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Abstract

This paper studies the identi�cation of players�preferences and beliefs in empirical appli-
cations of discrete choice games using experimental data. The experiment comprises a set of
games with similar features (e.g., two-player coordination games) where each game has di¤erent
values for the players�monetary payo¤s. Each game can be interpreted as an experimental
treatment group. The researcher assigns randomly subjects to play these games and observes
the outcome of the game as described by the vector of players�actions. The researcher is inter-
ested in the nonparametric identi�cation of players�preferences (utility function of money) and
players�beliefs about the expected behavior of other players, without imposing restrictions such
as unbiased or rational beliefs or a particular functional form for the utility of money. We show
that, given a particular design of the matrices of payo¤s in the treatments of the experiment,
the hypothesis of unbiased/rational beliefs is testable. We propose a nonparametric test of this
null hypothesis. We apply our method to two sets of experiments conducted by Goeree and
Holt (2001) and Heinemann, Nagel and Ockenfels (2009). Our empirical results suggest that in
the matching pennies game, a player is able to correctly predict other player�s behavior. In the
public good coordination game, our test can reject the null hypothesis of unbiased beliefs when
the payo¤ of the non-cooperative action is relatively low.
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1 Introduction

In games of incomplete information, players�behavior depends on their preferences and on their

beliefs about the uncertain actions of other players. Knowing both terms is essential to understand

player�s behavior and make counterfactual prediction. However, both terms are unobserved to

researchers and it is an empirical challenge to distinguish them. To �ll this gap, we study the joint

identi�cation of preferences and beliefs using experimental data from the outcomes of multiple

realizations of games.

In the experimental economics literature, researchers design laboratory experiments and gener-

ate experimental data to study player�s behavior in games. From the point of view of identi�cation,

there are clear advantages of having data from a controlled experiment. In particular, the design of

the experiment determines players�monetary payo¤s such that these payo¤s are perfectly known to

the researcher. Most of the experimental games literature has exploited this advantage using three

alternative approaches. A �rst approach imposes the restriction that the utility function is equal to

the monetary payment (plus a mean-zero private information variable, henceforth, linear utility as-

sumption) and then identi�es beliefs using choice data. Examples of this approach include Cheung

and Friedman (1997) who estimate a belief-learning process in a repeated game, and Nyarko and

Schotter (2002) who compare beliefs estimated in this way with elicited beliefs. A second approach

assumes that players form equilibrium/unbiased beliefs. Under this assumption, a player�s belief is

identi�ed by the probability distribution of other players�actions given the information available

and the utility function of money can be identi�ed thereafter using choice data. An example of

this approach is Goeree, Holt and Palfrey (2003) who estimate each player�s risk preference under

the Quantal Response Equilibrium (QRE) framework (Mckelvey and Palfrey, 1995 and 1998). In

another stream, experimental researchers measure subjects�beliefs in games by elicitation process.

Recently, Karni (2009), O¤erman et al. (2009) and Hossain and Okui (2013) developed di¤erent

mechanisms that can correctly elicit player�s belief regardless of risk preference.1 See Schotter and

Trevino (2014) and Schlag et al. (2015) for recent reviews of prominent elicitation methods and

their practical issues.

This paper proposes an alternative approach to identify preferences and beliefs in discrete

games of incomplete information using data from a controlled experiment. Our approach relaxes

the assumption of unbiased or equilibrium beliefs and it does not impose any parametric restriction

1Karni�s (2009) mechanism involves randomized payment and such idea was �rst proposed by Smith (1961). In
addition, a similar design is conducted by Grether (1992).
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on the functional form of the utility function nor needs information of elicited beliefs. Relaxing

these restrictions is important in di¤erent empirical applications.

First, there are multiple reasons why players may have biased beliefs. Playing a Bayesian Nash

Equilibrium strategy requires player to determine other players�equilibrium strategy and to be able

to integrate it over the other player�s private information. Such calculation is burdensome, and hu-

man cognition limits may preclude the equilibrium behavior, particularly in one-shot experimental

games. Even in the absence of cognition limits, in games with multiple equilibria players may have

uncertainty about which equilibrium strategy will be chosen by other players. A player may believe

that the selected equilibrium is A, while other player may think that it is B. This type of strategic

uncertainty has been studied by Van Huyk, Battalio, and Beil (1990), Crawford and Haller (1990),

Morris and Shin (2002, 2004), and Heinemann, Nagel, and Ockenfels (2009), among others.

Second, the linear utility assumption places strong restrictions on subjects�preferences that are

at odds with important empirical �ndings in the experimental literature. Kahneman and Tversky

(1979) note that individuals may respond to loss more sensitively than to gains. Harrison and

Rutström (2008) show that risk aversion is prevalent even for the payo¤ scale typically found in

experimental data. The linear utility assumption also rules out social preferences and heterogeneity

across players in their marginal utility of money.2 Our framework treats a player�s utility as an

unknown unrestricted function of her monetary payo¤ and is able to capture both risk preference

and loss aversion.

Third, even though there is substantial empirical evidence showing that elicited beliefs are con-

sistent with individuals�actions in corresponding tasks,3 there exist some practical issues. Perhaps,

the most serious problem is that the process for the elicitation of beliefs can a¤ect players�behavior

in games. Schotter and Trevino (2014) denote this problem as Heisenberg problem using as an

analogy from physics. A partial list of experimental papers illustrating this issue includes Nyarko

and Schotter (2002), Guerra and Zizzo (2004), Ruström and Wilcox (2009), and Palfrey and Wang

(2009).4 In contrast, our method does not require elicitation data and consequently, avoid these

potential issues.

To avoid the estimation biases and the misleading results associated with the failure of these

2For examples of social preferences such as fairness, see Güth, Schmittberger and Schwartz (1982), Kahneman,
Knetsch and Thaler (1986) and Fehr and Schmidt (1999), among others.

3To best of our knowledge, the only paper that shows a contradictory evidence is Costa-Gomes and Weizsäcker
(2008) who found signi�cant discrepancy between elicited beliefs and beliefs inferred from players�actions

4See table 2 in Schlag et al. (2015) for a comprehensive list of empirical evidence on this issue. Other practical
issues related to eliciting beliefs include hedging problem and the complexity of the methods. The empirical evidence
on the importance of hedging is also mixed. See section 3 in Schotter and Trevino (2014) or section 4 in Schlag et al.
(2015) for more details.
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assumptions, we treat both utilities and beliefs as unrestricted (nonparametric) functions to be es-

timated. In this paper, we focus on the identi�cation and estimation of population average utilities

and beliefs. Obtaining precise estimates of individual speci�c beliefs/preferences requires an exper-

imental design where each subject makes plays the same game multiple times without information

feedback. Such experimental design could be costly and is rarely conducted.5 Instead, our identi-

�cation approach can be applied to experimental data where each subject is randomly assigned to

only one treatment (game). As a consequence, our focus on population average beliefs/preferences

can avoid the undesired e¤ects of order and repetition, and potential hedging problems. Most

importantly, population average utilities and beliefs are useful parameters for researchers and pol-

icy makers. They can be used to obtain population average e¤ects of factual and counterfactual

policy changes. Researchers can be also interested in testing rational/unbiased beliefs, or risk/loss

aversion in preferences, at the average population level (e.g., Goeree and Holt, 2001).

Our identi�cation results and tests are based on an exclusion restriction that can be easily

generated by the researcher in the design of the experiment. Suppose that each individual in the

sample is randomly assigned to play one of K di¤erent two-player games. The researcher designs

the monetary payo¤ matrices in these K games such that the payo¤s of the column player vary

across the games but the payo¤s of the row player are the same in the K games.6 This variation

across games in the payo¤ matrix is what we describe as our exclusion restriction in the sense that

it does not a¤ect the payo¤ function of the row player but it can a¤ect the beliefs of this player

about the behavior of the column player. Under this exclusion restriction, the variation across

the K games in the empirical distribution of the actions of the row player provides information

about this player�s beliefs in these games. Without any assumptions on players� beliefs in any

game and following an argument similar to Aguirregabiria and Magesan (2015), we show that this

exclusion restriction identi�es a function of beliefs. This identi�cation results can be used to test

di¤erent assumptions on beliefs such as: (a) population average unbiased (equilibrium) beliefs; (b)

the validity of elicited beliefs, if these are available; and (c) monotonicity of the beliefs function with

respect to monetary payo¤ of the other player(s). Our framework allows for an optimization error

in players�"best responses", as in Quantal Response Equilibrium (QRE) proposed by McKelvey

and Palfrey (1995).

5Note that if such data exists, then our approach provides indeti�cation (i.e., consistent estimation) of utilities
and beliefs at the individual level.

6We can �nd this experimental design of monetary payo¤s in important studies such as Goeree and Holt (2001),
Ochs (1995), McKelvey, Palfrey and Weber (2000) and Heinemann, Nagel and Ockenfels (2009), among others. None
of these papers focuses on the joint nonparametric identi�cation of subjects�preferences and beliefs.
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The complete identi�cation of utility and beliefs functions requires some additional restrictions.

These restrictions are weaker than linear utility assumptions and equilibrium assumptions. In a

two-player binary choice game, the researcher needs to impose two restrictions on the beliefs or

payo¤s. We discuss di¤erent forms that these restrictions can take and how the choice of these

restrictions can be informed by our tests on beliefs. For instance, the researcher may assume that

elicited beliefs are valid or that beliefs are unbiased at two of the K games. How to choose these

two games is also an important decision for the researcher, and in this paper, we discuss how our

population average rationality test can provide informative guidance on researcher�s decision.

Our nonparametric speci�cation of risk preferences has potential advantages over other methods

in the experimental literature. In an in�uential study, Roth and Malouf (1979) propose linearizing

the utility function by assigning the payo¤ as the probability of winning a �xed reward. This

mechanism has been applied by Ochs (1995) and Feltovich (2000), among others. Selten et al.

(1999) have raised skepticism about the validity of this mechanism. Goeree, Holt and Palfrey (2003),

using experimental data from Ochs (1995), show that this mechanism fails to linearize the utility

function. The general validity of Roth and Malouf�s approach seems unknown in the literature.

