0. Under the conditions of Proposition 2, the mapping hS,W(Px,πS,W) satis-

fies the regularity conditions to apply Slutsky’s Theorem and the Continuous Mapping Theorem

(or Mann-Wald Theorem) such that as M goes to infinity, we have that ĝS,W →p gS,W, and√
M (ĝS,W − gS,W)→d N

(
0 , VgS,W

)
, where applying Newey (1984)

VgS,W = H−1g
(

Ωhh + HP[F−1x Ωff F−1′x ] H′P −HP[F−1x Ωf,h + Ωh,fF
−1′
x ]H′P

)
H−1′f (A.5.4)

with Hg ≡ ∂hS,W(Px,gS,W)/∂g′S,W, HP ≡ ∂hS,W(Px,gS,W)/∂P′x, Ωhh ≡ E[hS,W(Px,gS,W)

hS,W(Px,gS,W)′],Ωfh ≡ E[fx(X, Y,Px) hS,W(Px,gS,W)′], andΩhf ≡ E[hS,W(Px,gS,W) fx(X, Y,Px)′].

Our estimator of beliefs takes as given the estimates of CCPs and payoffs. Specifically, for a

given vector of the state variables x, beliefs are given by the system

`x (Px,Bx) ≡ Ṽi(X) Bi(X)− qi(X) = 0 (A.5.5)

The estimator B̂x of the vector of beliefs Bx is the value that solves the system of equations

`x

(
P̂x, B̂x

)
= 0. Under the conditions of Proposition 2, the mapping `x (Px,Bx) satisfies the

regularity conditions to apply Slutsky’s Theorem and the Continuous Mapping Theorem such that

as M goes to infinity, we have that B̂x →p Bx, and
√
M
(
B̂x −Bx

)
→d N (0 , VBx), where

applying Newey (1984),

VBx = L−1B
(

Ω`` + LP[F−1x Ωff F−1′x ] L′P − LP[F−1x Ωf,` + Ω`,fF
−1′
x ]L′P

)
L−1′B (A.5.6)

with LB ≡ ∂`x (Px,Bx) /∂B′x, LP ≡ ∂`x (Px,Bx) /∂P′x, Ω`` ≡ E[`x (Px,Bx) `x (Px,Bx)′], Ωf,` ≡
E[fx(X, Y,Px) `x (Px,Bx)′], and Ω`,f ≡ E[`x (Px,Bx) fx(X, Y,Px)′]. �
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Table 1. Order Condition for Identification
Models without Exclusion Restrictions in Payoffs

Number of parameters & restrictions for each player-period

Models without exclusion restrictions
Number of parameters (A) (B)

& restrictions Unrestricted Beliefs Unbiased (Equil) Beliefs
(1) Restrictions from
observed behavior (A− 1) |X | (A− 1) |X |

(2) Restrictions from
unbiased beliefs 0 (N − 1) (A− 1) |X |

(3) Free parameters
in payoffs (A− 1) |X | AN−1 (A− 1) |X | AN−1

(4) Free parameters
in beliefs (N − 1) (A− 1) |X | (N − 1) (A− 1) |X |

(5) Free parameters
in c̃ (A− 1) |X | (A− 1) |X |

(1)+(2)-(3)-(4)-(5)
Over-under identifying rest. −(A− 1)|X |

[
AN−1 + (N − 1)

]
−(A− 1) |X |

[
AN−1

]
Is the Model identified? NO NO
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Table 2. Order Condition for Identification
Models WITH Exclusion Restrictions in Payoffs
Number of parameters & restrictions for each player-period

Models with exclusion restrictions
Number of parameters (A) (B)

& restrictions Unrestricted Beliefs Unbiased (Equil) Beliefs
(1) Restrictions from
observed behavior (A− 1) |S|N (A− 1) |S|N

(2) Restrictions from
unbiased beliefs 0 (N − 1) (A− 1) |S|N

(3) Free parameters
in payoffs (A− 1) |S| AN−1 (A− 1) |S| AN−1

(4) Free parameters
in beliefs (N − 1) (A− 1) |S|N (N − 1) (A− 1) |S|N

(5) Free parameters
in c̃ (A− 1) 0

(1)+(2)-(3)-(4)-(5)

