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Abstract

We propose a method to estimate static discrete games with weak assumptions on the
information available to players. We do not fully specify the information structure of the
game, but allow instead for all information structures consistent with players knowing
their own payoffs and the distribution of opponents’ payoffs. To make this approach
tractable we adopt a weaker solution concept: Bayes Correlated Equilibrium (BCE),
developed by Bergemann and Morris (2016). We characterize the sharp identified set
under the assumption of BCE behavior and no assumptions on equilibrium selection,
and find that in simple games with modest variation in observable covariates identified
sets are narrow enough to be informative. In an application, we estimate a model of
entry in the Italian supermarket industry and quantify the effect of large malls on local
grocery stores. Parameter estimates and counterfactual predictions differ from those
obtained under the restrictive assumption of complete information.
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1 Introduction

Empirical models of static discrete games are important tools in industrial organization,
as they allow to recover the determinants of firms’ behavior while accounting for the strate-
gic nature of firms’ choices. Models in this class have been applied in contexts such as entry,
product or location choice, advertising, and technology adoption.1 Game-theoretic models’
equilibrium predictions, and thus the map between the data and parameters of interest,
depend crucially on the assumptions on the information that players have on each other’s
payoffs. However, the nature of firms’ information about their competitors is often ambigu-
ous in applications. Moreover, restrictive assumptions, when not satisfied in the application
at hand, may result in inconsistent estimates of the payoff structure of the game.

We propose a new method to estimate the distribution of players’ payoffs relying only
on assumptions on the minimal information players have. In particular, we assume that
players know at least (i) their own payoffs, (ii) the distribution of opponents’ payoffs, and
(iii) parameters and observable covariates. We admit any information structure that satisfies
these assumptions. In this sense our model is incomplete, in the spirit of Manski (2003,
2009), Tamer (2003), and Haile and Tamer (2003). More precisely, we allow our model
to produce any prediction that results from a Bayes Nash Equilibrium (BNE) under an
admissible information structure, without assumptions on equilibrium selection. Our object
of interest is the set of parameters that are identified given this incomplete model.

Our method nests the two main approaches used in the existing literature: complete
information, adopted by the pioneering work in this area (Bjorn and Vuong, 1985; Jovanovic,
1989; Bresnahan and Reiss, 1991a; Berry, 1992); and private information (Seim, 2006; de
Paula and Tang, 2012). Likewise, it nests the class of information structures considered by
Grieco (2014). Moreover, our model is flexible in other dimensions: we allow the information
structure of the game to vary across markets and to be asymmetric, i.e. agents may be
informed about opponents’ payoffs with varying levels of accuracy.

To make this approach tractable, we rely on the connection between equilibrium behav-
ior and information, and adopt Bayes Correlated Equilibrium (BCE) as solution concept.
BCE, introduced by Bergemann and Morris (2013, 2016), has the property of describing
BNE predictions for a range of informational environments. We show that, under the as-
sumption of BCE behavior, for every vector of parameters in the identified set there exists
an admissible information structure and a BNE that deliver predictions compatible with the
data. Exploiting the convexity of the set of equilibria, we also provide a tractable charac-
terization of the sharp identified set of parameters without explicitly modeling equilibrium

1See for instance Bresnahan and Reiss (1991b), Berry (1992), Jia (2008), Ciliberto and Tamer (2009) for models of
entry, Mazzeo (2002) and Seim (2006) for models of product choice, Sweeting (2009) for advertising, Ackerberg and
Gowrisankaran (2006) for technology adoption.

2



selection. These results motivate the use of BCE to estimate the distribution of players’
payoffs while being robust with respect to the informational environment, thus avoiding
mis-specification bias due to strong assumptions on information.

We investigate the identification power of BCE in simple entry games with linear payoffs
and find that the identified sets are informative about the model’s primitives. In fact,
point identification is obtained under the assumption of full-support variation in excluded
covariates, as in Tamer (2003). More generally, however, we obtain partial identification of
the payoff parameters and of the joint distribution of payoff types. We perform inference by
constructing a confidence set for parameters in the identified set using techniques developed
in Chernozhukov, Hong and Tamer (2007).

We apply our method to the investigation of the effect of large malls on the grocery retail
industry in Italy. The disagreement on the impact of the presence of these big outlets echoes
the US debate on “Wal-Mart effects.” Advocates of stricter regulation of large retailers claim
that the superstores in malls drive out existing supermarkets and leave consumers without
the option of shopping at local stores. Economic theory2 and some of the existing evidence
from other countries suggest however that local stores might benefit from the agglomeration
economies created by the mall, or be differentiated enough not to suffer the competition of
grocery-anchored shopping centers.

We estimate a static entry game using our robust method, and find mixed evidence on
the effect of large malls on supermarkets. For all players in the industry the competition
from a rival supermarket group seems to have a larger effect on profits than the competition
from malls has. This is consistent with a substantial degree of differentiation between malls
and local supermarkets, and thus a limited effect of malls on the availability of grocery
stores. Our findings are in line with previous studies that have found a limited impact of
supercenters on entry by small grocery retailers in the US (Ellickson and Grieco, 2013).

We compare these estimates with those obtained using a model of complete information.
Results differ in important ways: in particular, we do not reject high values (in absolute
value) of competitive effects, which are rejected under strong assumptions on information.
This is because the assumption of complete information imposes that players fully antici-
pate competitors’ decisions. As a consequence, the more restrictive complete information
model may lead to underestimate how much players’ profits are affected by the presence of
competitors in a market.

In a counterfactual, we evaluate the effect on market structure of removing large malls
from markets that currently have no other supermarket. Under weak assumptions on in-
formation, we find that the absence of the mall may or may not foster the emergence of a

2Zhu, Singh and Dukes (2011) show that when the existing retailers offer non-overlapping product lines, they may
benefit from the presence of large stores that can produce demand externalities.
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market structure with at least two competing industry players. The model with complete
information predicts instead that removing large malls results in a substantial increase in
the average maximal probability3 of observing at least two entrants. In this application,
a model with restrictive assumptions on information leads us to strong conclusions, which
are dispelled once more robust methods are adopted.

This article contributes to the literature on identification and estimation of static dis-
crete games, recently surveyed by de Paula (2013). We follow Tamer (2003), Berry and
Tamer (2006), who do not restrict equilibrium selection and allow for set identification of
parameters. In particular, we rely on ideas in Beresteanu, Molchanov and Molinari (2011),
who provide a useful characterization of the sharp identified set for models with convex
predictions.4

Grieco (2014) is the first to estimate a game-theoretic model that relaxes the stan-
dard assumptions of either complete or perfectly private information. His model defines
a parametric class of information structures where players receive both public and private
signals; the relative precision of these signals is pinned down by the data. We adopt a
complementary approach as we consider a model that is strictly more general, but we do
not perform inference on the information structure.5 Our emphasis on identification and
estimation under weak assumptions on information is similar to the spirit of Dickstein and
Morales (2016), who examine firms’ export decisions, and develop a method to estimate
payoff parameters without fully specifying firms’ information on their expected revenues.

We build on the theoretical work of Bergemann and Morris (2013, 2016). They define
the equilibrium concept used in this article and describe its property of offering robust pre-
dictions for games with incomplete information. Their characterization, developed in the
context of theoretical work, inspires our use of a similarly robust framework in empirical
applications. Aradillas-Lopez and Tamer (2008) study identification for a less restrictive
solution concept, rationalizability.6 Our approach is neither more general nor more restric-
tive than theirs, as they relax the assumption of equilibrium play, but work with restrictive
assumptions on information.

Our study of the effect of the presence of large malls on local supermarkets is related to
3Since our model is partially identified and has multiple equilibria, it does not yield a unique counterfactual

prediction. We follow Ciliberto and Tamer (2009) in reporting the average across markets and the maximum over
equilibrium selections of the probability of observing a market structure outcome.

4Galichon and Henry (2011) provide an alternative characterization of the sharp identified set in game-theoretic
models.

5The literature on discrete games faces a comparable trade-off between recovering a structural component and
flexibility with respect to equilibrium selection. Whereas some studies parametrize and recover features of the equi-
librium selection mechanism (Bajari, Hong and Ryan, 2010), other leave it unspecified (Tamer, 2003). Our approach
with respect to the information structure is comparable to the latter studies.

6Yang (2009) examines estimation of discrete games of complete information under Nash behavior, using non-
sharp restrictions imposed by Correlated Equilibrium in order to simplify computation. The assumption of Correlated
Equilibrium under complete information is nested in our approach.
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several papers that use structural models of market structure to examine the effect of entry
of large store formats, especially Wal-Mart in the US, on other retailers, such as Jia (2008),
Beresteanu, Ellickson and Misra (2010) and Arcidiacono et al. (2016). In a companion
paper, Magnolfi and Roncoroni (2016), we study the role of political connections in shaping
market structure in the Italian supermarket industry.

The structure of the article is as follows. In the following section, we define a general
class of a discrete games. In Section 3 we discuss identification in this class of models,
and motivate the use of BCE in empirical games. In Section 4 we compare our robust
approach to models with more restrictive assumptions on information. In Section 5 we lay
out sufficient conditions for identification in a more restrictive class of discrete games, and
show evidence on the informativeness of our robust identified set. In Section 6 we develop
the empirical application. Section 7 concludes.

2 Model

We consider a class of static games, indexed by realizations of covariates x ∈ X. Games
with distinct values of x may be interpreted as separate markets where firms interact.
Players are in a finite set N. Each player i ∈ N chooses an action yi ∈ Yi. Both the actions’
space Y = ×i∈NYi and N do not depend on x. The econometrician observes cross-sectional
data on discrete outcomes y ∈ Y and covariates x, and wants to recover the determinants
of behavior. This setup is summarized in Assumption 1 below.

Assumption 1. (Observables) The econometrician observes the distribution Px,y of the
random vector (x, y). This joint distribution induces a set of conditional probability measures

{
Py|x : x ∈ X

}
with Py|x ∈ Py, the set of probability distributions over the finite set Y. The finite set of
players N is also observable.

To identify the determinants of behavior, the first step is to assume that the data are
generated by a true structure in a well-defined class. We outline the primitives of this
structure in the next subsections, describing separately the payoff environment and the
informational environment that players face. All features of the true structure generating
observed behavior are common knowledge among players.

2.1 Payoff Environment

Each player i is characterized by a payoff type εi ∈ Ei ⊆ R. Payoff types ε = (εi)i∈N
are distributed according to the cdf F (·; θε), parametrized by the finite dimensional vector
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θε ∈ Θε.7 Payoffs to player i, denoted by πi, depend on action profiles and payoff types.
Payoffs are also affected by observable covariates x, and finite dimensional payoff parameters
θπ ∈ Θπ, so that for every player i and every pair (x, θπ) there is a map:

πi(·;x, θπ) : Y × Ei → R.

We assume that ε is independent of the vector x. A realization of x and a vector of pa-
rameters θ = (θπ, θε) ∈ Θ pins down a payoff structure. We want to identify, from data
on behavior and market observable characteristics x, the vector of parameters θ. Although
we present a model with ε independent of x and finite dimensional parameters θ, these
restrictions are not necessary for the general discussion of robust identification in Section
3.8

We introduce here an example that we will use throughout the description of the model:
a two-player entry game with payoffs linear in covariates, and independent uniformly dis-
tributed types.