Another common method consists in eliciting players�risk preference using a lottery choice with

a known objective probability distribution. Such a method is used in Heinemann, Nagel, and

Ockenfels (2009), among others. Elicitation introduces an additional cost in the implementation of

the experiment and, as mentioned above, there may be di¤erent sources of bias in the elicitation

of preferences and beliefs. A third approach involves estimating a common parametric function for

the utility of money, e.g., a CRRA utility function. This is the approach used by Goeree, Holt and

Palfrey (2003). As usual with parametric speci�cation, the mis-speci�cation of utility function can

generate bias in estimates of beliefs such that, for instance, the researcher may spuriously conclude

that players�beliefs are biased (not in equilibrium).

We apply our approach to estimate two types of games that have received substantial attention

in the experimental economics literature: the matching pennies game in Goeree and Holt (2001) and

the coordination game in Heinemann, Nagel, and Ockenfels (2009).7 In the matching pennies game,

our estimation results cannot reject that players, on average, can correctly predict other players�

behavior. In coordination games, we �nd that subjects have biased beliefs when the monetary

payo¤ for the safe action is low. As such payo¤ increases, this bias in beliefs declines and becomes

7As mentioned above, the design of monetary payo¤ matrices in Ochs (1995) and McKelvey, Palfrey and Weber
(2001) also �ts the requirement of our approach. In these two experiments, subjects play the same game for multiple
rounds and we choose not to use their data to avoid modeling learning behavior.
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not statistically di¤erent to zero. Our estimated payo¤ function is convex when the monetary

payo¤ is low and becomes concave as the monetary payo¤ increases. This �nding suggests that the

commonly imposed globally concave utility functions, such as CRRA or logarithmic functions, are

not able to capture subject�s preference, and a non-parametric speci�cation of the payo¤ function

is more appropriate in this application.

The remainder of this paper is organized as follows. Section 2 describes the model and the

experimental design that generates the exclusion restriction. Section 3 presents our identi�cation

results. Section 4 describes the two experimental data sets that we use in our empirical analysis

and presents the estimation procedure and our empirical results. We summarize and conclude in

section 5.

2 Model

2.1 Basic model

For simplicity, we present here a model with two players and binary choice. In section 4.2.1, we

show that our approach can be extended to games with multiple players. There are two roles for

players in the game: the �row�player (R) and the �column�player (C). We index player roles by

i; j 2 fR;Cg. Let aR 2 f0; 1g and aC 2 f0; 1g be the actions and choice sets for the �row�player

and for the �column�player, respectively. Players take their actions simultaneously to maximize

their respective expected payo¤s. The payo¤ function of player i is:

�i(ai; aj) = � (mi(ai; aj)) + "i(ai) (1)

mi(ai; aj) is the monetary payo¤ of player i when players take actions (ai; aj). � (�) is a real-valued

function that represents the population average utility of money. The matrix of monetary payo¤s

and the utility function � (�) are common knowledge to all the players. "i(ai) represents player i�s

deviation from the average utility, and it is idiosyncratic for each individual player and is private

information of the individual; furthermore, it is independently distributed across subjects with a

probability distribution that is public information for all the players. As we explain below, these

private information variables can be also interpreted as optimization errors, along the line of the

Quantal Response Equilibrium concept proposed by Mckelvey and Palfrey (1995, 1998).

Player i does not know the values of the variables "j(0) and "j(1) which are private information

of player j. Therefore, even if player i is fully rational, she has uncertainty about the optimal

choice of player j in the game. Each player has beliefs about the action that the other player will
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take. Let Bi represent the subjective belief of player i about the probability that the other player

chooses action aj = 1. Then, player i�s expected payo¤ of action ai is:

�ei (ai; Bi) = [1�Bi] � (mi(ai; 0)) +Bi � (mi(ai; 1)) + "i(ai) (2)

Given utility function and beliefs, players maximize their expected payo¤s. The best response of

player i is alternative ai = 1 if

[1�Bi]� (mi(1; 0)) +Bi � (mi(1; 1)) + "i(1)

� [1�Bi]� (mi(0; 0)) +Bi � (mi(0; 1)) + "i(0)
(3)

Let Qi (mi; Bi) be the probability that player i chooses action ai = 1 given beliefs Bi and matrix

of payo¤s mi � fmi(0; 0), mi(0; 1), mi(1; 0), mi(1; 1)g, and integrated over her private information

variables. Integrating the best response condition (3) over the private information, we obtain player

i�s best response probability function:

Qi (mi; Bi) = Fe" (��(mi) + ��(mi) Bi) (4)

where Fe" is the CDF of e"i � "i(0) � "i(1), �� (mi) � � (mi(1; 0)) � � (mi(0; 0)), and ��(mi) �

[�(mi(1; 1))� �(mi(0; 1))]� [�(mi(1; 0))� �(mi(0; 0))]. The payo¤ matrix and the utility function

are such that ��(mi) 6= 0, i.e., the model is a game and not a single-agent decision problem.

This model includes the Bayesian Nash Equilibrium as a particular case.

De�nition. The model is consistent with Bayesian Nash Equilibrium (BNE) if: (a) players�choice

probabilities are equal to their best responses, i.e., Qi (mi; Bi) = Fe" (��(mi) + ��(mi) Bi), and

Qj (mi; Bj) = Fe" (��(mj) + ��(mj) Bj); and (b) players� beliefs about other players� actions are

equal to these players�best response probabilities: Bi = Qj (mj ; Bj) and Bj = Qi (mi; Bi). �

This Bayesian Nash Equilibrium is also consistent with the Quantal Response Equilibrium

(QRE). In particular, private information variables "i(ai) can be interpreted as optimization errors.

Importantly, regardless we interpret "�s as optimization errors or heterogeneous preferences, or a

combination of both, we assume that they are private information only known by the own player

such that we have a game of incomplete information.

Our framework relaxes two assumptions in existing empirical applications of QRE and BNE

models. First, subjects are not restricted to have correct/equilibrium beliefs when they play the

game. They can have biased beliefs, and the bias can be heterogeneous across subjects. Second,

the payo¤ function � can be di¤erent than the monetary payo¤, and we treat this function as an

unknown to be estimated from the data.8

8See Mckelvey and Palfrey (1995), Mckelvey, Palfrey and Weber (2000) and Goeree, Holt and Palfrey (2003) among

6



2.2 Experimental design and subject heterogeneity

Given the game described above, the experimental researcher chooses T di¤erent matrices of mon-

etary payo¤s that are indexed by t 2 f1; 2; :::; Tg. Let mt = (mRt;mCt) be the t � th matrix of

monetary payo¤s, wheremRt andmCt represent the matrices of payo¤s for the row and the column

player, respectively.

There is a sample of N subjects indexed by n 2 f1; 2; :::; Ng. Subjects are randomly assigned

to 2T possible treatments. A treatment in this experiment is de�ned as a pair (i; t), where t is

the index of the payo¤ matrix in the game the subject has to play, and i 2 fR;Cg represents the

player role of the subject in that game (i.e., either row or column player). The random allocation

of players to treatments is anonymous such that each subject does not have any information about

who is the other subject she is playing against. This design where each subject is assigned only to

one treatment can avoid the order e¤ect, repetition e¤ect, and potential hedging problem.

Once subjects have been allocated to treatments, they play their respective games. We use the

categorical variable dn 2 fR;Cg � f1; 2; :::; Tg to represent the treatment (i; t) received by subject

n, and the binary variable an 2 f0; 1g is used to represent the subject�s actual choice in the game.

Therefore, the data from this randomized experiment can be described in terms of the observations

fdn; an : n = 1; 2; :::; Ng.

Subjects can be heterogeneous in preferences and beliefs. Variables "nit(0) and "nit(1) represent

the idiosyncratic components of the payo¤ function for subject n if she is assigned to treatment

(i; t). Similarly, the probability Bnit represents the subjective belief of subject n when assigned to

treatment (i; t). We make the following assumption of additive separability and independence on

subjects�heterogeneity in preferences and beliefs.

Assumption 1. (A) All the heterogeneity in preferences across subjects is captured by the private

information variables "nit(0) and "nit(1) that have zero mean, are independently distributed across

subjects n and payo¤ matrices mjt. (B) Subject n�s beliefs in treatment (i; t) are Bnit = Bit+ �nit,

where Bit represents the average beliefs in the population of subjects conditional on treatment (i; t),

and �nit is subject n�s idiosyncratic component in beliefs that is private information of this subject,

has zero mean, and it is independently distributed across subjects n and payo¤ matrices mjt. �

In Assumption 1, the condition that random variables "nit(�) and �nit are independent across

players is an implication of the randomized experiment and the anonymity of the assignment of

others. Goeree, Holt and Palfrey (2003) relax the assumption that the utility function � is equal to the monetary
payo¤ and estimate a parametric model for this function. In this paper, we do not impose any functional form for
the utility, other than being an increasing function.
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subjects to treatments. Also, by construction, variables "nit(�) and �nit have zero mean. Assumption

1(A) restricts preference heterogeneity "nit(�) to be independent of mjt. This holds true for any

self-regarding preferences, as player j�s monetary reward mjt has no e¤ect on player i�s utility

and consequently does not a¤ect "nit(�).9 The main restriction in Assumption 1 is the condition

that beliefs heterogeneity �nit is independent of monetary payo¤s mjt. Note that Assumption 1(B)

allows average beliefs Bit to be completely unrestricted, but restricts the distribution of �nit to be

the same across treatments t. This is not an implication of the randomized experiment.

Assumption 2. De�ne the random variable !nit � "nit(0)� "nit(1)� �nit �� (mit), where �� (mit)

has been de�ned above. Conditional on mit, the random variable !nit has a probability distribution

F!jmit
that is known to the researcher and it is strictly monotonic in R. �

!nit is a composite error that consists of both utility and belief heterogeneity. Under assumption

1, !nit is independent of mjt and its distribution only depends on mit. Assumption 2 requires

researchers to know such distribution while it may be unknown in practice. In our empirical

applications in section 5, we try several distributional assumptions as robustness checks.