Over-under identifying rest. (A− 1)|S|N
[
1− AN−1

|S|N−1 − (N − 1)− 1
|S|N

]
(A− 1)|S|N

[
1− AN−1

|S|N−1

]

Is the Model identified? NO (For any N≥ 2) YES (For any |S| ≥ A)
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Table 3
Monte Carlo Experiments(1)

Biased Beliefs in the DGP Unbiased Beliefs in the DGP

Estimation Estimation Estimation Estimation

with equilibrium no equilibrium with equilibrium no equilibrium

restrictions restrictions restrictions restrictions

(1) (2) (3) (4) (5) (6) (7) (8)

Parameter MAB(2) Std MAB Std MAB Std MAB Std

(True value) (%)(3) (%) (%) (%) (%) (%) (%) (%)

Payoffs

α1 (2.4) 0.521 0.332 0.308 0.245 α1 (2.4) 0.180 0.135 0.525 0.441
(21.7%) (13.8%) (12.8%) (10.2%) (7.5%) (5.6%) (21.9%) (18.4%)

δ1 (3.0) 0.456 0.277 0.284 0.224 δ1 (3.0) 0.178 0.134 0.581 0.509
(15.2%) (9.2%) (9.5%) (7.5%) (5.9%) (4.5%) (19.4%) (17.0%)

θEC1 (0.5) 0.108 0.081 0.205 0.160 θEC1 (0.5) 0.091 0.069 0.172 0.128
(21.6%) (16.3%) (40.9%) (32.0%) (18.3%) (13.8%) (34.5%) (25.7%)

Beliefs at Z2= 0 : B1(Y 1t−1, Y 2t−1)
B1(0, 0) (0.410) 0.409 0.066 0.148 0.110 B1(0, 0) (0.658) 0.058 0.044 0.101 0.082

(99.8%) (16.0%) (36.2%) (26.8%) (8.8%) (6.6%) (15.4%) (12.4%)
B1(0, 1) (0.442) 0.442 0.035 0.111 0.086 B1(0, 1) (0.814) 0.031 0.023 0.081 0.114

(100%) (7.9%) (25.1%) (19.5%) (3.8%) (2.8%) (9.9%) (14.0%)
B1(1, 0) (0.403) 0.403 0.035 0.091 0.072 B1(1, 0) (0.559) 0.031 0.024 0.068 0.053

(100%) (8.7%) (22.7%) (17.9%) (5.6%) (4.3%) (12.2%) (9.5%)
B1(1, 1) (0.437) 0.437 0.021 0.070 0.053 B1(1, 1) (0.727) 0.026 0.020 0.054 0.041

(100%) (4.8%) (16.0%) (12.2%) (3.6%) (2.7%) (7.4%) (5.7%)

CCPs at Z2= 0 : P 1(Y 1t−1, Y 2t−1)
P1(0, 0) (0.829) 0.073 0.034 0.051 0.038 P1(0, 0) (0.704) 0.037 0.028 0.063 0.047

(8.8%) (9.7%) (4.1%) (4.6%) (5.2%) (4.0%) (8.9%) (6.6%)
P1(0, 1) (0.814) 0.090 0.026 0.035 0.026 P1(0, 1) (0.598) 0.025 0.019 0.046 0.040

(11.1%) (3.1%) (4.3%) (3.2%) (4.2%) (3.2%) (7.6%) (6.7%)
P1(1, 0) (0.891) 0.056 0.015 0.022 0.027 P1(1, 0) (0.841) 0.014 0.011 0.028 0.021

(6.3%) (1.7%) (2.5%) (3.1%) (1.9%) (1.3%) (3.3%) (2.5%)
P1(1, 1) (0.880) 0.072 0.013 0.017 0.012 P1(1, 1) (0.761) 0.016 0.012 0.023 0.018

(8.1%) (1.4%) (1.9%) (1.4%) (2.1%) (1.6%) (3.1%) (2.3%)

Note (1): Summary of DGPs in Monte Carlo Experiments. In all the experiments the values of the parameters are

α1= α2= 2.4, δ1= δ2= 3.0, θFC2 = −1.0, θEC1 = θEC2 = 0.5, and β1= β2= 0.95.
Z2mt∼ Uniform over {−2,−1, 0,+1,+2} i.i.d.
In Experiment B with Biased beliefs, λ1= λ2= 1 if Z2∈ {−2, 2} and λ1= λ2= 0.5 if Z2∈ {−1, 0, 1}.
Number of Monte Carlo Replications is 10,000. And number of observations in each replication, M=500 and T=5.