Example 1. (Two-Player Entry Game) Consider a model of a two-player, binary action
game. Players are in the set N = {1, 2}. Actions are “out” or “enter”, represented as Yi =
{0, 1}. The possible outcomes are either a duopoly when (1, 1) is realized, or monopolies
when either (1, 0) or (0, 1) are realized, or a market with no entrants with (0, 0). Payoffs
are:

πi(y, εi;x, θπ) = yi
(
xTi βi + ∆−iy−i + εi

)
,

so that the payoff parameter vector is θπ = (βi,∆i)i=1,2. The parameter ∆i, often called
competitive effect, quantifies the effect of entry by firm i on firm −i′s payoffs. Payoff types
εi are iid and uniformly distributed on [−1, 1]. Payoffs may be visualized in the following
matrix:

Player 2: Out Enter

Player 1: 0 1

Out 0 (0, 0)
(
0, xT2 β2 + ε2

)
Enter 1

(
xT1 β1 + ε1, 0

) (
xT1 β1 + ∆2 + ε1,
xT2 β2 + ∆1 + ε2

)

7This specification allows for correlation among players’ payoff types. See also Xu (2014) and Wan and Xu (2015)
for models that allow for correlated payoff types.

8We do not pursue non-parametric identification of the payoff structure in this article, as it is not directly related
to our main goal of achieving robustness with respect to assumptions on information. Similarly, we maintain for
simplicity (but with some loss of generality) the assumptions of scalar, continuously distributed payoff types. We
present this parametric setup to preserve the link with the previous literature and with applied work, although all
results in Section 3 would go through without these assumptions. See Lewbel and Tang (2015) for an example of
non-parametric identification and estimation of the payoff structure in models of games with incomplete information,
and Tang (2010) for a model that relaxes the independence between ε and x.
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2.2 Informational Environment

We assume that every player i knows the realization of her payoff type, as well as
parameters and x.9 In addition, every player receives a private random signal τxi , which
may be informative about the full vector of payoff types ε. An information structure S
specifies, for every market x, the set of signals a player may receive and the probability of
receiving them, given the realization of the vector of payoff types. Formally:

S =
(
T x,

{
P xτ |ε : ε ∈ E

})
x∈X

,

where T x is subset of a separable metric space and represents the support of the vector of
signals τx = (τxi )i∈N . The probability kernel

{
P xτ |ε : ε ∈ E

}
is the collection of probability

distributions of τx conditional on every realization of ε. The sets of signals and the distri-
bution of signal vectors depend on x, as we allow the informational environment to change
with observable characteristics of the payoff environment.

Let S denote the collection of all possible information structures S. More formally, S is
a general non-parametric class of information structures:

S =
{
S| ∀x ∈ X, T x separable metric space, P xτ |ε probability measure on (T x,B (T x))

}
,

where B denotes the Borel σ−algebra.
Two extreme examples of information structures are complete information, denoted by

S, and minimal information, denoted by S, in which payoff types are private information.
Most prior work on estimation of discrete games assumes one of these extremes, both nested
by our framework. The structure S features T xi = E for every x ∈ X, and provides players
with perfectly informative signals: P xτi|ε([τi = ε]) = 1 for all ε ∈ E , x ∈ X, i ∈ N . Instead,
in the minimal information structure S signals τxi are uninformative: P xτi|ε = P xτi for all
ε ∈ E , x ∈ X, i ∈ N .

Our framework naturally accommodates the class of flexible information structures pro-
posed in Grieco (2014).

Example 2. (Grieco) Consider a model of a two-player, binary action game, with N =
{1, 2} and Yi = {0, 1} . Payoffs are:

πi(y, ε; θπ) = yi (∆y−i + εi) ,
9Although this assumption is crucial for our point identification result in Section 5, it is not needed for our Propo-

sition 1, and we could in principle allow for a different baseline level of information. We choose to assume that players
know everything that is known to the econometrician, as this assumption is plausible in the economic environments
we consider and provides identification power in applications. Aradillas-Lopez (2010) describes semi-parametric in-
ference procedures for models in which the part of players’ payoffs that is unobserved to the econometrician is private
information, and players may be imperfectly informed about the part of opponents’ payoffs that is observable to the
econometrician.
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and payoff types εi may be decomposed in two parts, εi = η1
i + η2

i , and τi =
(
η1
−i, η

1
i

)
.

The vector
(
η1
−i, η

1
i

)
represents a publicly observed component of the payoff type that is

correlated across players, whereas η2
i is a privately known component of the payoff type,

independent across players. See Appendix E in Supplementary Materials online for more
discussion of this example.

The model does not constrain the information structure to be the same across different
markets, and encompasses other relevant cases, such as privileged information SP , in which
only some players know the type of the other players.10 In this case, the signal spaces for
all players are T xi = E . For an informed player i, signals τxi are distributed according to
P xτi|ε([τi = ε]) = 1 for all ε ∈ E , x ∈ X, whereas for an uninformed player j signals τxj are
distributed according to P xτj |ε = P xτj .

2.3 Equilibrium

The parameter vector θ = (θπ, θε) and the information structure S summarize the
elements of the structure that are unknown to the econometrician; a pair (θ, S) pins down
a game Γx (θ, S) for every x. We assume that players’ behavior is described by a profile
of strategies that are a Bayes Nash Equilibrium (BNE) of this game. Let σ denote the
equilibrium strategy profile, where:

σ = ×i∈Nσi, σi ∈ (PYi)
Ei×Txi .

Let BNEx(θ, S) denote the set of all BNE strategy profiles for the game Γx(θ, S); as Γx(θ, S)
may have multiple equilibria, the set of equilibria BNEx(θ, S) may not be a singleton.11

The informational environment of the game has important implications for equilibrium
behavior. When players receive informative signals on their opponents’ payoff types, their
beliefs and hence their equilibrium behavior reflect this information. The more informative
the signals that player i receives about ε−i, the more we expect player i′s equilibrium
behavior to vary with the realizations of ε−i. Conversely, players who receive uninformative
signals will only base their equilibrium behavior on their own payoff type.12

Example. (1, Continued) Figure 1 depicts equilibrium outcomes in the space of payoff
types for a two-player entry game with no covariates x, competitive effects ∆1 = ∆2 =
−1

2 , and payoff types iid uniform over the interval [−1, 1]. The three panels correspond,
respectively, to games with information structure S, S and SP , and show how distinct

10This information structure resembles the one in the proprietary information model of common value auctions
(Engelbrecht-Wiggans, Milgrom and Weber, 1983).

11The set BNEx(θ, S) may be empty; we assume that for the true information structure BNEx(θ, S) 6= ∅.
12This results in different levels of ex-post regret: when not informed about their opponents’ type, players might

optimally choose actions that results sub-optimal ex post, when the equilibrium strategy profile is realized.
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informational environments result in radically different equilibrium behavior. In Panel (A)
we represent equilibrium outcomes for a game of complete information such as the one
analyzed by Bresnahan and Reiss (1991a) and Tamer (2003). For every realization of ε,
common knowledge for players, there is one or more equilibrium outcome. In Panel (B),
equilibrium behavior takes the form of threshold strategies: each player does yi = 1 iff
εi ≥ 1/5. In Panel (C) the privileged information structures results in equilibria where
player 1 knows ε and can condition her behavior on the realizations of both ε1 and ε2.

Player 2 only knows ε2 and follows a threshold strategy. There is a continuum of such
equilibria with thresholds ε∗2 ∈ [1/8, 1/4] .

[Figure 1 about here.]

For each equilibrium strategy σ ∈ BNEx(θ, S) we can formulate the following prediction
on behavior:

Definition 1. (BNE Prediction) A BNE σ of the game Γx(θ, S) induces a distribution over
outcomes qσ:

qσ (y) =
∫
E

∫
T

(∏
i∈N

σi (εi, τi) (yi)
)

dPτ |εdF,

for all y ∈ Y .

The set BNEx(θ, S) of equilibria might not be a singleton, and we do not make any
specific assumption on equilibrium selection. For any pair (θ, S), we define a prediction
correspondence QBNE

θ,S : X ⇒ PY

QBNE
θ,S (x) = co [{q ∈ PY : ∃ σ ∈ BNEx(θ, S) such that q = qσ}] ,

where co[·] takes the convex hull of a set.13 The prediction correspondence describes the
set of distributions over actions y that may be obtained in a game Γx (θ, S) under the as-
sumption of BNE play. The convex hull operator takes care of the multiplicity of equilibria:
since we do not make assumptions on the equilibrium selection mechanism, we allow for all
possible distributions over equilibria. In the next section, we consider identification in this
model.

3 Identification

We maintain that for each level of market characteristics x, observed behavior is compat-
ible with a BNE in a game Γx (θ0, S0) in the class described in Section 2. We are interested

13The set of BNEs of games in this class will not typically be convex. Convexification of the set of predictions
captures the idea that distributions over outcomes may arise from arbitrary equilibrium selection mechanisms (taking
the form of probability distributions over equilibria).
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in recovering θ0, but we do not know the true information structure S0. We first link the
game-theoretic structure to observables, and then describe the identified set we obtain for
the parameters of interest if we allow for any S ∈ S, and for any Bayes Nash Equilibrium
constructed given any S.

Building on the formal characterization of the implications of equilibrium behavior pro-
vided by Definition 1, we summarize below our assumptions on the data generating process.

Assumption 2. (Data generating process) For all x ∈ X, the outcomes y are generated by
equilibrium play of the game Γx (θ0, S0) , so that Py|x ∈ QBNE

θ0,S0
(x) .

Under Assumptions 1 and 2, for any restriction on information S ′ ⊆ S let:

ΘBNE
I

(
S ′
)

=
{
θ ∈ Θ|∃ S ∈ S ′ such that Py|x ∈ QBNE

θ,S (x) , Px − a.s.
}

be the identified set of parameters consistent with BNE behavior. The sharp identified set
of parameters without further assumptions on information is thus defined as:

ΘBNE
I (S) =

{
θ ∈ Θ|∃ S ∈ S such that Py|x ∈ QBNEθ,S (x) , Px − a.s.

}
. (3.1)

This is the set of parameters whose implications, without restrictions on equilibrium se-
lection or information structure, are compatible with the observables. All parameters
θ ∈ ΘBNE

I (S) are observationally equivalent, as for each of them there exists an information
structure S ∈ S that generates a correspondence QBNE

θ,S rationalizing the observables. The
set ΘBNE

I (S) is our object of interest. It captures all the restrictions on parameters that
may be obtained under weak assumptions on the information structure.

Nevertheless, definition (3.1) seems hardly useful in practice, as computing correspon-
dences QBNE

θ,S for all S in the large class S is an analytical challenge. In fact, a brute-force
approach would require specifying all possible information structures, and finding the corre-
sponding sets of equilibria. In the following subsections we propose a method to identify the
set ΘBNE

I (S) that sidesteps the difficulties inherent in a direct approach by relying on the
connection between equilibrium behavior and robustness to assumptions on information.

3.1 Bayes Correlated Equilibrium

In this subsection, we show how the adoption of Bayes Correlated Equilibrium as solution
concept solves the problem of characterizing the robust identified set ΘBNE

I (S). We start
with the definition of BCE, which follows Bergemann and Morris (2016).14

14Although not identical, this definition is equivalent to the one in Bergemann and Morris (2016), and is proposed
in a previous working paper by the same authors. We adopt it as it’s well suited for our purposes of identification
and estimation.
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Definition 2. (BCE) A Bayes Correlated Equilibrium ν ∈ PY,E for the game Γx (θ, S) is a
probability measure ν over actions profiles and payoff types that is consistent with the prior :
for all ε ∈ E ,

∑
y∈Y

∫
[ι≤ε]

ν (y,dι) = F (ε; θε) ,

and incentive compatible: for all i, εi, yi such that ν (yi|εi) > 0,

∑
y−i∈Y−i

∫
E−i

πi (yi, y−i, εi;x, θπ) ν (y−i, dε−i|yi, εi) ≥

≥
∑

y−i∈Y−i

∫
E−i

πi
(
y′i, y−i, εi;x, θπ

)
ν (y−i,dε−i|yi, εi) , ∀y′i ∈ Yi.