Consider subject n that has been assigned to treatment t as player i. Given that this subject

has beliefs Bnit, her best response probability is Qnit � Qi (mit; Bnit), and using the de�nition

in equation (4) this best response probability is equal to Fe"(�� (mit)+ �� (mit) Bnit). This best

response probability depends on the idiosyncratic beliefs of subject n, Bnit. Under Assumptions

1-2, we can integrate this best response probability function over the idiosyncratic component of

beliefs, �nit. We obtain the (average) Conditional Choice Probability (CCP) function:

Pit � Pi
�
mit; Bit

�
= F!jmit

�
�� (mit) + �� (mit) Bit

�
(5)

Equation (5) is the key restriction of the model that we use to identify and estimate the (average)

utility and beliefs functions.

There is a substantial empirical literature in behavioral and experimental economics that studies

players�non-equilibrium behavior and heterogeneous beliefs. Level-k models by Nagel (1995) and

Stahl and Wilson (1994, 1995) and the cognitive hierarchy model by Camerer, Ho, and Chong (2004)

are some important contributions in this literature.10 Our model relaxes some restrictions in these

previous studies. We do not impose BNE, QRE, or level-k rationalizability, and �nit captures

heterogeneity in beliefs across players and across subjects in the same role. We also consider a

nonparametric speci�cation of the utility of money.
9This assumption may be restrictive when players have social preferences.
10For a survey of papers in this �eld, see Crawford, Costa-Gomes and Iriberri (2013).
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3 Identi�cation

The dataset consists of N observations fdn; ang, one for each subject, where dn represents the

treatment received by subject n, and an is her action in the game. Each subject n is randomly

assigned to one of the 2T treatments such that dn is independent of the unobservables in !n.

Let �i be the vector of payo¤ parameters for player i in the experiment, �i � f�(mit(aR; aC)) :

(aR; aC) 2 f0; 1g2 and t = 1; 2; :::; Tg. Similarly, let Bi � fBit : t = 1; 2; :::; Tg be the vector of

average belief parameters for player i in the experiment. The researcher is interested in using the

experimental data to estimate (average) preferences and beliefs parameters �R, �C , BR, and BC .

LetMT � fmt = (mRt;mCt) : t = 1; 2; :::; Tg be the set of payo¤matrices in the T treatments

of the randomized experiment. Assumption 3 establishes a condition on the set MT that plays a

fundamental role in our identi�cation results.

Assumption 3. The set MT of payo¤ matrices in the randomized experiment is such that there

are at least two treatments, say t1 and t2, such that: (A) player i has the same payo¤s in the two

treatments but the payo¤s of player j 6= i are di¤erent, i.e., mit1 = mit2 and mjt1 6= mjt2; (B)

player i�s conditional choice probabilities vary across the two treatments, i.e., Pit1 6= Pit2. �

Assumption 3(A) establishes that the experimental design generates a particular variation in

monetary payo¤s across treatments: the payo¤ matrix of player j varies while the payo¤ matrix of

player i remains constant. We show below that this condition provides an exclusion restriction that

can be used to identify player i�s beliefs from this player�s observed behavior. Assumption 3(B) is a

�Relevance condition�that is necessary for identi�cation. Since the conditional choice probabilities

Pit1 and Pit2 are identi�ed from the data under mild conditions (see section 3.1 below), Assumption

3(B) is testable from the data. This assumption can be also interpreted as an implication of

Rationalizability, i.e., player i knows that player j maximizes expected payo¤ given beliefs. Since

player j�s payo¤matrix varies across treatments t1 and t2, player i�s beliefs about player j0s behavior

also varies between the two treatments, and given that her own payo¤ matrix did not change, her

actual behavior should be di¤erent as long as her behavior depends on beliefs.

We show below that under Assumptions 1 to 3 we can test for the null hypothesis of unbiased

(equilibrium) beliefs without parametric assumptions on the utility function and average beliefs.

Then, we present additional conditions for the full nonparametric identi�cation of the model.

9



3.1 Tests of unbiased beliefs

Under the conditions in Assumption 1 the choice probabilities Pit are identi�ed for every player-role

and treatment (i; t). In particular, the probability Pit is equal to E[an j dn = (i; t)] and we can use

the following frequency estimator bPit to consistently estimate Pit:
bPit = PN

n=1 an 1fdn = (i; t)gPN
n=1 1fdn = (i; t)g

(6)

where 1f:g is the indicator function. bPit is the fraction of subjects who choose alternative a = 1

among all subjects who are assigned as player i in treatment t. As choice probabilities Pit are

consistently estimated by bPit, we treat Pit as known in the proofs of our identi�cation results.
Let F�1!jmit

(:) be the inverse function of the CDF of F!jmit
. This inverse function exits because

the strict monotonicity of the CDF. Under Assumption 2, the inverse function F�1!jmit
(Pit) can be

consistently estimated for every treatment (i; t) by F�1!jmit
( bPit). For notational simplicity, we use

the variable Sit to represent F�1!jmit
(Pit). The model implies that:

Sit = �� (mit) + �� (mit) Bit (7)

Let t1 and t2 be the two treatments in Assumption 3. Let Ti;t1 be the subset of treatments in

the experiment where player i has the same monetary payo¤s as in treatment t1 i.e., Ti;t1 � ft :

mit =mit1g. For any treatment t 2 Ti;t1 , we have that

Sit � Sit1 = �� (mit1)
�
Bit �Bit1

�
(8)

Assumption 3(B) and the strict monotonicity of the CDF F!jmit
imply that Sit2 �Sit1 6= 0. There-

fore, given that ��(mit1) 6= 0, equation (8) implies that Bit2 �Bit1 6= 0. Taking this into account,

we have that for any treatment t 2 Ti;t1 ,

Sit � Sit1
Sit2 � Sit1

=
Bit �Bit1
Bit2 �Bit1

(9)

This expression shows that, under assumptions 1-3, the observed behavior of subjects as player i

identi�es the beliefs ratio (Bit � Bit1)=(Bit2 � Bit1) for any treatment t 2 Ti;t1 . That is, observed

behavior can identify an object that depends only on beliefs and not on preferences. This result

implies that the assumption of unbiased or equilibrium (average) beliefs is testable.

Under the restriction of equilibrium beliefs, the ratio (Bit�Bit1)=(Bit2�Bit1) should be equal to

the ratio of the choice probabilities of the other player (subjects as player j), i.e., (Pjt�Pjt1)=(Pjt2�

Pjt1). This provides a testable restriction.
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Proposition 1. Under Assumptions 1 to 3, for any treatment t 2 Ti;t1, the hypothesis of equilibrium

(unbiased) beliefs implies the restriction:

Sit � Sit1
Sit2 � Sit1

=
Pjt � Pjt1
Pjt2 � Pjt1

(10)

with Sit � F�1!jmit
(Pit). Given that the choice probabilities Pit and Pjt are identi�ed, this restriction

is testable when the number of treatments in the set Ti;t1 is at least three. �

For experiments where the payo¤ matrix of player i has a particular structure, it is possible to

construct a test of unbiased beliefs that requires only two treatments in the set Ti;t1 . Suppose that

the matrix of monetary payo¤s of player i is symmetric and diagonal-constant (Toeplitz matrix)

such that mi(0; 0) = mi(1; 1) and mi(0; 1) = mi(1; 0). For instance, this is form of the payo¤

matrix in a matching pennies game. Under this condition, we have that �� (mit) = �2 �� (mit)

and equation (7) becomes Sit = �� (mit) [1�2 Bit]. Therefore, under Assumption 3, for treatments

t1 and t2 we have that
Sit2
Sit1

=
1� 2 Bit2
1� 2 Bit1

(11)

This condition provides a di¤erent test for the null hypothesis of unbiased beliefs.

Proposition 1�. Under Assumptions 1 to 3 and the condition that the matrix of monetary payo¤s

of player i is symmetric and diagonal-constant (Toeplitz matrix), the hypothesis of equilibrium

(unbiased) beliefs implies the testable restriction:

Sit2
Sit1

=
1� 2 Pjt2
1� 2 Pjt1

: � (12)

3.2 Identi�cation of utility and beliefs

We now consider the identi�cation of utility parameters �� (mit) and �� (mit) and belief parameters

Bit for any treatment t in the set of treatments Ti;t1 . Later we discuss the identi�cation of the

utility function from the functions �� (mit) and �� (mit).

Equations (7) and (9) imply that, for any treatment t 2 Ti;t1 , preferences and beliefs of player i

are identi�ed up to two constants. To see this, de�ne the constant parameters � and � as � � Bit1
and � � Bit2 �Bit1 . And for any treatment t 2 Ti;t1 , de�ne the ratio Rit � (Sit�Sit1)=(Sit2 �Sit1)

that is identi�ed from the data. Note that by de�nition Rit1 = 0 and Rit2 = 1. Then, we can write

equation (9), that describes the model restrictions on beliefs, as:

Bit = �+ � Rit (13)

11



Similarly, for any treatment t 2 Ti;t1 we can write equation (7) as:

Sit = �� (mit1) + �� (mit1) [�+ � Rit] (14)

Operating in this equation we can obtain the following expressions for the preference parameters

in terms of identi�ed objects and the unknown constants � and �. For any t 2 Ti;t1 ,

�� (mit) = �� (mit1) =
1

�
(Sit2 � Sit1) (15)

�� (mit) = �� (mit1) = Sit1 �
�

�
(Sit2 � Sit1) (16)

Equations (13), (15) and (16) show that the vector of parameters �t1 � fBit, �� (mit), �� (mit) :

t 2 Ti;t1g is identi�ed up to the two constants � and �.

The model implies an additional restriction on the sign of �� (mit1). Remember that �� (mi) �

� (mi(1; 0)) � � (mi(0; 0)). Since the utility of money is an increasing function, we have that the

sign of �� (mit1) is equal to the sign of the money di¤erence mit1(1; 0)�mit1(0; 0), such that:

sign
n
Sit1 �

�

�
(Sit2 � Sit1)

o
= sign f mit1(1; 0)�mit1(0; 0) g (17)

Suppose that mit1(1; 0)�mit1(0; 0) � 0 and that Sit2 � Sit1 > 0. This is without loss of generality

because we can always label the two choice alternatives such that mit1(1; 0) �mit1(0; 0) � 0, and

we can label treatments t1 and t2 such that Sit2 �Sit1 > 0. The sign restriction in (17) implies the

following inequality constraint for �=�:

Bit1
Bit2 �Bit1

� �

�
� Sit1
Sit2 � Sit1

(18)

Note that this inequality also provides a testable restriction for the null hypothesis of unbi-

ased (equilibrium) beliefs: under this null hypothesis, we should have that Pjt1=(Pjt2 � Pjt1) �

Sit1=(Sit2 � Sit1).