Note (2): MAB = Mean Absolute Bias. Std = Standard deviation.

Note (3): (%) = Percentage of the true value of the parameter.
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Table 4
Monte Carlo Experiment(1): One replication with 1 million observations

Biased Beliefs in the DGP Unbiased Beliefs in the DGP
Estimation Estimation Estimation Estimation

with equilibrium no equilibrium with equilibrium no equilibrium
restrictions restrictions restrictions restrictions

(1) (2) (3) (4)
Parameter MAB(2) MAB MAB MAB
(True value) (%)(3) (%) (%) (%)

Payoffs
α1 (2.4) 0.523 0.005 α1 (2.4) 0.002 0.017

(21.7%) (0.2%) (0.1%) (0.7%)
δ1 (3.0) 0.365 0.009 δ1 (3.0) 0.001 0.013

(12.2%) (0.3%) (0.0%) (0.4%)
θEC1 (0.5) 0.051 0.003 θEC1 (0.5) 0.002 0.004

(10.2%) (0.6%) (0.3%) (0.8%)

Beliefs at Z2= 0 : B1(Y 1t−1, Y 2t−1)
B1(0, 0) (0.410) 0.408 0.007 B1(0, 0) (0.658) 0.003 0.007

(99.6%) (1.7%) (0.4%) (1.1%)
B1(0, 1) (0.442) 0.444 0.007 B1(0, 1) (0.814) 0.001 0.003

(100%) (1.6%) (0.1%) (0.4%)
B1(1, 0) (0.403) 0.399 0.004 B1(1, 0) (0.559) 0.004 0.001

(99.0%) (1.0%) (0.6%) (0.1%)
B1(1, 1) (0.437) 0.437 0.006 B1(1, 1) (0.727) 0.001 0.000

(100%) (1.5%) (0.1%) (0.0%)

CCPs at Z2= 0 : P 1(Y 1t−1, Y 2t−1)
P1(0, 0) (0.829) 0.072 0.003 P1(0, 0) (0.704) 0.001 0.005

(8.7%) (0.4%) (0.2%) (0.7%)
P1(0, 1) (0.814) 0.092 0.003 P1(0, 1) (0.598) 0.001 0.003

(11.3%) (0.4%) (0.2%) (0.5%)
P1(1, 0) (0.891) 0.055 0.002 P1(1, 0) (0.841) 0.001 0.000

(6.3%) (0.2%) (0.1%) (0.0%)
P1(1, 1) (0.880) 0.077 0.001 P1(1, 1) (0.761) 0.001 0.000

(8.2%) (0.2%) (0.2%) (0.0%)

Note (1): Summary of DGPs in Monte Carlo Experiments. In all the experiments the values of the parameters are

α1= α2= 2.4, δ1= δ2= 3.0, θFC2 = −1.0, θEC1 = θEC2 = 0.5, and β1= β2= 0.95.
Z2mt∼ Uniform over {−2,−1, 0,+1,+2} i.i.d.
In Experiment B with Biased beliefs, λ1= λ2= 1 if Z2∈ {−2, 2} and λ1= λ2= 0.5 if Z2∈ {−1, 0, 1}.
Number of Monte Carlo Replications is 1, and the number of observations is 1,000,000.

Note (2): MAB = Mean Absolute Bias.