The BCE concept is a natural generalization of Correlated Equilibrium to an incomplete
information environment, under the assumptions that players have a common prior on the
distribution of payoff types and on the signal structure. BCE behavior is not represented by
strategy functions, but rather by a joint distribution of observable actions and payoff types.
This distribution needs to be consistent with the common prior, hence its marginal over
payoff types reflects the common knowledge of the underlying distribution of ε. Moreover,
players need to be best-responding to equilibrium beliefs, as summarized by the BCE distri-
bution. When best-responding, different actions played by the same type may be justified
by different equilibrium beliefs, as in the standard notion of Correlated Equilibrium.

Notice that we define BCE for the game of minimal information Γx (θ, S) in which
players only know their own payoff type εi. Although in principle BCE may be defined for
any incomplete information game, we use Definition 2 in what follows, and use BCEx(θ) to
denote the set of BCE for the game Γx (θ, S), reflecting our choice of baseline information
structure. The set BCEx(θ) is convex, because the equalities and inequalities that define it
are linear in the equilibrium distribution.

In order to capture the BCE predictions on observed behavior, we consider the marginal
with respect to players’ actions of a BCE distribution ν.

Definition 3. (BCE Prediction) The BCE distribution ν induces a distribution over out-
comes qν defined as:

qν (y) =
∫
E
ν (y,dε) .

The observable implications of BCE behavior in a structure characterized by (θ, S) are
described by the prediction correspondence QBCE

θ : X ⇒ PY , defined as:

QBCEθ (x) = {q ∈ PY : ∃ ν ∈ BCEx(θ) such that q = qν} .

11



Because the set BCEx(θ) is convex, any convex combination of BCE predictions is also a
BCE prediction. Therefore, QBCE

θ (x) captures equilibrium predictions with no restrictions
on equilibrium selection.

Figure 2 shows the set of BCE outcomes for Example 1, for the case with no covariates
x. Panel (A) shows that BCE imposes weaker restrictions on equilibrium behavior: the sets
of BNE predictions obtained under a specific assumption on information are all contained
in the set of BCE predictions. Panel (B) illustrates instead that BCE predictions are still
a relatively small subset of all possible outcomes, represented by the simplex.

[Figure 2 about here.]

We are most interested in the implications of adopting BCE behavior for identifica-
tion. Under Assumptions 1 and 2 the behavioral assumption of BCE, the identified set of
parameters in this class of games is defined by:

ΘBCE
I =

{
θ ∈ Θ such that Py|x ∈ QBCE

θ (x) Px − a.s.
}
. (3.2)

3.2 BCE Identification

Bergemann and Morris (2013) establish the robust prediction property of BCE. In our
setup, this property translates into the equivalence, for any given θ, between the BCE
predictions QBCE

θ and the union of BNE equilibrium predictions QBNE
θ,S taken over S ∈ S.

Figure 2 illustrates this result by representing the polytope QBCE
θ as well as the sets of BNE

predictions QBNE
θ,S for the three information structures described in Example 2, and for the

payoff structure described in Example 1.
Leveraging on the robust prediction property of BCE, we establish the following propo-

sition:

Proposition 1. (Robust identification) Let Assumptions 1 and 2 hold. Then:

1. The identified set under BCE behavior contains the true parameter value, θ0 ∈ ΘBCE
I ,

and

2. ΘBCE
I = ΘBNE

I (S) .

Proof. See Appendix B.

Proposition 1 is the foundation for the use of the BCE behavioral assumption for identi-
fication. The adoption of BCE allows to characterize the set of parameters consistent with
equilibrium behavior and a common prior, with minimal assumptions on information. In
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light of Proposition 1, our approach is not aimed at changing the behavioral assumption
that we impose on players, but rather at relaxing assumptions on information. The object
ΘBNE
I (S), impossible to characterize when relying on BNE behavior, is easily defined by

relying on BCE behavior.
Although the proposition shows that for all parameters θ ∈ ΘBCE

I there must be an
information structure S such that θ ∈ ΘBNE

I (S) , it is not necessarily true that every
restriction on information S ′ ⊂ S selects a nonempty subset ΘBNE

I (S ′) ⊂ ΘBCE
I . In fact,

we show in Section 4 that the restriction S ′ could be falsified, so that ΘBNE
I (S ′) = ∅. In

the next subsection, we present a computable characterization of the BCE identified set.

3.3 Support Function Characterization of the Identified Set

We argued with Proposition 1 that ΘBCE
I is the set of all parameters compatible with the

observables and with the non-parametric class of information structures S. To estimate and
compute ΘBCE

I , we need however a more practical characterization, as it’s not immediately
obvious how to compute the set as defined in equation (3.2).

For every x ∈ X, the set of BCE predictions QBCE
θ (x) is a convex set. Convexity of

the set of predictions follows directly from the definition of BCE. Hence, we can represent
QBCE
θ (x) through its support function as in Beresteanu, Molchanov and Molinari (2011).15

Let B denote the unit ball in R|Y | and let h
(
·;QBCE

θ (x)
)

: B → R denote the support
function of the set QBCE

θ (x) :

h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q.

The support function provides a representation of the set of predictions:

q ∈ QBCE
θ (x)⇐⇒

{
bT q ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B

}
.

We have then:

ΘBCE
I =

{
θ ∈ Θ| bTPy|x ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B, Px − a.s.

}
=

{
θ ∈ Θ| max

b∈B
min

q∈QBCE
θ

(x)

[
bTPy|x − bT q

]
= 0, Px − a.s.

}
. (3.3)

The computation of this object can be further simplified leveraging on the characterization
of BCEx(θ). Because the inner program is a linear constrained minimization problem, we

15Because BCE yields a set of predictions that is already convex, we do not need to use Aumann expectations as
in Beresteanu, Molchanov and Molinari (2011). Appendix F in Supplementary Materials describes how our charac-
terization of the identified set maps into their framework.
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can consider its dual maximization program: this way it is possible to verify whether θ
belongs to the identified set ΘBCE

I by solving a single constrained maximization problem.16

Appendix A provides more computational details.

3.4 Inference

Suppose that we observe an iid sample of players’ choices and covariates {yj , xj}nj=1 . To
apply existing inferential methods, we assume that the set of covariates X is discrete.17 We
adopt an extremum estimation approach to perform inference. We redefine the identified
set characterized in (3.3) as the set of minimizers of a non-negative criterion function G,18

or
ΘBCE
I = {θ ∈ Θ|G (θ) = 0} ,

for
G (θ) =

∫
X

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θ (x)
)]

dPx.

The sample analogue of the population criterion function is:

Gn (θ) = 1
n

n∑
j=1

sup
b∈B

[
bT P̂y|x̄ − h

(
b;QBCE

θ (x̄)
)]
,

where P̂y|xj is the empirical frequency of strategy profile y in observations with covariates
x = x̄. The population criterion function inherits a smoothness property from the continuity
of the payoff function and the upper hemi-continuity of the equilibrium correspondence, so
that we can obtain a consistent estimator of the identified set as in Chernozhukov, Hong
and Tamer (2007):

Proposition 2. (Consistent estimator) Assume that:
16The computation of the the criterion function that we use for inference, described in the next subsection, is

similarly simplified.
17Although several recent methods for inference in partially identified models such as Andrews and Shi (2013) do

not require discrete covariates, they prove to be too computationally intensive for the estimation of our model. Other
recent methods, such as Andrews and Soares (2010), Bugni (2010), Armstrong and Chan (2016), Kaido, Molinari and
Stoye (2016) are instead designed for models that generate a finite number of (conditional) moment inequalities, and
hence do not apply to our setup. For a recent overview of methods in this area, see Canay and Shaikh (2017).

18Since the set of predictions QBCE
θ (x) is a subset of the (|Y | − 1)-dimensional simplex, in our application it is

sufficient to adopt the equivalent criterion function:

G
′
(θ) =

∫
X

sup
b

′

[
b

′TP
′

y|x − h
(
b

′
;Q

′BCE
θ (x)

)]
dPx,

where b′ ∈ R|Y |−1, P
′

y|x is defined as the first |Y | − 1 elements of Py|x and Q′BCE
θ (x) is the set of the first |Y | − 1

elements of BCE predictions.

14



1. The map θπ → πi (y, εi;x, θπ) is continuous for all i, x, y and εi, the quantity

|πi (yi, y−i, εi;x, θπ)− πi
(
y′i, y−i, εi;x, θπ

)
|

is bounded above, and the map θε → F (·; θε) is continuous for all ε;

2. The parameter space Θ is compact;

3. The following uniform convergence condition holds: supθ∈Θ
√
n|Gn (θ) − G (θ) | =

Op (1) ;

4. The sample criterion function Gn is stochastically bounded over ΘI at rate 1/n.

Then, the set Θ̂I = {θ ∈ Θ| nGn (θ) ≤ an} is a consistent estimator of ΘBCE
I for an → ∞

and an
n →∞.

Proof. See Appendix B.

The previous proposition shows that our setup satisfies condition C.1 in Chernozhukov,
Hong and Tamer (2007), and we proceed to apply their methods. As in Ciliberto and
Tamer (2009) we perform inference by constructing confidence regions Cn for the identified
parameters θ ∈ ΘBCE

I . The regions Cn have the coverage property:

lim inf
n→∞

P {θ ∈ Cn} ≥ 1− α, ∀θ ∈ ΘBCE
I .

Appendix C in Supplementary Materials describes the details of how we obtain Cn.
We have thus far motivated the use of BCE to perform identification of payoff parameters

under weak assumptions on information, and developed a tractable characterization of the
identified set that easily extends to an inferential procedure. Several issues remain open.
How does our approach compare with existing methods? What happens when restrictions
on information imposed in estimation are not valid in the data generating process? We turn
to these questions in the next section.

4 Assumptions on Information and Identification

The prevalent approach in the literature on estimation of games is to restrict the class of
admissible information structures. In practice, this is done by choosing a class of information
structures S ′ ⊂ S such that the set of equilibrium predictions QBNE

θ,S is analytically tractable
for S ∈ S ′, and by focusing the analysis on the set ΘBNE

I (S ′) . For instance, seminal papers
such as Bresnahan and Reiss (1991a), Berry (1992) and Tamer (2003) assume complete
information, which corresponds to the restriction S ′ =

{
S
}
. Conversely, other authors such
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as Sweeting (2009), Bajari et al. (2010), and de Paula and Tang (2012) restrict S ′ to only
contain the minimal information structure S, whereby signals τx are uninformative.

Ideally, the restriction imposed on the information structure S ′ is true, that is S ′ = {S0} ,
or at least well-specified i.e. S0 ∈ S ′. In this case,

ΘBCE
I ⊇ ΘBNE

I

(
S ′
)
⊇ ΘBNE

I ({S0}) 6= ∅,

where the first inclusion follows from Proposition 1. In typical applications there is, however,
little evidence on the nature of S0. If instead S0 /∈ S ′, the model is mis-specified, and one
of the following three scenarios will occur. Either (i) the mis-specification has benign
consequences, that is θ0 ∈ ΘBNE

I (S ′) , or (ii) θ0 /∈ ΘBNE
I (S ′) 6= ∅, that is mis-specification

results in a nonempty identified set, selecting arbitrarily a region of ΘBNE
I (S) that does not

contain θ0, or (iii) the model is falsified by the data, that is ΘBNE
I (S ′) = ∅.