Proposition 2. Under Assumptions 1 to 3 and monotonicity of the payo¤ function, the hypothesis

of equilibrium (unbiased) beliefs implies the inequality restriction:

Pjt1
Pjt2 � Pjt1

� Sit1
Sit2 � Sit1

(19)

Given that the choice probabilities Pit and Pjt are identi�ed, this restriction is testable as long as

the set Ti;t1 contains at least two treatments. �

12



Suppose that we have an empirical application where the number of treatments in the set Ti;t1
is greater than two. Suppose that for any treatments t di¤erent than t1 and t2 we reject the null

hypothesis in Proposition 1, but that for treatments t1 and t2 we cannot reject the null hypothesis

in Proposition 2. Therefore, we cannot reject the null hypothesis that player i has unbiased beliefs

at treatments t1 and t2 but has biased beliefs at other treatments in the set Ti;t1 . Given this

condition, the whole vector of structural parameters �t1 � fBit, �� (mit) �� (mit) : t 2 Ti;t1g is

point identi�ed.

Proposition 3. Under Assumptions 1 to 3 and the condition that player i has unbiased beliefs in

treatments t1 and t2, the vector of structural parameters �t1 � fBit, �� (mit), �� (mit) : t 2 Ti;t1g

is point identi�ed. �

Proof: If beliefs at treatments t1 and t2 are unbiased, we have that � � Bit1 = Pjt1 and � �

Bit2 �Bit1 = Pjt2 �Pjt1 such that constants � and � are identi�ed. Then, equations (13), (15) and

(16) imply that the parameters Bit, �� (mit), and �� (mit) are identi�ed for any t 2 Ti;t1 . �
Note that the selection of the baseline treatments t1 and t2 in the set Ti;t1 should be based on

the test in Proposition 2.

When the matrix of monetary payo¤s of player i is symmetric and diagonal-constant, we can

construct a di¤erent version of the inequality test in Proposition 2 and of the identi�cation result

of beliefs and payo¤s in Proposition 3. Under this structure of the payo¤ matrix, there is only

one unknown constant to determine beliefs and payo¤ parameters. Taking into account that Sit =

�� (mit) [1� 2 Bit] and � � Bit1 , it is straightforward to show that for any treatment t 2 Ti;t1 ,

�� (mi) =
Sit1

1� 2 � (20)

and

Bit =
1

2

�
1� (1� 2 �) Sit

Sit1

�
(21)

Given these conditions, we have versions of Propositions 2 and 3 for games with a symmetric and

diagonal-constant matrix of monetary payo¤s.

Proposition 2�. Under Assumptions 1 and 2, monotonicity of the payo¤ function, and a Toeplitz

matrix of monetary payo¤s, the hypothesis of equilibrium (unbiased) beliefs implies the testable

inequality restrictions:
Sit

1� 2Pjt
� 0 (22)

for any t 2 Ti;t1. �
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Proposition 3�. Under Assumptions 1 to 3, a Toeplitz matrix of monetary payo¤s, and the

condition that player i has unbiased beliefs in one of the treatments in set Ti;t1, the vector of

structural parameters �t1 � fBit, �� (mit), �� (mit) : t 2 Ti;t1g is point identi�ed. �

Proof: Suppose (without loss of generality) that the treatment with unbiased beliefs is t1. Then,

we have that � � Bit1 = Pjt1 such that constants � is identi�ed. Then, equations (20) and (21)

imply that the parameters Bit, �� (mit), and �� (mit) are identi�ed for any t 2 Ti;t1 . �

Based on the identi�cation results in Propositions 1 to 3 (or in Propositions 1�to 3�for games

with a Toeplitz matrix of monetary payo¤s) we propose the following sequential procedure for the

empirical analysis of these games.

Step 1. Test the restriction of Proposition 1 for all treatments. If such test is not rejected, then

subjects�observed behavior is consistent with BNE (or QRE) and imposing such equilibrium con-

sistently estimates subjects�utility function. Otherwise, if the test is rejected for some treatments,

we proceed to step 2.

Step 2. We apply the test in Proposition 2 to every pair of treatments t1 and t2. If we identify

a pair of treatments that satisfy the inequality restriction in this test, then we proceed to step 3.

Otherwise, we conclude that subjects have unbiased beliefs in at most one treatment and we are

not able to identify beliefs and preferences in this case.

Step 3. We impose the restriction of unbiased beliefs in a pair of treatments t1 and t2 that pass

the test in Proposition 2. Then, we estimate utility functions and beliefs using the restrictions in

Proposition 3.

4 Empirical applications

In this section, we apply the model and the identi�cation results in section 2 and 3 to datasets from

two laboratory experiments that incorporate the exclusion restriction in Assumption 3. Section 4.1

presents an application to a matching pennies game using experimental data from Goeree and Holt

(2001). Section 4.2 deals with a coordination game from Heinemann, Nagel and Ockenfels (2008).

In the two applications we present tests and estimation results under four di¤erent parametric

speci�cations for the distribution of the unobserved variable !nit: (a) standard normal (Probit);

(b) standard logistic (Logit); (c) exponential with zero mean; and (d) double exponential with zero

mean. The form of the inverse function Sit � F�1!jmit
(Pit) for these four distributions is: (a) for the

Probit model, Sit = ��1(Pit), where ��1 is the inverse CDF of the standard normal; (b) for the
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Logit model, Sit = ln(Pit) � ln(1 � Pit); (c) for the exponential model, Sit = � ln([1 � Pit]) � 1;

and (d) for double exponential model, Sit = � ln(� ln(Pit)) �  where  is Euler constant. Note

that Probit and Logit model assume unobservable !nit is symmetrically distributed while it is

asymmetric under exponential and double exponential models.

4.1 Matching pennies

Goeree and Holt (2001) conducted an experiment of ten types of games. For each type of game,

the �nd that there exists a particular monetary payo¤ matrix (i.e. they refer to it as the trea-

sure matrix) such that subjects�behaviors are consistent with Nash Equilibrium. However, when

monetary payo¤s depart from the treasure matrix, subjects�behaviors become not consistent with

equilibrium. Their empirical results are based on the assumption that monetary payo¤s are sub-

jects�true payo¤. Our analysis is able to detect whether subjects have unbiased beliefs under a

nonparametric speci�cation of the utility function.

4.1.1 Experiment

Table 1 presents the payo¤ matrices in the experiment by Goeree and Holt (2001, henceforth

GH). Each player simultaneously chooses between two possible actions, 0 or 1. The pairs of num-

bers between brackets, [mR;mC ], represent the monetary payo¤s of row player and the column

player, respectively, measured in cents. The experiment contains three games or treatments. The

only di¤erence across treatments is in the monetary payo¤ of the row player under action pro�le

(aR; aC) = (0; 0). It is clear that this experimental design satis�es the exclusion restriction in

Assumption 3(A). Furthermore, note that the payo¤ matrix of the column player is symmetric

and diagonal-constant. Therefore, for this game we can apply the test and identi�cation result in

Propositions 1�, 2�, and 3�.

The experiment includes 50 subjects (N = 50): �ve cohorts of ten subjects who were undergrad-

uates in an economic class from University of Virginia. They were randomly matched and assigned

as row or column player. In addition, the ordering of treatments is alternated for di¤erent sessions.

Each subject records his/her decision of the game described by table 1 in an instruction sheet. In

addition to this matching pennies game, subjects are also asked to play other nine di¤erent games

which are not the focus of this paper. In this experiment each subject is paid $6 for showing up.

The average earnings for a two-hour session is about $35 with range from $15 to $60 for all 10

games.
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Table 1: Matching Pennies Experiment
(Goeree and Holt, 2001)

Treatment 1
Player C

aC = 0 aC = 1
Player R aR = 0 [80 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

Treatment 2
Player C

aC = 0 aC = 1
Player R aR = 0 [320 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

Treatment 3
Player C

aC = 0 aC = 1
Player R aR = 0 [44 , 40] [40 , 80]

aR = 1 [40 , 80] [80 , 40]

Table 2: Matching Pennies Game Experiment
Empirical Choice Probabilities: N = 50

(Standard errors in parentheses)
Player R [ bPR;t] Player C [ bPC;t]

Treatment 1 0.52 (0.100) 0.52 (0.100)
Treatment 2 0.04 (0.039) 0.84 (0.073)
Treatment 3 0.92 (0.054) 0.20 (0.080)

Note: For player-type i, bPit = hPN
n=1an 1fdn= (i; t)g

i
=
hPN

n=11fdn= (i; t)g
i

Half of the subjects are randomly selected as row players and the remaining subjects are column

players. Each subject plays all three treatments once, and his/her role as either row or column

player is �xed across treatments.11 Table 2 presents the frequencies or players�choice probabilities

from this experiment and the corresponding standard errors. The behavior of both players varies

across treatments. In particular, though the payo¤ matrix of the column player is the same in

11For detailed instruction of this experiment, visit http://www.people.virginia.edu/~cah2k/trdatatr.pdf.
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the three treatments the behavior of this player varies considerably. According to the model, the

change in the behavior of the column player should be attributed to the change in this player�s beliefs

on the behavior of the row player. This evidence is consistent with the �relevance� restriction in

Assumption 3(B) that establishes that player C�s behavior varies across treatments. We will exploit

this source of variation in this experiment to test for unbiased beliefs of the column player and to

identify beliefs and utilities for this player. Since the experiment does not provide the same source

of variation for the row player, we cannot identify beliefs and preferences for this player.

The monetary payment for player R in outcome (0; 0) is higher in treatment 2 compared to

treatment 1. Therefore, alternative aR = 0 becomes more attractive to R in treatment 2. If player

C has rational beliefs, she would predict that player R will choose aR = 0 with higher probability

in treatment 2 than in treatment 1. The best response to such belief is to choose aC = 1 more

frequently. A similar argument applies to the comparison of treatments 1 and 3. The estimated

choice probabilities in Table 2 are consistent with this argument: PC2 [= 0:84] > PC1 [= 0:52] >

PC3 [= 0:20], and these inequalities are statistically signi�cant. However, this argument is not a

formal and rigorous test of unbiased beliefs. Without taking into account players�preferences and

their degree of risk aversion/loving, we do not know whether or not these changes in the choice

probability are consistent with unbiased beliefs. Here we implement formal tests of unbiased beliefs

that takes into account these considerations.