Note (3): (%) = Percentage of the true value of the parameter.
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Table 5
Descriptive Statistics on Local Markets (Year 1991)
422 local authority districts (excluding Greater London districts)

Variable Median Std. Dev. Pctile 5% Pctile 95%

Area (thousand square km) 0.30 0.73 0.03 1.67
Population (thousands) 94.85 93.04 37.10 280.50

Share of children: Age 5-14 (%) 12.43 1.00 10.74 14.07
Share of Young: 15-29 (%) 21.24 2.46 17.80 25.17

Share of Pensioners: 65-74 (%) 9.01 1.50 6.89 11.82

GDP per capita (thousand £ ) 92.00 12.14 74.40 112.70
Claimants of UB / Population ratio (%) 2.75 1.27 1.24 5.11

Avg. Weekly Rent per dwelling (£ ) 25.31 10.61 19.11 35.07
Council tax (thousand £ ) 0.24 0.05 0.11 0.31

Number of BK stores 0.00 0.62 0.00 1.00

Number of MD stores 1.00 1.16 0.00 3.00
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Table 6
Evolution of the Number of Stores

422 local authority districts (excluding Greater London districts)

Burger King
1990 1991 1992 1993 1994 1995

#Markets with Stores 71 98 104 118 131 150

Change in #Markets with Stores - 17 6 14 13 19

# of Stores 79 115 128 153 181 222

Change in # of Stores - 36 13 25 28 41

Mean #Stores per Market 1.11 1.17 1.23 1.30 1.38 1.48
(Conditional on #Stores>0)

McDonalds
1990 1991 1992 1993 1994 1995

#Markets with Stores 206 213 220 237 248 254

Change in #Markets with Stores 7 7 17 11 6

# of Stores 281 316 344 382 421 447

Change in # of Stores 35 28 38 39 26

Mean #Stores per Market 1.36 1.49 1.56 1.61 1.70 1.76
(Conditional on #Stores>0)
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Table 7
Transition Probability Matrix for Market Structure

Annual Transitions. Market structure: BK=x & MD=y, where x and y are number of stores

%
Market Structure at t+1

Market BK=0 BK=0 BK=0 BK=1 BK=1 BK=1 BK≥ 2 BK≥ 2 BK≥ 2
Structure at t MD=0 MD=1 MD≥ 2 MD=0 MD=1 MD≥ 2 MD=0 MD=1 MD≥ 2

BK=0 &MD=0 95.1 3.6 0.2 1.0 - - - 0.1 -

BK=0 &MD=1 - 87.2 4.2 - 7.4 1.0 - - 1.4

BK=0 &MD≥ 2 - - 82.7 - - 15.8 - - 1.4

BK=1 &MD=0 - - - 76.0 18.0 2.0 4.0 - -

BK=1 &MD=1 - - - - 87.1 8.1 - 3.3 1.4

BK=1 &MD≥ 2 - - - - - 86.5 - - 13.5

BK≥ 2 &MD=0 - - - - - - 84.6 15.4 -

BK≥ 2 &MD=1 - - - - - - - 69.0 31.0

BK≥ 2 &MD≥ 2 - - - - - - - - 100.0

Frequency 41.6 23.3 6.6 2.2 10.9 8.8 0.6 1.4 4.5
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Table 8
Reduced Form Probits for the Decision to Open a Store

Estimated Marginal Effects1 (∆P (x) when dummy from 0 to 1)
Burger King McDonalds

Explanatory Variable No FE County FE District FE No FE County FE District FE
Own number

of stores at t-1
Dummy: Own #stores = 1 -0.021∗∗ -0.036∗∗ -0.885∗∗ -0.035∗∗ -0.045∗∗ -0.550∗∗

(0.005) (0.007) (0.063) (0.010) (0.012) (0.056)
Dummy: Own #stores = 2 -0.023∗∗ -0.030∗∗ -0.210∗ -0.047∗∗ -0.060∗ -0.757∗∗

(0.004) (0.005) (0.085) (0.006) (0.008) (0.041)
Dummy: Own #stores ≥ 3 -0.019∗∗ -0.027∗∗ -0.056 -0.043∗∗ -0.053∗∗ -0.816∗∗

(0.005) (0.005) (0.036) (0.006) (0.008) (0.038)

Competitor’s number
of stores at t-1

Dummy: Comp.’s #stores = 1 0.032∗∗ 0.037∗ -0.025 0.020 0.032∗ 0.052∗∗

(0.011) (0.014) (0.055) (0.013) (0.018) (0.073)
Dummy: Comp.’s #stores = 2 0.045∗ 0.052∗ -0.017 0.041 0.076 -0.007∗∗

(0.023) (0.029) (0.031) (0.029) (0.046) (0.093)
Dummy: Comp.’s #stores ≥ 3 0.089∗ 0.101∗ 0.011 -0.041∗∗ -0.050∗∗ -0.104∗∗