In the latter case, no parameter θ can rationalize the observables given the restriction
on information S’. In Proposition 1 we establish that the identified set under BCE contains
only those parameters for which there exists an information structure and a corresponding
BNE that generate predictions matching the data. If no such values exist for S ′ ⊂ S, then all
the information structures S ∈ S ′ are falsified. Although we do not usually observe directly
data on information, assumptions on information could be falsified because distinct (sets of)
assumptions may have markedly different predictions. When estimation is performed under
a mis-specified assumption, estimates may be inconsistent.19 We show in the following
subsection how assumptions on information may affect identification in the context of a
simple example.

4.1 Impact of Strong Assumptions on Identification

We consider the binary, two-player entry game described in Example 1, with one payoff
parameter and no covariates. In this game |N | = 2, actions are Y = {0, 1}2 , and payoffs
are:

πi (y, εi; ∆) = yi (∆y−i + εi) ,

with εi iid according to a uniform distribution on the interval [-1,1]. The parameter ∆
belongs to the interval Θ = [−1, 0].

Restrictive assumptions on information have substantial impact on identification in this
19As pointed out by Ponomareva and Tamer (2011), estimating a misspecified model may result in tight bounds,

which however may be far from the true value. Moreover, in this case, we do not expect that the estimated parameter
sets under the falsified restriction on information will be contained in the confidence set estimated under BCE.
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game. To see this more clearly, consider the non-sharp identified set:

Θ̃BNE
I

(
S ′
)

=
{

∆ ∈ Θ| ∃ S ∈ S ′, ∃ q ∈ QBNE
θ,S such that q([y = (1, 1)]) = Py(1, 1)

}
,

obtained by using only the observable probability of the outcome (1, 1) .
Under the assumption of complete information, that is S =

{
S
}
, if we only allow for

pure-strategy equilibria we can immediately recover the parameter ∆ ∈ Θ̃BNE
I by solving

the equation:

Py(1, 1) = (1− Fi (−∆))2

=
(1 + ∆

2

)2
.

If instead we adopt the restriction of fully private payoff types, that is S ′ = {S} , the
symmetric BNE is characterized by the equilibrium probability of entry σi ([yi = 1]) =∫
Ei σi (εi) (1)dFi that solves the equation:

σi ([yi = 1]) = 1− Fi (ε) ,

where the threshold level ε is pinned down by:

ε+ ∆σi ([yi = 1]) = 0,

so that σi ([yi = 1]) = 1
2−∆ . The corresponding implication of equilibrium on observable

behavior is:
Py(1, 1) =

( 1
2−∆

)2
.

Under the assumption that S ′ =
{
SP
}
, in equilibrium player 1 knows when player

2 enters. There are in this case multiple equilibria: player 2 has a threshold strategy
characterized by the value ε2, and player 1 always enters when ε1 > −∆ and enters only if
ε2 < ε2 when 0 < ε1 < −∆. Optimality in the choice of ε̄2 implies that ε2 ∈

[
−∆(1+∆)

2 ,−∆
2

]
,

and the corresponding implication for the probability of duopoly is:

Py(1, 1) ∈
[(2−∆) (1 + ∆)

4 ,
(2−∆ (1 + ∆)) (1 + ∆)

4

]
.

Suppose now that the true value of the parameter in the data generating process is ∆0 =
−0.5. For a certain value of Py(1, 1) observed in the data, restrictions on the information
structure yield different identified sets. Table 1 summarizes the identified set Θ̃BNE

I (S ′)
under several combinations of S ′ and S0.
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[Table 1 about here.]

From Table 1, it appears that overstating the amount of information available to players
leads to an identified parameter that is lower, in absolute value, than the true parameter
value.20 This is because the probability that both players enter, as predicted by the model,
depends on ∆ and on players’ degree of certainty that their opponent also enters. In
particular, in the model with complete information players are certain that their competitor
also enters when the equilibrium outcome is (1, 1). Hence this model predicts, for a given
parameter value, the lowest Py(1, 1) across all information structures. On the other hand, a
model with some level of incomplete information generates a higher frequency of duopolies,
as players are more likely to enter given a belief that does not assign probability one to
the presence of a competitor. Attenuation bias is induced from mis-specified complete
information models even if we use for identification moments other than Py(1, 1).21

In this example, we use just one moment from the distribution of the observables to
get an intuition of the direction of the bias: the full set of moments would always fal-
sify the alternative mis-specified models. Moreover, for models with richer action spaces
and parametrization, it is harder to predict the direction of the bias resulting from mis-
specification of the information structure and to link it to moments of the data in an
intuitive fashion. Nevertheless, the example conveys the idea that mis-specification of the
information structure may result in significant bias in the identified parameters: estimation
of games under the assumption of BCE avoids this bias.

5 Identifying Power of BCE

We address in this section the issue of the informativeness of ΘBCE
I , the set identified

under BCE behavior. When relaxing identifying restrictions there is, in principle, a trade-off
between robustness and informativeness of the identified sets. Nevertheless, when variation
in covariates allows the econometrician to observe games in which strategic considerations
are negligible, the assumption of BCE behavior is sufficient for point identification of several
features of the model.

A Two-Parameter Example We consider first a two-player entry game with no covari-
ates, and focus on how assumptions on equilibrium behavior and information affect the

20This type of attenuation bias has already been recognized in the literature by Bergemann and Morris (2013), and
in the context of dynamic games by Aguirregabiria and Magesan (2016).

21In fact, complete information models maximize, for a given value of the parameter and across information struc-
tures, the probability of observing a monopoly. If data are generated by a model with some incomplete information,
hence featuring a relatively lower probability of monopoly for given ∆0, the identified value of ∆ is attenuated also
when using Py(0, 1) or Py(1, 0) for identification.
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identification of competition effects. In Figure 3, we represent identified sets under differ-
ent behavioral assumptions for data generated by Nash equilibrium play under complete
information. Our method is a compromise between the goals of robustness and informa-
tiveness. In fact, the identified set ΘBCE

I in red is much larger than the set obtained under
the (correct) behavioral assumption of Nash Equilibrium with complete information (in
yellow). The latter model imposes more restrictive assumptions on information, so that the
corresponding identified set is small.

Figure 3 also shows the identified sets obtained under weaker assumptions on behav-
ior. In blue, we show the identified set under level-1 rationality. This approach is strictly
more general than ours, but has little identifying power.22 We also represent in the fig-
ure the identified set under rationalizability (corresponding to level-2 rationality for this
model). This behavioral assumption is defined for a complete information environment,
so the identified set is not a superset of ΘBCE

I , but relaxes the assumption of equilibrium
play. Rationalizability yields no lower bounds for competition effects, hence the identified
obtained under BCE is more informative.

[Figure 3 about here.]

Point Identification The previous example shows that the assumption of Bayes Corre-
lated Equilibrium results in tighter identification than non-equilibrium behavioral restric-
tions do. At the same time, the figure also shows that ΘBCE

I may be much larger than
ΘBNE
I

(
S
)

when S0, the information structure in the data generating process, coincides
with S and thus there may be concerns on the informativeness of ΘBCE

I . We argue that
introducing a key source of identifying power, variation in exogenous covariates x, shrinks
the identified set ΘBCE

I . In particular, full-support variation of covariates that only enter
one player’s payoff yields point identification under the assumption of BCE, as it does for
models relying on more restrictive informational assumptions. This identification strategy
was first proposed by Tamer (2003) for games of complete information under the assumption
of pure Nash Equilibrium behavior, but it still applies without restrictions on information
and equilibrium selection.23 To formalize this intuition in a simple setting, we focus on the
class of two-player binary games with linear payoffs and present the identification result in
Proposition 3:

22For this model, identified sets for competition effects are unbounded under level-1 rationality even if we allow for
the presence of observable covariates x in payoffs.

23Several other works in the literature establish point identification of players’ utility functions under “at infinity”
variation in game-theoretic models, for different sets of assumptions on information, equilibrium selection and para-
metric restrictions on primitives. See for instance Bajari, Hong and Ryan (2010), Grieco (2014) and Kline (2015).
Notice that the identification strategy proposed in Kline (2016) , which does not rely on large support assumptions
but requires the existence of “unique potential outcomes” for some realizations of the unobservables, in general does
not apply to our model.
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Assumption 3. (Two-player entry game with linear payoffs) Let |N | = 2 and Y = {0, 1}2 ;
let payoffs be:

πi (y, εi;x, θπ) = yi
(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
.

Assume moreover:

1. Vectors of covariates are partitioned as x = (x1, x2, xc) ∈ X1×X2×XC = X, and the
distribution Px is such that xi has everywhere positive Lebesgue density conditional
on xc, x−i, for i = 1, 2, and there exists no linear subspace E of Xi × XC such that
Px (E) = 1.

2. Payoff types (ε1, ε2) are independent of covariates x, and distributed according to an
absolutely continuous cdf F (·; θε), defined on E = R2.

Proposition 3. (Point identification) Suppose the econometrician observes the distribution
of the data

{
Py|x : x ∈ X

}
, generated by BCE play of a game. Then, under Assumption 3,

1. Payoff parameters βC , βE and ∆ are point identified ; and

2. The structure implies bounds on the payoff type parameter θε.

Proof. See Appendix B.

The proposition relies on the occurrence of values of covariates for which one player
has a dominant strategy for almost all payoff types: if this is the case, identification of
payoffs proceeds as in single-agent binary choice models. The assumption of BCE behavior
guarantees that players do not select dominated strategies with positive probability, and
have equilibrium beliefs, and this is sufficient for point identification.24 We also show that
in our model it is possible to obtain bounds for the parameters that characterize the joint
distribution of payoff types.

Because we are imposing weak restrictions on information and we are allowing for players
to receive correlated signals, we may be concerned that the model has no identification power
with respect to the correlation between payoff types. However, players know their payoff
type, and cannot be induced to enter by signals that systematically mislead them about
the probability of entry of competitors, as they have a common prior over types. This
restriction implied by our equilibrium assumption helps to generate useful bounds on the
correlation of payoff types.

24Kline (2015) establishes sufficiency of level-2 rationality for point identification of payoffs in complete information
games. Though we argue that BCE is sufficient for point identification of payoffs in incomplete information games,
weaker behavioral notions may suffice.
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Identification with Finite Support Although we do not expect the large support
assumptions of the proposition to always hold in applications, Proposition 3 indicates a
source of variation that helps identification also in the case of covariates with finite support.
To illustrate the the identifying power of BCE in the latter case, we compute identified
sets for a simple two-player binary game with payoffs linear in covariates. We present in
Table 2 projections of ΘBCE

I . The set is computed for different data generating processes,
characterized by information structures (S0 = S̄, S0 = S, and S0 = SP ),25 and for two
examples of uniformly distributed covariates with finite support, X ′ and X

′′
. Covariates

X
′ = X

′
1 × X

′
2 × X

′
C are characterized by X ′i = X

′
C = {−1, 0, 1}; covariates X ′′ = X

′′
1 ×

X
′′
2 × X

′′
C are instead characterized by player-specific X ′′i = {−3, 0, 3} for i = 1, 2 and

X
′′
C = X

′
C . Results indicate that discrete sets of covariates have some identifying power in

this model; the size of the identified set, as measured by projections for each parameter,
shrinks considerably as we increase variation in covariates.