4.1.2 Testing procedures and estimation method

Let bPRt and bPCt be the estimated choice probabilities in table 2 for t = 1; 2; 3, and let bSCt be
F�1! ( bPCt). Based on Proposition 1, we could construct the statistic bSC3�bSC1bSC2�bSC1 � bPR3� bPR1bPR2� bPR1 and its
standard error to test for the null hypothesis of unbiased beliefs using a t-test. This test is asymp-

totically valid. However, this test does not have good small-sample properties when one, or both,

of the values in the denominator, bSC2 � bSC1 and bPR2 � bPR1, are close to zero. To deal with this
issue, we use instead the following statistic:12

b� = �bSC3 � bSC1�� bPR2 � bPR1�� �bSC2 � bSC1�� bPR3 � bPR1� (23)

Under the null hypothesis that the column player has unbiased beliefs, b� is normally distributed
with mean zero. We use the bootstrap method to calculate the standard error se(b�) (Horowitz,
12Another way to deal with small denominator problems is to introduce a truncation parameter hN in which the

test based on proposition 1 turns
bSC3�bSC1

max (hN ;bSC2�bSC1) �
bPR3� bPR1

max (hN ; bPR2� bPR1) and hN converges to zero as sample size N

goes to in�nity. However, the empirical result of such approach crucially depends on the choice of hN . Though a
cross-valiation method can be used to choose the value of this parameter, in this paper we have preferred to use a
simpler method.
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2001). Since in this experiment the matrix of monetary payo¤s is Toeplitz, we can also apply the

test of unbiased beliefs in Proposition 1�. We can construct the statistics13

b�12 = bSC2 (1� 2 bPR1)� bSC1(1� 2 bPR2)
b�13 = bSC3 (1� 2 bPR1)� bSC1 (1� 2 bPR3) (24)

b�12 is the statistic for the unbiased belief in treatments 1 and 2, and b�13 is the same type of test
statistic but for treatments 1 and 3. De�ne the vector �̂1 = (�̂12; �̂13)0. Under the null hypothesis of

unbiased beliefs in treatments 1, 2, and 3, the statistic �̂01 �dV ar(�̂1) � �̂1 has a Chi-square distribution
with two degrees of freedom where dV ar(�̂1) is an estimate of the variance-covariance matrix of �̂1.

For the estimation of payo¤s and beliefs, we can exploit the symmetry of the payo¤ matrix of

the column player to identify payo¤s and beliefs parameters with only one restriction of unbiased

beliefs (Proposition 3�). Suppose that we impose the restriction of unbiased beliefs in treatment

t = 1. This implies that we can estimate beliefs of the column player at treatments t = 2; 3 using

the estimator: bBCt = 1

2

"
1�

�
1� 2 bPR1� bSCtbSC1

#
(25)

And we can estimate the payo¤ parameter of the column player using the estimator:

b�� (mC) = \� (80)� � (40) =
ŜC1

1� 2P̂R1
(26)

4.1.3 Empirical results

Table 3 presents results for the tests of unbiased beliefs in the GH experiment. We report results

from four di¤erent tests: the test from Proposition 1 for � = 0, and three di¤erent tests from

Proposition 1�, for �12 = 0 and �13 = 0 separately, and for the joint restriction. For each test,

we report our tests under four speci�cations for the distribution of the unobservables (Probit,

Logit, Exponential and Double Exponential). Standard errors are calculated by bootstrap with

5,000 bootstrap samples. All the tests are consistent with the hypothesis that the column player

has unbiased beliefs in the three treatments. All the p-values are greater than 0.4 and highly

insigni�cant.

Goeree and Holt (2001) conclude that the column player tends to predict correctly the behavior

of the row player. In this paper, we verify their qualitative observation in a framework with

incomplete information and a nonparametric speci�cation of the utility function. They also conclude

13Note that the restrictions �12 = 0 and �13 = 0 imply the restriction �23 = 0, and therefore this third restriction
is redundant. Also, note that the restrictions �12 = 0 and �13 = 0 imply � de�ned in equation (23) is also zero.
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that the row player seems to simply respond to monetary payo¤without considering column player�s

response. Unfortunately, we cannot verify this point using our method because this experiment does

not include treatments with di¤erent monetary payo¤s for the column player. Taking treatment 2

as an example, the row player�s high probability of choosing action 0 can be explained by either

this player over-predicting the probability that the column player chooses action 0, or by a utility

function that values 320 cents far more than 80 cents and 40 cents. Without an exclusion restriction,

we cannot distinguish between these two interpretations.

Table 3: Tests of Unbiased Beliefs
Matching Pennies
Probit Logit Exponential Double Exp.

Treatments 1,2, & 3
H0 : � = 0 : b� [s.e] 0.0503 [0.3753] 0.0726 [0.6479] -0.1942 [0.3683] -0.0965 [0.4738]

(p-value) (0.8818) (0.9032) (0.5426) (0.8226)

Treatments 1 & 2
H0 : �12 = 0 : b�12 [s.e] -0.0859 [0.3242] -0.1400 [0.5402] 0.2114 [0.3041] 0.0935 [0.4033]

(p-value) (0.7932) (0.7926) (0.4338) (0.8146)

Treatments 1 & 3
H0 : �13 = 0 : b�13 [s.e] 0.0758 [0.2886] 0.1277 [0.4760] -0.1924 [0.2442] -0.0859 [0.3416]

(p-value) (0.7876) (0.7868) (0.4142) (0.8014)

Treatments 1, 2, & 3
H0 : �12 = �13 = 0 : Chi-square 0.1392 0.1336 0.6621 0.0633

(p-value) (0.9328) (0.9354) (0.7327) (0.9688)

Note: Standard error is calculated using bootstrap with 5,000 replications.

Table 4 presents estimates of the preference parameter �� = �(80)��(40). We report estimates

under the condition of unbiased beliefs at each of the treatments.14 Except for the exponential

model with unbiased belief in treatment 2, all speci�cations yield signi�cantly positive estimates

which implies strict monotonicity of the payo¤ function. The four di¤erent assumptions for the

distribution of the unobservables provide very similar estimates of ��, after adjusting their scales.15

14 In Table 4, we do not include the estimate of �(80)��(40) under the restriction of unbiased beliefs in treatment
1. This is because, in treatment 1, both players�choice probabilities are close to 50%, the exclusion restriction has
little power, and as a result the estimated preference is very imprecise.
15Remember that the standard deviation of the error is 1 for Probit model,

q
1
3
� for the Logit model 1 for the

exponential model, and
q

1
6
� for the double exponential model.
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In this experiment, player C receives only two possible monetary payo¤s, and therefore, we cannot

study possible departures from the restriction of linear utility function.

Table 4: Estimation of Payo¤ Parameters
Matching Pennies

Parameter Probit Logit Exponential Double Exp.
Unbiased beliefs at t = 2

�(80)� �(40) 1.0809��� 1.8024�� 0.9050 1.2711�

(s.e.) (0.3899) (0.7464) (0.6418) (0.6900)

Unbiased beliefs at t = 3
�(80)� �(40) 1.0019�� 1.6504� 0.9248��� 1.2537���

(s.e.) (0.4321) (0.7849) (0.1940) (0.3922)

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.

4.2 Coordination game

Heinemann, Nagel, and Ockenfels (2009, henceforth HNO) study and measure the strategic uncer-

tainty that appears in games with multiple equilibria when players have non-coordinated beliefs

about the selected equilibrium. To study this phenomenon, they design and implement a random-

ized experiment using a set of coordination games with di¤erent group sizes, monetary payo¤s

and coordination di¢ culty. Unlike the matching pennies in previous subsection, HNO experiment

contains a rich variation of player�s monetary payo¤s such that our method can be applied to these

data to relax the restriction of a linear utility function of money. The game in this application has

multiple players. In the next subsection, we show that the symmetry of the game implies that we

can represent it as a game between one player and the rest of the players, and we can apply our

identi�cation results in section 3.

4.2.1 Experiment

Table 3 presents the payo¤ matrices in the di¤erent treatments of the experiment. There are G

players in the game. Players simultaneously choose between action 0 and 1. Action a = 0 is a

safe action that gives the player m0 Euros regardless of other players�decisions. Action a = 1 is a

risky action that yields 15 Euros if at least a fraction � of other players also choose action a = 1,

but it yields zero monetary payo¤ otherwise. In this game, m0 is a measure of the opportunity

cost of coordination, and � measures coordination di¢ culty. We expect that coordination behavior

becomes more unlikely to be maintained as m0 and � increase.
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Table 5: Coordination Game Experiment
(Heinemann, Nagel and Ockenfels, 2009)

Other players
q = fraction of other players choosing a = 1

q < � q � �
Player R aR = 0 m0 m0

aR = 1 0 15 Euros

Treatments
T = 81 treatments. Set of treatment consists of
every combination (G;m0; �) with:8<:

G � # players 2 f4; 7; 10g
m0 2 fj � 1:5 Euros, with j = 1; 2; :::; 9g
� 2 f1=3; 2=3; 1g

The experiment was conducted in di¤erent locations: Barcelona, Bonn, Cologne, and Frankfurt.

Heinemann, Nagel and Ockenfels (2009) report that there are substantial di¤erences among subject

pools. For instance, subjects in Frankfurt are more risk averse than students from other locations.

Therefore, it is reasonable to believe that those subjects from di¤erent locations are from di¤erent

populations. Our analysis focuses on Frankfurt as it contains most of the subjects and treatments.16

The experiment was run at a computer laboratory in the Economics Department of the Univer-

sity of Frankfurt between May and July 2003. Most of subjects were undergraduates in business

and economics. There are 90 treatments or games according to all the possible values of the pa-

rameters G, m0, and � with G 2 f4; 7; 10g, � 2 f1=3; 2=3; 1g, and any value of m0 between 1:5

Euros and 15 Euros with an incremental unit of 1.5 Euros.17 Subjects were randomly assigned into

a group G, where G is 4, 7 or 10. Then, given the selection of group size G, a subject participates

in all the treatments/games for every value of � and m0. Therefore, each subject participates in

30 treatments. To prevent learning, Heinemann, Nagel and Ockenfels (2009) do not give feedback

between blocks. At the end of a session, only 1 of 40 situations is randomly selected to determine

subject�s earning. This avoids potential hedging and each decision situation can be treated as

independent. The duration of a session is about 40-60 minutes with an average earning of 16.68

Euros per subject.