(0.048) (0.059) (0.084) (0.007) (0.009) (0.020)

Pred. Prob. Y=1 at mean X 0.024 0.027 0.014 0.045 0.054 0.085

Time dummies YES YES YES YES YES YES
Control variables2 YES YES YES YES YES YES

County Fixed Effects NO YES NO NO YES NO
District Fixed Effects NO NO YES NO NO YES

Number of Observations3 2110 1715 535 2110 1855 640
Number of Local Districts3 422 343 107 422 371 128

log likelihood -371.89 -340.26 -110.54 -467.46 -449.02 -198.50
Pseudo R-square 0.229 0.252 0.624 0.159 0.161 0.441

Note 1: Estimated Marginal Effects are evaluated at the mean value of the rest of the explanatory variables.

Note 2: Every estimation includes as control variables log-population, log-GDP per capita, log-population density,

share population 5-14, share population 15-29, average rent, and proportion of claimants of unemployment benefits.

Note 3: FE estimations do not include districts where the dependent variable does not have enough time variation.
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Table 9
Estimation of Dynamic Game for McDonalds and Burger King

Models with Unbiased and Biased Beliefs(1)

Data: 422 markets, 2 firms, 5 years = 4,220 observations

β = 0.95 (not estimated)
(1) (2) (3) (4) (5) (6)
Unbiased Beliefs Biased Beliefs: Z∗= 2 Biased Beliefs: Z∗= 1

Burger King McDonalds Burger King McDonalds Burger King McDonalds

Variable Profits:
θV P0 0.5413 0.8632 0.4017 0.8271 0.4342 0.8582

(0.1265)∗ (0.2284)∗ (0.2515)∗ (0.4278)∗ (0.2820) (0.4375)

θV Pcan cannibalization -0.2246 0.0705 -0.2062 0.0646 -0.1926 0.0640

(0.0576)∗ (0.0304)∗ (0.1014)∗ (0.0710) (0.1140)∗ (0.0972)

θV Pcom competition -0.0541 -0.0876 -0.1133 -0.0856 -0.1381 -0.0887

(0.0226)∗ (0.0272) (0.0540)∗ (0.0570) (0.0689)∗ (0.0622)

Fixed Costs:
θFC0 fixed 0.0350 0.0374 0.0423 0.0307 0.0490 0.0339

(0.0220) (0.0265) (0.0478) (0.0489) (0.0585) (0.0658)

θFClin linear 0.0687 0.0377 0.0829 0.0467 0.0878 0.0473

(0.0259)∗ (0.0181)∗ (0.0526)∗ (0.0291) (0.0665) (0.0344)

θFCqua quadratic -0.0057 0.0001 -0.0007 0.0002 -0.0004 0.0004

(0.0061) (0.0163) (0.0186) (0.0198) (0.0253) (0.0246)

Entry Cost:
θEC0 fixed 0.2378 0.1887 0.2586 0.1739 0.2422 0.1764

(0.0709)∗ (0.0679)∗ (0.1282)∗ (0.0989)∗ (0.1504) (0.1031)

θECK (K) -0.0609 -0.107 -0.0415 -0.1190 -0.0419 -0.1271

(0.043) (0.0395)∗ (0.096) (0.0628)∗ (0.109)∗ (0.0762)∗

θECZ (Z) 0.0881 0.0952 0.1030 0.1180 0.0902 0.1212

(0.0368)∗ (0.0340)∗ (0.0541)∗ (0.0654)∗ (0.0628) (0.0759)∗

Log-Likelihood -848.4 -840.4 -838.7

Test of unbiased beliefs:

For BK: D̂ (d.o.f) (p-value) 66.841 (32) (0.00029) 66.841 (32) (0.00029)

For MD: D̂ (d.o.f) (p-value) 42.838 (32) (0.09549) 42.838 (32) (0.09549)

Note 1: Bootstrap standard errors in parentheses.

Note 2: ∗ and ∗∗ denote significance at the 5% and 1% level respectively
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Figure 1: Rejection Probability when the Null is False (Experiment “B")

 

Figure 2: Rejection Probability when the Null is True (Experiment “U")
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