[Table 2 about here.]

6 Application: the Impact of Large Malls on Local Super-
markets

The emergence of large grocery-anchored malls in Italy, a relatively recent phenomenon,
has sparked a debate on their impact on local retailers. If malls’ “anchor” grocery stores
represent a strong competitor to local supermarkets, as their critics argue,26 the presence
of shopping centers might generate a market structure with either few local supermarkets
or monopolies. This may hurt consumers, who benefit from the availability of local stores.
Others contend that format differentiation results in little competition between local super-
markets and anchors. Additionally, the economic activity linked to large malls may generate
spillovers that strengthen local demand. Consequently, restrictive regulation on entry by
malls would ultimately be harmful to consumers.

In this section we quantify the effects of the presence of malls on local supermarkets. To
this aim, we estimate a game-theoretic model in which industry players decide strategically
whether to operate stores in local grocery markets and the presence of large malls may
affect supermarkets’ expected profits.

25We also select an equilibrium for those DGPs characterized by games with multiple equilibria. In particular,
for S0 = S we select with equal probability one of the two pure-strategy equilibria, and for S0 = SP we select the
equilibrium that maximizes the probability of entry by player 2. Different equilibria in the DGP result in distinct
identified sets, but don’t change qualitatively the informativeness of our identified sets.

26A recent survey of retailers finds that shop owners rank the emergence of large malls as the second fac-
tor that most affected their business in the previous five years. See http://www.confesercenti.it/blog/
imprese-dei-centri-storici-sondaggio-confesercenti-swg-fisco-ha-inciso-negativamente-per-8-su-10/.
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The empirical methods developed in the previous sections of this paper are well suited
to estimate our model of market structure in the Italian supermarket industry. The institu-
tional features of the industry offer limited guidance on the information available to players,
and firms condition their entry decisions on both private and public information. In partic-
ular, local authorities may impose costs on entrants that vary across stores and are mostly
private information to firms.27 Moreover, industry players are likely to be heterogeneous in
their ability to collect and process private information.28

We model the cross-section of equilibrium market-structure outcomes as a simultaneous
game, following a large literature (Bresnahan and Reiss, 1991b; Berry, 1992; Mazzeo, 2002;
Seim, 2006; Ciliberto and Tamer, 2009). We do so for three reasons: first, we model an
industry that went through a sudden expansion following a regulatory change, making the
outcome of this expansion suitable for static equilibrium modeling. Second, even if it’s
possible to collect data on supermarkets opening date, it’s much harder to obtain infor-
mation on when exactly the decision of entering a market is taken and becomes common
knowledge. In fact, industry sources mention heterogeneous and possibly long lags between
the final decision to open a store and the store’s opening date. Finally, although dynamic
methods are appealing for applications where inter-temporal incentives are of first-order
importance, most empirical models of dynamic games require strong assumptions on the
nature of information and of unobserved heterogeneity that we want to avoid.

Previous studies of market structure in retail industries have explored aspects that are
absent from our analysis, which provides instead greater flexibility with respect to the
information structure. For instance, economies of density (Holmes, 2011) and chain-effects
(Jia, 2008) have been found to be important in the US discount retail industry, but are
unlikely to be as important in the Italian supermarket industry, which operates over a
much smaller geographical area where no pair of geographical markets is more than a few
hundred miles apart. 29

We also estimate the game under the assumption of complete information, and discuss
the consequences of imposing more restrictive assumptions.30 The no-regret property of pure
Nash equilibria in games of complete information is often viewed as a plausible feature of

27For example, firms may be required to build roads or parking lots when developing a new grocery store. These
requirements are typically the result of private negotiations with local authorities.

28In Magnolfi and Roncoroni (2016) we explore in more depth one of the possible sources of this heterogeneity:
firms’ political connections.

29For other studies of entry in retail industries that model these aspects, see Ellickson, Houghton and Timmins
(2013), Nishida (2014) and Zheng (2016) for multi-store firms and economies of density, Mazzeo (2002), Seim (2006)
and Datta and Sudhir (2013) for endogenous product and location choice, and Aradillas-Lopez and Rosen (2016) for
multi-store firms. See Aguirregabiria and Suzuki (2016) for a recent survey of structural models of competition in
retail.

30Minimal information S would also represent a natural benchmark. However, sharp inference in models of incom-
plete information games with (i) no restrictions on equilibrium multiplicity and selection, and (ii) arbitrary correlation
among payoff types has never been implemented in empirical applications to the best of our knowledge.
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the long-run industry equilibrium captured by a static model (Ciliberto and Tamer 2009).
This argument is not particularly strong for our setting. Our cross-section captures the
industry at the end of a 15-years period of growth that followed an overhaul of regulation in
1998. Both accounting data and trade press sources indicate, however, that many stores are
operating at a loss in 2013, so that regret for not having anticipated the level of competition
cannot be ruled out.

Results from the application of the robust method are consistent with a substantial
degree of differentiation between the grocery stores in malls and local supermarkets. In
particular, we do not reject high values (in absolute value) of competitive effects, whereas
low values (in absolute value) for the effect of malls on supermarkets are not rejected.

Adopting weak assumptions on information is key for this finding: the model with
complete information generates confidence sets for parameters that are not nested into
those produced by the more general model, with lower bounds for competitive effects that
are closer to zero. This result echoes the intuition developed in Section 4 that overstating
the amount of information available to players attenuates competitive effect parameters.
As a consequence, in our counterfactual analysis we find that a market structure with at
least two competing industry players may not be more likely in the absence of the mall.
In contrast, the model with complete information predicts an increase of the probability of
observing two or more local stores upon removing the mall from small geographical markets.

6.1 Data and Institutional Details

We have data on store presence and characteristics for all supermarkets in Northern and
Central Italy at the end of 2013 sourced from the market research firm IRI. We comple-
ment these with hand-collected information on malls and mall size, obtained from public
online directories. We focus on Northern and Central Italy because the structure of grocery
markets in the South differs markedly, with traditional stores and open-air markets still
playing an important role and relatively few instances of large malls. We obtain data on
population and demographics from the 2011 official census, and data on (tax) income at
the municipality level for 2013 from the Ministry of Economy and Finance.

Market Definition and Industry Players

To define the relevant markets for our study we need to specify both which store formats
are direct competitors and the geographical extent of grocery markets. The Italian antitrust
authority distinguishes between stores with floor space up to 1,500 m2 (16,146 ft2) and
stores above this threshold, pointing out that these two categories differ fundamentally in
location, product-line, and applicable regulation (see AGCM - Italian antitrust authority,
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2013; Viviano et al., 2012). Larger stores have seen the fastest growth in this industry in
the last 15 years, suggesting that firms and consumers prefer these modern formats. Since
larger stores seem the most relevant to welfare outcomes and the most likely to compete
with the grocery anchors in malls, we consider stores with a floor space of at least 1,500 m2

(16,146 ft2)31 as the relevant market for our study.
No existing administrative unit provides a natural way of defining local grocery markets

in Italy. Because commuting patterns capture consumers’ daily movements better than
administrative units do, we delimit markets starting from the geographical commuting areas
defined by ISTAT, the national statistical agency, and split commuting areas that are too
large.3233 The geographic extension of these markets is consistent with industry sources and
previous studies.34 We also drop from our sample large cities with more than three hundred
thousand inhabitants in a municipality, as the density of highly urbanized areas makes it
hard to separate distinct markets. This leaves us with 484 local grocery markets. We report
summary statistics for these markets in Panel (A) of Table 3, considering separately markets
with large malls and markets with no large malls. The latter are systematically smaller,
have a slightly lower per capita income, and have on average one supermarket.

[Table 3 about here.]

Firms operating in the Italian supermarket industry are heterogeneous. Coop Italia and
Conad, networks of consumers’ and retailers’ cooperatives affiliated with the national um-
brella organization Legacoop, have the largest market share. Despite their organizational
form, they are managed efficiently and we assume that, in their entry behavior, they follow
the same logic as their profit maximizing competitors. Several independent firms, all based
in the North of the country, own and operate networks of large stores. Based on IRI data,
five such firms (Esselunga, Bennet, PAM, Finiper and Selex) have a market share greater
than 2.5% in 2013. Two large French retail multinationals, Auchan and Carrefour, have
also entered the Italian market mostly in the early 2000s. Given the similarities among
supermarket groups with comparable organizational structures, we conduct our analysis
referring to the three types of market players mentioned above: cooperative groups, inde-
pendent Italian supermarket groups, and French multinationals.

31For comparison, median store size for US supermarkets was 46,500 ft2 in 2013 according to Food Marketing
Institute, an industry association.

32We split the commuting area along municipality borders if it contains more than two towns that have at least
fifteen thousand inhabitants, and are in a radius of 20 minutes of driving distance.

33Ellickson, Grieco and Khvastunov (2017) propose an alternative, data driven, approach to market definition in
spatially differentiated retail industries that however requires store-level revenue data.

34Evidence collected by various European Antitrust Authorities indicates that most consumers travel little to do
their grocery shopping. For example, UK’s Competition Commission considers all large stores in a radius of 10-15
minutes by car to belong to the same market. Evidence from marketing research points to the fact that supermarkets
make most of their revenues from customers living in a 2 km (1.24 mi.) radius. Pavan, Pozzi and Rovigatti (2017)
use the same Italian commuting areas we use as a basis for market definition in their study of gasoline markets.
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We define large malls as shopping centers including at least 50 independent shops, in-
cluding a grocery anchor. Although these anchor supermarkets are not regarded by industry
experts as very successful in their own right, they receive rent subsidies from mall opera-
tors, as they are believed to attract consumers that shop at other stores in the mall. Malls’
“catchment area” is substantially larger than that of supermarkets, attracting shoppers who
drive up to 30 minutes from a region that only partially coincides with the local grocery
market. Most large malls are developed by local investors or specialized national firms.

The Italian supermarket industry is subject to extensive regulation, and entry in local
markets may be delayed significantly by zoning and other laws.35 We assume that all players
that found profitable to enter a market were able, by year 2013, to do so. Regulation for
large malls and zoning laws vary across regions; the large areas required for the development
of malls are hard to find in densely populated areas, and lengthy negotiations with local
authorities are often necessary.

To gain insight on the impact of large malls on grocery markets, we estimate descrip-
tive linear regressions and ordered probit models.36 The dependent variable is either the
number of supermarkets in a geographical market or the number of supermarket industry
players operating in a market. The coefficient estimates we obtain, reported in Panel (B)
of Table 3, point to a small and negative covariation between market structure outcomes
and the presence of large malls in a grocery market. These regressions however do not shed
light on the potential differences in the impact of large malls on the behavior of different
industry groups. In addition, the counterfactual market structure that would emerge if
malls were not present in some geographical markets also depends on the competitive effect
that supermarket industry groups have on each other’s entry decisions.

6.2 Game-theoretic Model

We estimate a static model of strategic interaction among players in the supermarket
industry. Each player chooses whether to be present in each of the local geographical
markets. This decision takes into account the exogenous characteristics of the market, the
endogenous presence of other players, and firm-market specific characteristics unobserved
to the econometrician. Payoffs from entry for player i in market m are:

πi(·;x, θπ) = xTimβi +
∑
j 6=i

yj,m∆j + εi,m,

35Schivardi and Viviano (2010) exploit geographical variation in how the 1998 retail liberalization reform is imple-
mented, to show that this regulation has an important impact on the industry.