16For details about this experiment, see section 3 in Heinemann, Nagel and Ockenfels (2009). The experimental in-
structions are available on the supplements page of the Review of Economic Studies website at http://www.restud.org.
17We did not use treatments with m0 = 15 in our analysis because subjects�choice probabilities are very imprecisely

estimated for these treatments.
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We now show that this game can be interpreted as a two-player game. As subjects are randomly

and anonymously matched, it is reasonable to assume that player i believes each of the other

players chooses alternative 1 with the same probability. Let bi be such belief probability, and let

BIN(n;N;P ) be the CDF of a Binomial distribution with parameters (N;P ). By de�nition, we

have that Bi � 1�BIN(�[G�1]; G�1; bi) is player i�s belief probability that at least a proportion

� of the other (G� 1) players choose alternative 1. Therefore, player i�s expected payo¤ of action

ai can be written as:

�ei (ai; Bi) = [1�Bi] � (mi(ai; q < �)) +Bi � (mi(ai; q � �)) + "i(ai) (27)

As in table 3, mi(ai; q < �) represents player i�s monetary payo¤ when she chooses ai and less than

a fraction � of other players choose alternative 1, and mi(ai; q � �) is de�ned similarly. Note that

equation (27) has the same structure as equation (2) in section 2.1. The model and the identi�cation

results in section 2 and 3 trivially extend to this game. Intuitively, as table 3 shows, we can view

this game as player i coordinates with an aggregate player who can choose either q < � or q � �.

To play this game, player i only needs to form a belief about the probability that q � �, that we

denote by Bi. Through this section, we refer to Bi as player i�s belief of successful coordination.

Unlike the GH experiment, the HNO coordination game does not have a variable that shifts one

player�s monetary payo¤ while has no impact on other players�utility. Note that the parameter

m0 shifts all players�monetary payo¤ and cannot be an exclusion restriction. However, changes

in the coordination di¢ culty parameter � and group size G play the same role as our exclusion

restriction. In particular, a change in � or G does not shift the payo¤ matrix of any player but

it a¤ects player�s belief of successful coordination.18 With exogenous (randomized) variation in �

and G, all the identi�cation results in previous section hold in HNO coordination game.

The number of subjects N in this experiment is 64, 42, or 40 depending on the treatment. Note

that for each value of the safe monetary payo¤m0, there are nine treatments (i.e. 9 combinations

of (G;�)). For illustration purpose, we index these nine treatments by t in HNO experiment.

Figure 1 and table 6 present players� empirical choice probabilities and their corresponding

standard errors for each of the 81 treatments. Each graph in �gure 1 corresponds to a value of

(G;�) and plots the choice probability of the risky action as a function of m0, and 95% con�dence

intervals. Each column in the panel corresponds to a value of �, and each row to a value of

G. For every value of (G;�), the probability of choosing the risky action declines monotonically

with the safe amount of money m0. For every value of G, the choice probability function shifts
18 It is easy to see through formula Bi = 1�BIN(�[G� 1]; G� 1; bi) as both � and G a¤ect Bi.
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upwards when � (the coordination di¢ culty) decreases. This e¤ect is statistically signi�cant and

illustrates a change in players�behavior due to a change in beliefs. This implies that � is a relevant

instrument because it a¤ects players� beliefs without a¤ecting their own payo¤ matrix, i.e., it

satis�es Assumption 3. Comparing graphs across rows in the panel shows that the number of

players G has a small and a non-signi�cant e¤ect on players�behavior.

Figure 1: Empirical Choice Probabilities
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Table 6: Coordination Game Experiment
Empirical Choice Probabilities (Probability of choosing risky action)

(Standard errors in parentheses)
G = 4 G = 7 G = 10

� = 1 � =2
3 � =1

3 � = 1 � =2
3 � =1

3 � = 1 � =2
3 � =1

3

m0= 1:5 0.7813 0.8750 0.9531 0.7143 0.8333 0.8810 0.6750 0.8500 0.9000

(0.0517) (0.0413) (0.0264) (0.0697) (0.0575) (0.0500) (0.0741) (0.0565) (0.0474)

m0= 3:0 0.7188 0.8750 0.9688 0.6429 0.7143 0.8333 0.6250 0.8500 0.9250

(0.0562) (0.0413) (0.0217) (0.0739) (0.0697) (0.0575) (0.0765) (0.0565) (0.0416)

m0= 4:5 0.6094 0.8438 0.9531 0.5000 0.7381 0.8571 0.4000 0.8000 0.9000

(0.0610) (0.0454) (0.0264) (0.0772) (0.0678) (0.0540) (0.0775) (0.0632) (0.0474)

m0= 6:0 0.4375 0.7031 0.8750 0.3810 0.5714 0.8333 0.3250 0.5250 0.8500

(0.0620) (0.0571) (0.0413) (0.0749) (0.0764) (0.0575) (0.0741) (0.0790) (0.0565)

m0= 7:5 0.2813 0.4688 0.8125 0.2619 0.4286 0.7143 0.2750 0.3750 0.8250

(0.0562) (0.0624) (0.0488) (0.0678) (0.0764) (0.0697) (0.0706) (0.0765) (0.0601)

m0= 9:0 0.1719 0.2656 0.6406 0.1667 0.3333 0.6190 0.2250 0.2500 0.6000

(0.0472) (0.0552) (0.0600) (0.0575) (0.0727) (0.0749) (0.0660) (0.0685) (0.0775)

m0= 10:5 0.1406 0.1250 0.4375 0.0714 0.1667 0.4286 0.1250 0.2250 0.4500

(0.0435) (0.0413) (0.0620) (0.0397) (0.0575) (0.0764) (0.0523) (0.0660) (0.0787)

m0= 12:0 0.0781 0.1094 0.2656 0.0714 0.0476 0.2619 0.1250 0.1500 0.3500

(0.0335) (0.0390) (0.0552) (0.0397) (0.0329) (0.0678) (0.0523) (0.0565) (0.0754)

m0= 13:5 0.0781 0.0781 0.1875 0.0476 0.0238 0.1667 0.1000 0.1250 0.2500

(0.0335) (0.0335) (0.0488) (0.0329) (0.0235) (0.0575) (0.0474) (0.0523) (0.0685)

Subjects per 64 42 40

treatment

In this game, Pm0;t represents the choice probability of the risky action when the treatment is

(m0; t) where t denotes a treatment index for (G;�).19 Given G� 1 of the players (all except one),

let gm0;t be the number of these players who choose the risky action. According to the model, gm0;t

is a Binomial random variable with parameters G� 1 and Pm0;t. Therefore, the probability that at

least a fraction � of the other players choose the risky action is:

CPm0;t � Pr (gm0;t � �[G� 1]) = 1�BIN (�[G� 1] ;G� 1; Pm0;t) (28)

In this game, as Bmo;t represents the average beliefs about the probability that at least a fraction

� of other players choose the risky action, the condition of unbiased beliefs is not Bm0;t = Pm0;t

but instead Bm0;t = CPm0;t.

19Column 1 to 9 in table 4 represents t = 1 to t = 9.
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4.2.2 Testing procedures and estimation method

We apply a similar test as for the GH matching pennies game but with some adjustments. For any

m0 and any three treatments, t1; t2 and t, we construct the following test-statistic:

b�m0;(t1;t2;t) =
�bSm0;t2 � bSm0;t1

��dCPm0;t �dCPm0;t1

�
�

�bSm0;t � bSm0;t1

��dCPm0;t2 �dCPm0;t1

� (29)

b�m0;(t1;t2;t) is the unbiased beliefs test statistic for treatments t1; t2 and t. For given (m0; t1; t2),

there are seven other combinations of (G;�) for treatment t, such that we can construct seven

di¤erent statistics b�m0;(t1;t2;t). We use these seven b��s to construct a Chi-Square test for testing the
hypothesis that players have unbiased beliefs in all treatments t for a given m0.

As shown in Proposition 3, to estimate the utility function and the beliefs function we need

to impose the restriction that subjects have unbiased beliefs in two treatments. Suppose subjects�

beliefs are unbiased in treatments (m0; t1) and (m0; t2); let (m0; t) denote another treatment in

which subjects� beliefs are allowed to be biased. Following Proposition 3, beliefs in treatment

(m0; t) can be estimated using the expression:

bBm0;t =
dCPm0;t1 +

�dCPm0;t2 �dCPm0;t1

� bSm0;t � bSm0;t1bSm0;t2 � bSm0;t1

!
(30)

Given estimated beliefs bBm0;t for every treatment (m0; t), we apply OLS to the regression-like

equation

Ŝm0;t =
�(m0)

�!;m0

+
�(15)

�!;m0

bBm0;t (31)

to estimate the utility parameters �(m0)=�!;m0 and �(15)=�!;m0 , where �
2
!;m0

is the variance of

the unobservable ! that we allow to be heteroskedastic with respect to m0. We use a bootstrap re-

sampling method to calculate standard errors that account for the two-step feature of the estimation

method. Given estimates �(m0)=�!;m0 and �(15)=�!;m0 , we obtain the the normalized payo¤e�(m0) = 15 � [�(m0)=�!;m0 ]=[�(15)=�!;m0 ] = 15 � �(m0)=�(15) such that e�(m0) does not depend

on the variance of the unobservable and e�(15) is normalized to 15 and e�(0) is normalized to 0.
The estimates of utility and beliefs parameters can be quite sensitive to the choice of treatments

t1 and t2 we where we impose the restriction of unbiased beliefs. As we explain at the end of section

3, we exploit the unbiased belief tests to guide the choice of treatments t1 and t2. More speci�cally,

we apply the following procedure. First, for each value of m0, we perform the Chi-square unbiased

beliefs test described above. If the p-value of the test is high (i.e., p � 0:5), we assume that subjects
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have unbiased beliefs in all treatments for that value of m0 and estimate utility function imposing

the restriction of unbiased beliefs. If the p-value of the test is relatively low (i.e., p < 0:5), then

we look separately at the t-tests of unbiased beliefs for each statistic b�m0;(t1;t2;t). For given m0, we

select the triple (t1; t2; t) with the highest p-value conditional on this p-value being greater than

0:1. We impose the restriction that beliefs are unbiased in these three treatments. For values of

m0 such that there is not any triple (t1; t2; t) with p-value greater than 0:1, we apply the inequality

test in Proposition 2 and choose the two treatments with the highest p-value conditional on this

p-value being greater than 0:1. Finally, we impose the restriction of unbiased beliefs at the selected

treatments and estimate the rest of beliefs and utility parameters.