36The ordered probit model is equivalent to the specification of Bresnahan and Reiss (1991b). It may be interpreted
as a game-theoretic model with complete information in which players have the same payoffs.
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whereas payoffs from staying out of the market are normalized to zero.37

Market level covariates xim include a measure of market size, a dummy for the pres-
ence of large malls in the market, and a home-region dummy. The measure of market size
is the product of population and logarithm of income in a market. We assume that the
coefficient measuring the effect of market size on profits is the same across players. The
effect of malls on supermarket players, the focus of our analysis, is heterogeneous across
players. The home-region dummy has a player-specific coefficient and is excluded from
the payoff of competitors. The vector of unobservable payoff types (εi,m)i∈I is jointly dis-
tributed according to a distribution F (ε; ρ) .We assume that for every i, εi,m has a Logistic
distribution with zero mean and unit variance. The correlation of payoff types is modeled
by a Normal copula, with correlation between any pair (εi,m, εj,m) equal to ρ. We allow for
player-specific competition effects: every player j, if on the market, reduces competitor’s
payoff by ∆i. Data limitations impose a constraint on the number of parameters that we
can precisely estimate; at the same time our model is flexible enough to preserve the di-
mensions of heterogeneity (in competitive effects and effects of malls) that are key to our
application.

Although in principle supermarket groups may choose to enter a geographical market
with several stores, or to vary store format, we assume that player’s actions yi are binary
to reduce the complexity of the model. Moreover, we consider a game with three players,
lumping together cooperatives, independent Italian groups and French groups.38 In other
words, player i (for example, independent Italian groups) can take action yim ∈ {0, 1} in
market m (where, for example, yim = 1 corresponds to entry by at least one Italian group
with at least one supermarket in market m). These substantial simplifications respond to
the need to limit the complexity of the model while maintaining the flexibility necessary to
consider the counterfactuals that address our research question.

We assume that the presence of large malls is exogenous to outcomes in the supermarket
industry. This is equivalent to maintain both econometric exogeneity and exogeneity from
the point of view of the model. In fact, the presence of malls is also the result of an
entry decision: we assume that this decision does not depend on the presence of local
supermarkets,39 while we allow it to depend on observed market characteristics x and on
unobservable factors ε̃. The exogeneity assumption requires independence between ε and
ε̃, conditional on x. This is a strong assumption, but there are reasons to believe that it

37This specification of entry profits may be interpreted as a “reduced form”, justified on the grounds of parsimony
and difficulties in modeling post-entry competition. A structural interpretation of this linear profit function is discussed
in Berry (1989).

38As in Ciliberto and Tamer (2009), this assumption is appropriate as long as these players behave similarly in the
markets in our sample. In the industry we examine the similarities among cooperatives, French and Italian groups in
terms of size, ownership and organizational structure support the assumption of similar strategic behavior.

39Similar assumptions of exogenous entry by for the large player are maintained in Grieco (2014) and Ackerberg
and Gowrisankaran (2006).
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may hold in our data. First, malls have a larger catchment area than supermarkets, as
they can attract consumers from a region that only partly overlaps with the local grocery
market. Second, restrictive regulation and the limited availability of suitably large areas for
development may push developers to locate malls far from their ideal location, in regions
that are only viable because consumers travel relatively far for non-grocery shopping.40

We estimate the model under weak assumptions on the information structure, hence
assuming that data are generated by BCE behavior. This approach not only nests all the
information structures adopted thus far in the empirical games literature, but also allows
for asymmetries in players’ information that are relevant for this empirical setting and not
compatible with existing models. To compare our method with standard techniques, we
also obtain a confidence set for parameters under the assumption that data are generated by
pure-strategy Nash equilibrium behavior in the game of complete information as in Ciliberto
and Tamer (2009).

Proposition 3 guides our intuition on what variation in the observables identifies the
parameters. Although our model includes a covariate that is firm specific, the home-
region dummy, this variable does not have full-support, so our parameters are set identified.
Bounds on the β parameters are identified by covariation of observable characteristics and
entry patterns. Identification of ∆j comes from the difference between the probability of
entry for firms −j in markets where xj makes firm j unlikely to enter, and the corresponding
probability in markets where xj makes firm j very likely to entry. The model offers some
identification power with respect to the parameter ρ, which captures correlation between
unobservable payoff types. In particular, correlation between entry decisions across firms in
markets that have different profitability across firms (based on data and other parameters)
helps establish an upper bound on ρ. Similarly, correlation between entry decisions across
firms in markets that have uniform profitability across firms helps establish a lower bound
on ρ.

6.3 Results

The first column in Table 4 presents projections of the estimated 95% confidence set for
parameters in the identified set under the assumptions of BCE behavior. We report, for
each parameter of the model, the lowest and highest value it takes in the confidence set.

[Table 4 about here.]

Results for the coefficient on market size indicate that the dimension of a local grocery
market affects positively the profitability of entry. The effect of operating in a home-region

40In addition to the arguments that support the independence of unobservable payoff determinants, most large
malls are already built or planned before the expansion of the supermarket industry considered in our model.
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is not significantly different from zero for any of the groups we examine.
The evidence on the effect of the presence of large malls on the presence of supermarket

groups is mixed. We do not find the effect of malls to be significantly different from zero
for any of the players, although the confidence sets for the effect of large malls lie mostly
on the negative real line. The game-theoretic model provides evidence that competitors’
presence in a local market makes entry less profitable: the confidence set includes parameter
vectors with large negative competitive effects. Projected confidence sets for the correlation
parameter ρ are firmly positive, pointing to a substantial correlation among unobserved
determinants of supermarkets’ profits.41

In the second column of Table 4 we report the projections of the 95% confidence intervals
for parameters in the identified set under the assumptions of pure-strategy Nash behavior
and complete information. It is interesting to compare the estimates obtained under these
more restrictive assumptions with the one obtained with our method. For the constant,
market size parameters, and home-region parameters the confidence sets corresponding
to the two models are largely similar. The assumption of complete information makes
a difference, however, for the estimates of the effect of large malls and of competitive
effects. Although the sign of the effect of malls is not identified under weak assumptions on
information, with complete information this effect is estimated to be negative for two out
of three players in the industry.

The importance of assumptions on information is most highlighted when we consider
the estimates of the competitive effects that players have on each other. The competitive
effects estimated under the assumption of complete information are mostly smaller, in abso-
lute value, than those obtained with a model with weak assumptions on information. This
finding is in line with our discussion in Section 4.1: by assuming complete information, we
impose that those players who decide to operate in a market have correct expectations on
competitors’ presence. Instead, under BCE behavior, the equilibrium expectations allow
for uncertainty about competitors’ behavior. Hence, more negative values for the compet-
itive effects parameters cannot be rejected. The interval for the correlation parameter ρ is
smaller for the model with complete information on payoff shocks, and includes only very
high values. To clarify this finding, consider that weaker assumptions on information offer
ways of rationalizing correlation in players’ actions that are alternative to correlation in
payoff shocks, thus leading not to reject lower values of ρ. Moreover, high values of ρ help
rationalize the high frequency of outcomes in the data where players play similar actions in
a restrictive model that does not allow for incomplete information.

41The dimensions of the confidence set depends on several factors such as the model’s specification and on the
sample size, and it’s not immediate to compare it with other findings in the literature. Grieco (2014) finds smaller
intervals for most payoff parameters, which is not surprising as his model is more restrictive and his sample size is
larger; the different parametrization and scale of coefficients, however, makes this comparison hard.
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It is not surprising that the set we estimate under the restrictive assumption of complete
information is not nested in the estimated set under the weaker BCE assumption. Indeed,
our robust identification result predicts that the complete information estimates are ex-
pected to be a subset of the BCE estimates only when the more restrictive assumption is
not falsified by the data. If instead the more restrictive assumption is not supported by the
data, the identified set is empty and there is no reason to expect estimates obtained under
that assumption to lie inside the robust estimated set.42 43

Counterfactuals

We consider the counterfactual scenario in which regulation prevents the construction of
large shopping malls in small markets. This counterfactual allows to quantify how market
structure is affected by the presence of large malls. We examine in particular the eight
small geographical grocery markets44 in our dataset that have a large shopping center but
no supermarkets in the current market configuration, and compute predicted outcomes of
the entry game between supermarkets once the large shopping center is removed.

There are several ways to summarize the model’s counterfactual predictions. In gen-
eral, game-theoretic models do not yield deterministic predictions on counterfactual market
structures, but rather predicted probability distributions over outcomes. Moreover, the
multiplicity of parameter vectors in the confidence region, as well as the multiplicity of
equilibria, implies that the model predicts multiple probability distributions on market
structures. We follow Ciliberto and Tamer (2009), and focus on the changes in average up-
per bounds of the probability of market outcomes of interest, such as the entry of a specific
player or entry of at least one or two players.45

More formally, consider an outcome of interest as a subset Ŷ of admissible market
structures, Ŷ ⊆ Y . For each market with covariates x, and a fixed parameter value in the
confidence set θ ∈ Cn we can find the upper bound on the probability of outcome Ŷ as:

qŶ (θ, x) = max
ν∈BCEx(θ)

∑
y∈Ŷ

∫
ν (y,dε)

= h
(
b(Ŷ );QBCE

θ (x)
)
,

42A similar result is observed in Haile and Tamer (2003) and in Dickstein and Morales (2016).
43This discussion suggests a possible procedure for rejecting assumptions on information, although the implemen-

tation is not straightforward in our inferential setup, and we do not pursue formal testing in this paper. For testing
procedures in game-theoretic models, see also Takahashi and Navarro (2012), who develop testing procedures to
distinguish between information structures, and Kashaev (2015) who proposes a test for Nash behavior in complete
information games.

44For further details on these markets, see Appendix D in Supplementary Materials.
45An alternative exercise would use in the counterfactual the equilibrium distributions that best fit the data, as

in Grieco (2014). Such a counterfactual yields sharper predictions but does not allow for the possibility that the
counterfactual policy may affect also equilibrium selection.
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where the second equality holds as qŶ (x; θ) is equal to the support function of the set
QBCE
θ (x) evaluated at an appropriate value b(Ŷ ). We average across markets x ∈ X̂

and obtain qŶ (θ) = 1
|X̂|
∑
x qŶ (θ, x). An identical procedure yields, for the same markets

but with counterfactual covariates x′, upper bounds qCF
Ŷ

(θ, x′) and average upper bounds
qCF
Ŷ

(θ). For every parameter value we obtain the difference in average upper bounds:46

DŶ (θ) =
(
qCF
Ŷ

(θ)− qŶ (θ)
)
.

We report in Table 5 the values of minθ∈Cn DŶ (θ) and maxθ∈Cn DŶ (θ) for several market
outcomes Ŷ . We also present the same counterfactual object for the complete information
model.47

[Table 5 about here.]

Since the confidence sets for our model do not determine the sign of the effect of malls, it’s
unsurprising that counterfactual predictions on the effect of removing malls are inconclusive.
In contrast, the model with complete information predicts a decrease of the probability of
no entry for most parameter values. Predictions on the change in probability of entry for
distinct supermarket groups are also different: the BCE model allows for a smaller increase
of the upper bound of the probability that each individual player operates in a market.

Predictions on the change in probability of entry by at least one or two players are
prominently affected by the assumptions maintained on information. In particular, the
model that assumes complete information predicts positive changes in the probability of
observing at least two players in a market. This supports the view that preventing entry
by large malls in small geographical grocery markets increases the likelihood of obtaining
outcomes that are desirable for consumer welfare. However, removing strong assumptions
on information and considering predictions from the BCE model yields a different picture.
Under the assumption of BCE behavior, the change in the upper bound of the probability
of having at least one or at least two players in a market does not have an unambiguously
positive sign. Thus, the conclusion that removing large malls would favor entry in under-
served markets seems to rest on restrictive assumptions on information, and does not stand
once these assumptions are removed.

46The upper bound is also a natural object of interest for those outcomes that the counterfactual policy seeks to
foster. In fact, the policy may include actions by the regulator that help firms to select equilibria that maximize the
probability of such outcomes. Additional results for lower bounds on probabilities of outcomes, and for disaggregated
markets, are available as robustness checks in Appendix D in Supplementary Materials.

47The corresponding object for the complete information model is obtained using an analogous procedure in which,
however, upper bounds on probabilities are generated by Nash equilibrium behavior.
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7 Conclusion

In this article, we present a method to estimate empirical discrete games, focusing
on entry examples, under weak assumptions on the structure of the information available
to players about each other’s payoffs. Assumptions on information matter, because the
equilibrium predictions implied by different information structures translate in parameter
estimates that may be biased if the information structure is mis-specified. We are able to
avoid strong assumptions on information by adopting a broad equilibrium concept, Bayes
Correlated Equilibrium (BCE), defined by Bergemann and Morris (2013, 2016). We argue
that BCE is weak enough to make our method robust to assumptions on information, but
informative enough to yield useful confidence sets for parameters. In an application, in which
we study the effect of large malls on competition among supermarket groups in local grocery
markets, we show that restrictive assumptions on information may drive counterfactual
policy evaluations, whereas our method allows to avoid restrictive assumptions.

There are several avenues for future research left open by this article. Our method for
the estimation of games under weak assumptions on information could be applied beyond
discrete games, starting with models of auctions. Using BCE to allow bidders to have
information on each other’s valuation, as in Bergemann, Brooks and Morris (2017), is
potentially relevant for many applied contexts, but will require an appropriate approach
to identification, feasible computation, and inference, given the different characteristics of
auction models. We also do not pursue in this article inference on information structures.
Although trying to recover an information structure from data on binary outcomes may be
too optimistic, richer data like those generated by play in games with continuous actions
may allow to identify the information structure of the game that generates the observable
outcomes.
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Appendix A - Computation of G and Gn

To find the identified set and conduct inference, we need to compute G and Gn. First,
let us approximate the infinite dimensional object ν by discretizing the set E . Let Er ⊂ E
be the discretized set, with |Er| = r. For every market x, we need to solve the program:

max
b

min
q,ν≥0

bT
(
Py|x − q

)
(P0)

s.t. bT b− 1 ≤ 0

∀y ∈ Y q (y)−
∑
ε ν (y, ε) = 0

∀ε ∈ E
∑
y ν (y, ε)− f (ε; θε) = 0∑

y,ε ν (y, ε)− 1 = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi, ε−i;x, θ)− πi (y, εi, ε−i;x, θ)) ≤ 0

Given the discretization, ν has now dimension |Y | × r|N | = dν . Also, f (·; θε) denotes the
corresponding approximation of the prior distribution. We then transform (P0) by defining
new variables p̃ = Py|x− q, and (p̃, vec (ν)) = (z1, z2). . As the set of predictions is a subset
of the (|Y | − 1)-dimensional simplex, we also consider the object: (b̃, 0)T

(
Py|x − q

)
, where

b̃ is equal to the first |Y |− 1 elements of b. Al vectors are column vectors. The transformed
program is:

max
b̃

min
z1,z2≥0dν

(
b̃, 0,0dν

)T
(z1, z2) (P1)

s.t. b̃T b̃ ≤ 1

Aeqz = a

Aineqz ≤ 0dineq ,

where Aeq, Aineq and a are matrices that stack, respectively, linear equality constraints,
linear inequalities and constants, dineq is the number of rows of Aineq and we use 0dν to
denote the dν−vector of zeros. (P1) can be simplified taking the dual problem of the
minimization problem. We obtain:

max
b̃,λeq ,λineq≥0dν

(a,0dineq)T (λeq, λineq) (P2)

s.t. b̃T b̃ ≤ 1(
AT
)

1:|Y |
(λeq, λineq) = (b̃, 0)(

AT
)
|Y |+1:dA

(λeq, λineq) ≥ 0dz ,
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where A =
[

Aeq
Aineq

]
, the row vectors λeq and λineq are the dual variables associated to the

constraints of (P1) , and
(
AT
)

1:|Y |
and

(
AT
)
|Y |+1:dA

denote the first |Y | and the last rows

of the matrix AT . By strong duality, as well as existence of BCE, (P2) has the same value
than (P1) (Boyd and Vandenberghe, 2004) and we compute it using the solver KNITRO in
the modeling environment AMPL. Computation of G (θ) for the two-player game of Table 2
with r = 50 takes less than 30 seconds of CPU time on a 3.4Ghz quad-core Intel processor.
Computation times for the function Gn (θ) in our application, with r = 10, are similar.
Parallel computation of G (θ) for different values of θ is not supported by AMPL, but can
be implemented using the script Parampl.48 Further details on how to compute ΘI and Cn
are in Appendix C in the Supplementary Materials online.

Appendix B - Proofs

Lemma 1 is a preliminary result needed to prove Proposition 1. In the lemma we restate
and adapt to our context the robust prediction property of BCE, established as Theorem 1
in Bergemann and Morris (2016).

Lemma 1. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ (x) , then q ∈ QBNE

θ,S (x) for some S ∈ S.

2. Conversely, for all S ∈ S, QBNE
θ,S (x) ⊆ QBCE

θ (x) .

Proof. Fix θ ∈ Θ and x ∈ X throughout.
1. Consider q ∈ QBCE

θ (x) . Then there exists ν ∈ BCEx(θ) such that q = qν . We need
to show that there exists an information structure S and a strategy profile σ such that
qσ = qν and qσ ∈ QBNE

θ,S (x) . To this aim, let T x = Y and define a probability kernel{
P xτ |ε : ε ∈ E

}
49 such that:

∫
E

(
Pτ |ε[τ = y]

)
dF = ν (y,E) , ∀E ∈ B (E) :

∫
E

dF > 0, y ∈ Y.

Also, for all εi, τi, let σi (ε, τi) (yi) = 1 if yi = τi, and σi (εi, τi) (yi) = 0 if yi 6= τi. Hence, the
incentive compatibility conditions of BCE guarantee that σ is a BNE of the game Γx (θ, S).

2. Suppose that q =
∑K
k=1 αkqk ∈ QBNE

θ (x) for K < ∞,
∑K
k=1 αk = 1 and σk ∈

BNEx(θ, S) for all k = 1, ...,K. Then, for each σk we can obtain νk ∈ BCEx(θ) as:

νk (y,E) =
∫
E

∫
T

(∏
i∈N

σi (εi, τi) (yi)
)

dPτ |εdF,

48Available at www.parampl.com. We thank Arthur Olszak for kind and patient support with Parampl.
49For the existence of such a kernel, see Chang and Pollard (1997).
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for all y ∈ Y and E ∈ B (E). Hence,
∑
k αkνk = ν ∈ BCEx(θ), and the corresponding

qν = q ∈ QBCE
θ (x).

Proposition 1. Let Assumptions 1 and 2 hold. Then:

1. The identified set under BCE behavior contains the true parameter value, θ0 ∈ ΘBCE
I ,

and

2. ΘBCE
I = ΘBNE

I (S).

Proof. 1. By Assumption 2, almost surely with respect to Px, Py|x ∈ QBNE
θ0,S0

(x). Also, by
Lemma 1, QBNE

θ0,S0
(x) ⊆ QBCE

θ0
(x). It follows, by the definition of ΘBCE

I , that θ0 ∈ ΘBCE
I .

2. Let θ ∈ ΘBNE
I (S ′) for some S ′ ⊆ S. Then ∃ S ∈ S ′ such that Py|x ∈ QBNE

θ,S (x) Px−a.s.
Since, by Lemma 1 again, we haveQBNE

θ,S (x) ⊆ QBCE
θ (x), θ ∈ ΘBCE

I and ΘBNE
I (S ′) ⊆ ΘBCE

I .
Consider instead θ ∈ ΘBCE

I ; by definition of ΘBCE
I , there must be a collection of (νx)x∈X:

such that pνx ∈ QBCE
θ (x). It follows that, by Lemma 1, pνx ∈ QBNE

θ,S (x) Px − a.s. for some
S ∈ S. Hence, ΘBCE

I ⊆ ΘBNE
I (S).

Proposition 2. Assume that:

1. The map θπ → πi (y, εi;x, θπ) is continuous for all i, x, y and εi, the quantity

|πi (yi, y−i, εi;x, θπ)− πi
(
y′i, y−i, εi;x, θπ

)
|

is bounded above, and the map θε → F (·; θε) is continuous for all ε;

2. The parameter space Θ is compact;

3. The following uniform convergence condition holds: supθ∈Θ
√
n|Gn (θ) − G (θ) | =

Op (1) ;

4. The sample criterion function Gn is stochastically bounded over ΘI at rate 1/n.

Then, the set Θ̂I = {θ ∈ Θ| nGn (θ) ≤ an} is a consistent estimator of ΘBCE
I for an → ∞

and an
n →∞.

Proof. We want to show that our setup satisfies the condition C.1 in Chernozhukov, Hong
and Tamer (2007); the consistency of Θ̂I follows by their Theorem 3.1. To this aim, we
need to establish that the function G (θ) is lower semicontinuous.

We start by showing that θ ⇒ QBCE
θ (x) is upper hemi-continuous for all x ∈ X. This

correspondence is a compound correspondence between the BCE equilibrium correspon-
dence θ ⇒ BCEx(θ) and the marginal operator ν →

∫
E ν (y,dε). The latter is a continuous

function mapping into a compact set. For the the equilibrium correspondence: consider
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a sequence θk → θ ∈ Θ, for
{
θk
}∞
k=1
∈ Θ, and a corresponding sequence {νk}∞k=1 such

that νk ∈ BCEx(θk) for all k, and νk converges to ν. To see that ν ∈ BCEx(θ̄), notice
that (i) consistency of ν follows for the continuity of the map θε → F (·; θε) and absolute
continuity of νm (y; ·), and (ii) incentive compatibility of ν results from the continuity of
θπ → πi(·;x, θπ) (this is shown by contradiction, as in Milgrom and Weber, 1985). Therefore
the correspondence QBCE

θ is upper hemi-continuous.
Then, the map

h̃ : θ → h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q

is upper semicontinuous (Lemma 17.30 in Aliprantis and Border, 1994), for all values of
x, b. It follows that the map θ → −h

(
b;QBCE

θ (x)
)

is lower semicontinuous, and so is

θ → supb∈B
(
bTPy|x − h

(
b;QBCE

θ (x)
))

, point-wise supremum of a family of lower semicon-
tinuous functions (Proposition 2.41 in Aliprantis and Border 1994). Hence, the function
G (θ) is lower semicontinuous: for a sequence θn → θ in Θ:

lim inf
n→∞

G (θn) = lim inf
n→∞

∫
sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

lim inf
n→∞

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx = G (θ)

where the first inequality holds by Fatou’s Lemma, and the second inequality holds for the
lower semi continuity of θ → supb∈B

(
bTPy|x − h

(
b;QBCE

θ (x)
))

.