4.2.3 Empirical results

Table 7 presents the results of the unbiased belief tests for all the values of m0.20 We �rst draw

some caution on the interpretation of our results for m0 = 1:5 and m0 = 13:5. As the monetary

reward for safe action takes its lowest value at m0 = 1:5 (highest value at m0 = 13:5) the choice

probability of the risky action remains very high (very low) regardless of the value of � and G. For

these values, choice probabilities have very little variation over the treatments t = (�,G), and this

implies that our unbiased beliefs test has little power. In other words, for these extreme values of

m0, the high p-values of the test of unbiased beliefs can be spurious and not re�ect evidence of

unbiased beliefs but a low power of the test.21

Except for m0 = 1:5 and m0 = 13:5, the p-value of the unbiased belief test is increasing in m0

under the four distributional assumptions for the unobservables.22 It suggests that subjects tend to

evaluate coordination probability incorrectly when coordination cost is relatively low; as such cost

increases, subjects tend to have correct belief. In addition, our analysis suggests that the empirical

results of unbiased belief tests are robust to distributional assumptions on unobservables as the

results are qualitatively and quantitatively similar across di¤erent speci�cations.

20Heinemann, Nagel and Ockenfels (2009) also consider a Bayesian game which is di¤erent than the one in this
paper. The Bayesian Nash Equilibrium in their framework predicts that the equilibrium probability of the risky action
increases monotonically with m0 and �, and decreases with G. This prediction is clearly rejected by the empirical
choice probabilities, and therefore, they conclude that BNE is not appropriate in this experiment. In contrast, the
BNE in our framework does not predict their comparative statistics and it requires a formal test of unbiased beliefs.
21This conjecture is con�rmed by our estimation results of utility function. If we impose the unbiased beliefs

restrictions in all the treatments for m0 = 1:5 and m0 = 13:5, the estimated utility function violates monotonicity at
those two points.
22The only exception happens at m0 = 6.
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Table 7: Tests of Unbiased Beliefs
Coordination Game (Chi-Square Test)

(p-value in parentheses)
Probit Logit Exponential Double Exp.
Model Model Model Model

m0 = 1:5 6.2229 5.0582 10.7770 7.2979
(0.5140) (0.6529) (0.1486) (0.3985)

m0 = 3:0 27.7623��� 21.6335��� 30.7459��� 32.7826���

(0.0002) (0.0029) (0.0001) (0.0000)
m0 = 4:5 14.4177�� 12.1147�� 23.5703�� 16.5377��

(0.0442) (0.0969) (0.0014) (0.0206)
m0 = 6:0 7.0733 6.4311 4.1628 6.4730

(0.4213) (0.4904) (0.7608) (0.4857)
m0 = 7:5 15.9080�� 14.4899�� 8.0014 11.5969

(0.0260) (0.0431) (0.3325) (0.1146)
m0 = 9:0 11.5301 10.8009 10.3849 10.5683

(0.1171) (0.1475) (0.1678) (0.1586)
m0 = 10:5 6.2696 5.3701 4.6734 5.0008

(0.5086) (0.6149) (0.6998) (0.6599)
m0 = 12:0 3.8985 3.6526 3.5235 3.6314

(0.7914) (0.8188) (0.8327) (0.8211)
m0 = 13:5 4.5249 4.1119 3.9706 4.0535

(0.7177) (0.7668) (0.7832) (0.7736)

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.

Table 8 and Figure 2 present the results for the estimation of the utility function. The column

titled �t1; t2�reports the subset of treatments where we impose the restriction of unbiased beliefs

and its corresponding p-value. Recall that we choose unbiased belief treatments through the pro-

cedure described in subsection 4.3.2 and normalize �(15) = 15 to account for heteroskedasticity

of unobservable when m0 varies. We �rst draw some caution on the reliability of the estimates of

�(m) for values m < 4:5 in the exponential and double exponential models. Though statistically

insigni�cant, the point estimates are negative which implies a violation of the monotonicity of the

utility function (i.e. �(m) < �(0) = 0 for m > 0). This result could be evidence of misspeci�cation

of the exponential and double exponential models. Except for these estimates, all speci�cations

yield reasonable and qualitatively similar result. The utility function is increasing in the monetary

payo¤ with only one violation at point �(13:5).23

23As argued previously, this could be a result that data lacks variation of subjects�behaviors when m0. Therefore,
the unbiased belief tests have little power to provide informative guidance on the choice of unbiased belief treatments.
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Table 8: Estimation of Payo¤ Parameters
Coordination Game

(standard error in parentheses)
Probit Logit Exponential Double Exp.

Payo¤s t1;t2 Payo¤s t1;t2 Payo¤s t1;t2 Payo¤s t1;t2
�(1:5) 0.3803 1; 3 1.4103 1; 3 -3.4960 5; 8 -4.0104 1; 3

(4.7402) p=n.a. (4.2894) p=n.a. (7.6865) p= n.a. (6.9075) p=n.a.
�(3) 1.3150 1; 3 2.0244� 1; 3 -3.2335 5; 6 -2.0775 1; 3

(1.0919) p=n.a. (1.1733) p=n.a. (8.0327) p= n.a. (1.4991) p=n.a.
�(4:5) 1.6543� 1; 3; 7 1.6358�� 1; 3; 7 -1.4812 5; 7; 9 -0.0107 1; 3; 7

(0.9241) p=0.58 (0.8837) p=0.78 (4.4394) p=0.46 (1.4799) p=0.32
�(6) 4.1466��� 3; 7; 8 4.0637��� 3; 7; 8 -0.3986 All 3.3847� 5; 7; 9

(1.0131) p=0.89 (1.0035) p=0.96 (1.6953) p=0.76 (1.7315) p=0.98
�(7:5) 7.8417��� 2; 4; 6 7.7179��� 1; 2; 6 3.8047� 2; 7; 9 5.5005��� 2; 3; 4

(1.3819) p=0.96 (1.2272) p=0.95 (2.1053) p=0.80 (1.2735) p=0.79
�(9) 10.1793��� 1; 2; 3 10.2377��� 1; 2; 3 7.6988��� 1; 2; 3 8.8530��� 1; 2; 3

(1.1710) p=0.50 (1.1775) p=0.46 (1.1723) p=0.39 (1.0671) p=0.37
�(10:5) 14.4220��� All 14.2903��� All 10.5850��� All 12.1592��� All

(0.6984) p=0.50 (0.6190) p=0.61 (0.3916) p=0.69 (0.4010) p=0.65
�(12) 14.9357��� All 14.3011��� All 10.6007��� All 12.1546��� All

(1.0404) p=0.79 (1.0667) p=0.81 (0.5842) p=0.83 (0.7678) p=0.82
�(13:5) 13.4269��� All 12.3466��� All 9.1063��� All 10.4623 All

(1.6128) p=0.71 (1.6070) p=0.76 (1.0291) p=0.78 (1.2633) p=0.77
�(15) 15 n.a. 15 n.a. 15 n.a. 15 n.a.

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.

t1and t2 are the treatments where we imposed the restriction of unbiased beliefs.

Figure 2 presents the estimated utility function for the Probit speci�cation of the unobservables

(blue solid line) together with 95% con�dence intervals (blue dashed line) and with a comparison

to the linear utility assumption (black solid line).24 The estimated utility function has an S-

shape: it is convex for relatively low values of money and concave for large monetary payo¤s. This

feature holds also for the other three speci�cations of the unobservables. This result is signi�cantly

di¤erent to the standard speci�cation that restricts utility to be equal to the monetary payo¤ (i.e.

�(m) = m). Importantly, imposing the restriction that utility is equal to the monetary payo¤ can

generate incorrect conclusions on beliefs. Furthermore, our estimates suggest that the speci�cation

of a globally concave utility function can generate also biases because this concavity does not hold

for small monetary payo¤s. This indicates that the conventional functional forms adopted for

the utility function in many applications (i.e. linear, logarithmic, CRRA, or CARA functions)

can be mis-speci�ed. In contrast, this paper provides a method that estimates payo¤ functions

24This �gure ignores the point at �(13:5) as monotonicity of the utility function is violated.
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without imposing any functional form assumption. Of course, this �exibility has the price of less

precise estimates of the parameters. However, the nonparametric approach can be considered as

an exploratory procedure to search for the correct parametric and parsimonious speci�cation.

Figure 2: Estimated Payo¤ (Probit Model)

 

The S-shape of the estimated utility function is consistent with the prediction of Prospect

Theory (i.e., Kahneman and Tversky, 1979). According to this interpretation, players of this game

would have a reference point for the monetary payo¤ that they expect to obtain in the game. Let

mR be this reference point. For monetary payo¤s above the reference point, preferences show risk

aversion (i.e., the utility function is strictly concave), and for monetary payo¤s below the reference

point, preferences show loss aversion (i.e., the utility function is strictly convex). Therefore, the

reference point mR is the point of in�ection where the utility function goes from convex to concave.

As our framework non-parametrically speci�es the utility function, it also provides an estimate of

the reference point rather than imposing it a priori. According to our estimates under the Probit
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and Logit models, the interval estimate of the reference point is [$7:50; $10:50]. This interval

includes the mean value of m0 across all the di¤erent experiments of the game, $8:25.25

Figure 3: Estimated Beliefs and Choice Probabilities (Probit Model)

Tables 9 to 11 present our estimates of beliefs Bi, i.e., beliefs on the probability that at least a

proportion � of the other players choose the risky action. Each table corresponds to a particular

value for the number of playersG. Figure 3 presents a graphical representation of these estimates. In

general, subject�s belief about successful coordination decreases when either m0, G, or � increase.

Furthermore, � has the largest impact on subjects� beliefs. Speci�cally, when coordination is

either easy (� = 1
3) or di¢ cult (� = 1), subjects tend to have unbiased beliefs. In contrast,

when coordination di¢ culty is moderate (� = 2
3), subjects will signi�cantly underestimate the

coordination probabilities when coordination cost m0 is relatively small and overestimate it when

m0 is large even, though the overestimation is not statistically signi�cant.

25Remember that in this experiment every subject plays all the games for every value of G, �, and m0.
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Table 9: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 4

(standard error in parentheses)
� = 1 � =2

3 � =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0 = 1:5 0:4768��� 0:4768��� 0:6943��� 0:9570��� 0:9999��� 0:9999���

s.e. (0.0956) (0.0956) (0.1023) (0.0283) (0.0003) (0.0003)
Equality Test p-value=1 p-value=0.0090 p-value=1

m0 = 3 0:3713��� 0:3713��� 0:6511��� 0:9570��� 1:0000��� 1:0000���

s.e. (0.0880) (0.0880) (0.1131) (0.0285) (0.0002) (0.0002)
Equality Test p-value=1 p-value=0.0166 p-value=1

m0 = 4:5 0:2566��� 0:2263��� 0:6423��� 0:9344��� 0:9931��� 0:9999���

s.e. (0.0922) (0.0693) (0.1255) (0.0369) (0.0103) (0.0004)
Equality Test p-value=0.5664 p-value=0.0162 p-value=0.5734

m0 = 6 0:1782 0:0837�� 0:6096��� 0:7879��� 0:9950��� 0:9980���

s.e. (0.1099) (0.0379) (0.1092) (0.0722) (0.0113) (0.0026)
Equality Test p-value=0.3000 p-value=0.0172 p-value=0.8374

m0 = 7:5 0:0457 0:0222 0:4582��� 0:4532��� 1:0000��� 0:9934���

s.e. (0.1121) (0.0149) (0.1454) (0.0926) (0.0336) (0.006)
Equality Test p-value=0.8926 p-value=0.9620 p-value=0.1734

m0 = 9 0:0000 0:0051 0:2124�� 0:1742��� 0:9468��� 0:9536���

s.e. (0.0236) (0.0049) (0.0873) (0.0658) (0.0282) (0.0247)
Equality Test p-value=0.2902 p-value=0.4926 p-value=0.4944
m0 = 10:5 0:0246 0:0028 0:0000 0:043 0:8247��� 0:8220���

s.e. (0.0966) (0.0032) (0.0788) (0.0286) (0.1092) (0.0602)
Equality Test p-value=0.8896 p-value=0.3282 p-value=0.9668

m0 = 12 0:0000 0:0005 0:0793 0:0333 0:5292��� 0:6039���

s.e. (0.0669) (0.0009) (0.1050) (0.0243) (0.1157) (0.0899)
Equality Test p-value=0.4256 p-value=0.7322 p-value=0.0408
m0 = 13:5 0:0389 0:0005 0:0389 0:0174 0:3594 0:4636

s.e. (0.0831) (0.0009) (0.0837) (0.0163) (0.1129) (0.0963)
Equality Test p-value=0.7772 p-value=0.8520 p-value=0.0060

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.
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Table 10: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 7

(standard error in parentheses)
� = 1 � =2

3 � =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0 = 1:5 0:3544�� 0:1328 0:5879��� 0:9377��� 0:7114��� 0:9999���

s.e. (0.1420) (0.0848) (0.1576) (0.0596) (0.1576) (0.0009)
Equality Test p-value=0.0428 p-value=0.0352 p-value=0.0960

m0 = 3 0:2670�� 0:0706 0:3649��� 0:7703��� 0:5615��� 0:9993���

s.e. (0.1068) (0.0592) (0.1096) (0.1193) (0.1285) (0.0027)
Equality Test p-value=0.0128 p-value=0.0004 p-value=0.0082

m0 = 4:5 0:1103 0:0156 0:4461��� 0:8113��� 0:6726��� 0:9997���

s.e. (0.1007) (0.0206) (0.1315) (0.1087) (0.1536) (0.0016)
Equality Test p-value=0.3586 p-value=0.001 p-value=0.0508

m0 = 6 0:0872 0:0031 0:3889��� 0:4852��� 0:8807��� 0:9993���

s.e. (0.1083) (0.0064) (0.1406) (0.1470) (0.1270) (0.0024)
Equality Test p-value=0.5518 p-value=0.1586 p-value=0.5166

m0 = 7:5 0 0:0003 0:3745��� 0:2210� 0:9890��� 0:9913���

s.e. (0.0334) (0.0012) (0.1227) (0.1159) (0.0404) (0.0143)
Equality Test p-value=0.5124 p-value=0.062 p-value=0.9586

m0 = 9 0:0000 0:0000 0:3579�� 0:1001 0:9042��� 0:9671���

s.e. (0.0901) (0.0002) (0.1651) (0.0770) (0.1254) (0.0362)
Equality Test p-value=0.4884 p-value=0.0322 p-value=0.6640
m0 = 10:5 0:0000 0:0000 0:1203 0:0087 0:8049��� 0:8085���

s.e. (0.0193) (0) (0.1300) (0.0165) (0.1420) (0.1069)
Equality Test p-value=0.342 p-value=0.4626 p-value=0.945

m0 = 12 0:0000 0:0000 0:0000 0:0001 0:5207��� 0:4941���

s.e. (0.0586) (0.0000) (0.0225) (0.0008) (0.1512) (0.1495)
Equality Test p-value=0.3958 p-value=0.3208 p-value=0.2462
m0 = 13:5 0:0000 0:0000 0:0000 0:0000 0:3109�� 0:2632��

s.e. (0.0451) (0.0000) (0.0106) (0.0002) (0.1371) (0.1328)
Equality Test p-value=0.3452 p-value=0.2612 p-value=0.1320

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.
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Table 11: Comparison Between Belief and Actual Coordination Probability
Probit Model, G = 10

(standard error in parentheses)
� = 1 � =2

3 � =1
3

Beliefs True Choice Beliefs True Choice Beliefs True Choice
Probability Probability Probability

m0 = 1:5 0:2892�� 0:0291 0:6280��� 0:9661��� 0:7706��� 1:0000���

s.e. (0.1442) (0.0428) (0.1615) (0.0547) (0.1572) (0.0002)
Equality Test p-value=0.064 p-value=0.0454 p-value=0.2086

m0 = 3 0:2437�� 0:0146 0:5953��� 0:9661��� 0:7927��� 1:0000���

s.e. (0.1071) (0.0270) (0.1357) (0.0539) (0.1411) (0.0001)
Equality Test p-value=0.0196 p-value=0.0170 p-value=0.2234

m0 = 4:5 0:0000 0:0003 0:5536��� 0:9144��� 0:7853��� 1:0000���

s.e. (0.0204) (0.0015) (0.1416) (0.0899) (0.1517) (0.0002)
Equality Test p-value=0.3812 p-value=0.0102 p-value=0.2388

m0 = 6 0:0000 0:0000 0:3156�� 0:3055� 0:9238��� 1:0000���

s.e. (0.0235) (0.0004) (0.1284) (0.1616) (0.1205) (0.0008)
Equality Test p-value=0.4954 p-value=0.8888 p-value=0.7010

m0 = 7:5 0:0303 0:0000 0:2603 0:0740 1:0000��� 0:9999���

s.e. (0.1234) (0.0001) (0.1765) (0.0811) (0.0384) (0.0017)
Equality Test p-value=0.8776 p-value=0.1772 p-value=0.4126

m0 = 9 0:1161 0:0000 0:1764 0:0100 0:8673��� 0:9750���

s.e. (0.1375) (0.0001) (0.1492) (0.0238) (0.1395) (0.0436)
Equality Test p-value=0.533 p-value=0.3092 p-value=0.4606
m0 = 10:5 0:0000 0:0000 0:3046� 0:0058 0:8522��� 0:8505���

s.e. (0.0929) (0.0000) (0.1601) (0.0174) (0.1401) (0.1193)
Equality Test p-value=0.4998 p-value=0.0488 p-value=0.9712

m0 = 12 0:1385 0:0000 0:2234 0:0006 0:7086��� 0:6627���

s.e. (0.1335) (0.0000) (0.1467) (0.0046) (0.1531) (0.1708)
Equality Test p-value=0.4134 p-value=0.1618 p-value=0.1458
m0 = 13:5 0:1212 0:0000 0:2004 0:0002 0:4878��� 0:3993��

s.e. (0.1177) (0.0000) (0.1326) (0.0025) (0.1429) (0.1759)
Equality Test p-value=0.4146 p-value=0.1622 p-value=0.0238

***, **, * indicate signi�cance at 1%, 5%, and 10% levels.
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5 Conclusion

A common approach to study risk aversion and biased beliefs in experimental games is to directly

elicit preferences and beliefs. An important concern in the experimental literature is that some

elicitation processes may a¤ect players�behavior in games. This paper complements the existing

literature by treating utility and beliefs as unknowns and estimating them directly from choice data.

Our approach requires an experimental design with multiple treatments where payo¤matrices vary

across treatments for some players but not others. This revealed preference/beliefs approach avoids

the potential biases introduced by the elicitation process. We propose di¤erent tests for the null

hypothesis of unbiased (equilibrium) beliefs and present identi�cation results on beliefs and payo¤

function.

We apply our test and identi�cation results to experimental data from a matching pennies game

conducted by Goeree and Holt (2001) and a coordination game studied by Heinemann, Nagel, and

Ockenfels (2009). Our empirical results show that in the matching pennies game, subjects tend

to correctly predict other players�behavior when other players�monetary payo¤s change. In the

coordination game, the null hypothesis of unbiased belief is rejected when the monetary payo¤ to

safe action is relatively low. When that payo¤ increases, subjects tend to adjust their beliefs to

eliminate the bias. The estimated utility function of money has an S-shape, indicating that subjects

are risk loving when receiving small monetary payo¤s but they become risk averse when the payo¤

increases. Finally, our estimates of beliefs suggest that subjects underestimate the probability of

coordination when the payo¤ of the safe action is low.
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