Proposition 3. Suppose the econometrician observes the distribution of the data
{
Py|x : x ∈ X

}
,

generated by BCE play of a game. Then, under Assumption 3,

1. Payoff parameters βC , βE and ∆ are point identified as in single-agent threshold cross-
ing models; and

2. The structure implies bounds on the payoff type parameter θε.

Proof. 1. Consider first the identification of βC , βE2 . We want to show that, for appropriate
values of x, we have:

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) , (7.1)

where Fi (·; θε) is the marginal over εi of F (·; θε). The model implies the following link
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between the observables and the structure, for all x ∈ X and νx ∈ BCEx(θ):

Py2=1|x = νx ([y1 = 1, y2 = 1]) + νx
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
+

+ νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
Assume βE1k > 0 without loss of generality, and let x1k → −∞. Conditional on such values
of x, π1 (1, y2, ε1;x, θπ) < 0 for all values of y2 ε1 − a.s. By the equilibrium optimality
condition, νx (y1 = 1|y2, ε1) = 0 whenever π1 (1, y2, ε1;x, θπ) < 0. It follows that:

lim
x1k→−∞

νx ([y1 = 1, y2 = 1]) ≤ lim
x1k→−∞

∫
E1
νx ([y1 = 1] |ε1) dF1 (·; θε) = 0.

Moreover, limx1k→−∞ ν
x
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
= 0, as in the limit

ε2 < −xTc βC − xT2 βE2 implies y2 = 0. For a similar application of the (IC) property of BCE,

νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
=
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) .

The result in equation 7.1 follows; this equation describes a single-agent threshold crossing
model: under Assumption 3,

(
βC , βE2

)
and Fi are point-identified (Manski, 1988).

Player 1’s parameter β1 is identified by asymmetric argument. To prove identification of ∆
parameters, consider instead x1k →∞; the same steps lead to:

lim
x1k→∞

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 −∆1}

dF2 (·; θε) .

2. Let β,∆ be identified. We can derive (non-sharp) bounds on the joint distribution of
payoff types F (ε; θε) . Let

E(1,1) (x, θ) =
{
ε1 ≥ −xTc βC − xT1 βE1 −∆2, ε2 ≥ −xTc βC − xT2 βE2 −∆1

}
.

For any x ∈ X, (IC) implies that for ε ∈ E(1,1) we have νx ([y = (1, 1)] |ε) = 1 for every
νx ∈ BCEx(θ). Similarly define a region Ey (x, θ) for any action profile y. Consider the
partition of E formed by {Ey (x, θ)}y∈Y and Ẽ (x, θ) = E/ (∪y∈Y Ey (x, θ)) . We can then
construct the bounds: ∫

Ey
dF (·; θε) ≤ Py|x ≤

∫
Ey∪Ẽ

dF (·; θε) ;

Variation in x shifts the regions E and E ∪ Ẽ , and provides useful restrictions on θε.
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Figure 1: Information and Equilibrium Predictions
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Notes: We represent BNE outcomes in the space (ε1, ε2) for the two-player entry game in Example 1, with payoffs
πi (y, ε) = yi

(
− 1

2yj + εi
)

for i = 1, 2 and εi
iid∼ U [−1, 1] . (A) represents complete information pure-strategy Nash Equilib-

rium outcomes, (B) represents minimal information outcomes, (C) represents privileged information outcomes.
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Figure 2: BCE Predictions
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Note: - We compare BCE predictions QBCEθ with the BNE predictions QBNEθ,S obtained under different information structures

S for the two-player entry game in Example 1, with payoffs πi (y, ε) = yi
(
− 1

2yj + εi
)

for i = 1, 2 and εi
iid∼ U [−1, 1]. The

axes represent probabilities of outcomes Py . (A) shows the set QBCEθ containing the BNE predictions under different
restrictions on information. (B) shows the set of BCE predictions inside the unit simplex.
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Figure 3: Behavioral Assumptions and Identification

Δ

Δ 1

2

(A): Identification Under R1 (B): Identification Under R2

(C): Identification Under BCE (D): Identification Under MXNE

Δ 2

Δ 1

Δ 1 Δ 1

Δ 2Δ 2

Note: - We represent the identified sets for ∆1,∆2 under different restrictions on behavior in a two-player game with
payoffs πi = yi (yj∆i + εi), εi ∼ N (0, 1). Data are generated by Nash Equilibrium play with complete information.
In the region with multiple equilibria we select with equal probability each of the three pure and mixed equilibria.
The black dot represents ∆1 = −1/2 and ∆2 = −1, true parameters in the DGP. (A) represents, in blue, the identified
set under the assumption of Level-1 rationality. In (B) we add, in green, the identified set under Level-2 rationality
and complete information. The sets in (A) and (B) are not bounded from below. (C) includes in red ΘBCEI ; in (D)
we add, in yellow, the set ΘBNE

I (S̄).
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Table 1: Information and Identification

S0: S SP S

S: S {−0.50} {−0.36} {−0.2}
SP [−0.82,−0.72] [−.54,−0.47] [−0.29,−0.26]
S {−2} {−1.14} {−0.50}

Note: - We report the identified sets for the two players entry model with payoffs πi (y, εi; ∆) = yi (∆y−i + εi) for
i = 1, 2 and εi ∼ U [−1, 1]. The non-sharp identified sets Θ̃BNE

I (S′) are obtained under restrictive assumptions on
information S′ (corresponding to rows) and true information structures S0 (corresponding to columns). The true
value of the parameter in the data generating process is ∆0 = −0.5. For S0 = SP , we generate the data with the
equilibrium corresponding to the threshold ε2 = 3/16.
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Table 2: Identification with Finite Support

Panel (A): X′
βC βi ∆1 ∆2 ρ

θ0 1 1 -1 -1 -

S0 = S̄ [.89,1.04] [.89,1.04] [-2.19,-.82] [-2.19,-.82] -
S0 = S [.83,1.13] [.89,1.21] [-1.65,-.79] [-1.65,-.80] -
S0 = SP [.79,1.04] [.89,1.13] [-2.04,-.72] [-2.04,-.85] -

Panel (B): X′′

θ0 1 1 -1 -1 -

S0 = S̄ [.95,1.04] [.95,1.07] [-1.06,-.88] [-1.06,-.88] -
S0 = S [.95,1.04] [.95,1.08] [-1.06,-.88] [-1.06,-.88] -
S0 = SP [.95,1.04] [.95,1.05] [-1.06,-.88] [-1.06,-.88] -

Panel (C): X′ and correlated payoff types

θ0 1 1 -1 -1 0.8
S0 = S̄ [0.75 ,1.2] [0.82 ,1.26] [-1.83 ,-0.7] [-1.83 ,-0.7] [0.12 ,0.8]

Note: - We report projections of the identified sets for the two-player game with payoffs πi (y, εi;x, θπ) =
yi
(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
for i = 1, 2. Payoff types εi ∼ N (0, 1) in (A) (B), and ε ∼ N (0,Σ) ,

Σ =
(

0 ρ
ρ 0

)
in (C). The first row in each panel reports the true parameters θ0; subsequent rows report pro-

jections of ΘBCE
I for different assumptions on S0, the information structure of the game that generates the data. (A)

and (C) report sets for data generated with x ∈ X′ , (B) reports sets with x ∈ X′′ . Computational details are in
Appendixes A and C.
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Table 3: Descriptive Statistics and Regressions

Panel (A): Demographics of Local Grocery Markets
Variable Mean Std. Dev. Median Max Min

Large Mall in Market 0.130 0.337 0 1 0
421 Markets with no Large Malls:

Population 44,629.22 40,341.88 31,730 297,510 3,276
Surface, in km2 329.90 242.72 275.72 1,969.64 25.19

Tax Income Per Capita, in EUR 13,223.8 1,730.34 13,204.92 18,288.90 8,020.68
# of Supermarkets 1.46 1.95 1 16 0

# of Players in Market 0.85 0.93 1 3 0
63 Markets with Large Malls:

Population 117,614.10 56,195.42 103,925 249,852 35,768
Surface, in km2 447.84 377.92 359.95 2,243.54 95.33

Tax Income Per Capita, in EUR 14,411.47 1,650.48 14,475.88 18,627.36 10,333.89
# of Supermarkets 3.77 2.89 3 13 0

# of Players in Market 1.58 0.87 2 3 0

Panel (B): Regressions of Market Structure on Presence of Large Malls
Model Linear Regression Ordered probit Linear Regression Ordered probit

Variable # of Supermarkets # of Players in Market
(S.E. in parentheses)
Large Mall in Market -0.437 -0.222 -0.150 -0.242

(0.278) (0.165) (0.145) (0.175)
Market Size 3.764 2.658 1.213 1.766

(0.236) (0.158) (0.109) (0.143)
Constant 0.167 0.022

(0.378) (0.230)
N 484 484 484 484
R2 0.677 0.255 0.434 0.225

Note: - Panel (B) reports results from linear regressions and ordered probit models. The dependent variable is the
number of supermarkets of at least 1500 m2, or the number of supermarket players. Market size is the product of
population and log of tax income per capita. All regressions include fixed effects for 13 regions. Values of R2 refer to
pseudo-R2 for the ordered probit regressions.
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Table 4: Confidence Sets

Parameter Weak Assumptions on Info - BCE Complete Information - Nash

Constant [-2.15 , -0.21 ] [-3.26, -1.51 ]

Market Size [3.00, 7.64 ] [3.67, 6.23 ]

Home-region:

Cooperatives [-0.91, 1.95 ] [-0.21, 1.16 ]

Indep. Italian Supermarket Groups [-0.39, 2.62 ] [-0.14, 1.66 ]

French Supermarket Groups [-1.46, 1.96 ] [-0.50, 1.15 ]

Presence of Large Malls:

Cooperatives [-3.26, 1.79 ] [-2.37, 0.45 ]

Indep. Italian Supermarket Groups [-3.77, 1.49 ] [-2.63, -0.53 ]

French Supermarket Groups [-2.94, 1.02 ] [-4.39, -0.19 ]

Competitive Effects:

Cooperatives [-5.30, -1.11 ] [-2.40, -0.73 ]

Indep. Italian Supermarket Groups [-6.11, -1.69 ] [-2.45, -1.34 ]

French Supermarket Groups [-7.12, -1.55 ] [-3.46, -0.39 ]

ρ - Correlation Of
[0.36, 0.96 ] [0.90, 0.99 ]Unobservable Profitability

Note: - We report estimates for the game-theoretic model. For each parameter value, we report projections of
Cn, the .95 confidence set for identified parameters. See Appendices A and C for computational details.
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Table 5: Counterfactual Change in Probability of Outcomes

Outcome Weak Assumptions on Info - BCE Complete Information - Nash

No Entry [-0.30, 0.28] [-0.61, 0.04 ]

Entry by Cooperatives [-0.20, 0.45] [0.03, 0.78]

Entry by Italian Groups [-0.16, 0.60] [-0.19, 0.78]

Entry by French Groups [-0.13, 0.53] [-0.21, 0.64]

Entry by at least 1 Player [-0.09, 0.35] [-0.04, 0.61]

Entry by at least 2 Players [-0.26, 0.42] [0.05, 0.47]

Note: - We report counterfactual change in probability of market structure outcomes, or[
minθ∈Cn DŶ (θ) , maxθ∈Cn DŶ (θ)

]
for both the model with weak assumptions on information and for the

complete information model. Additional counterfactual results are available in Appendix D in Supplementary
Materials.
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Supplementary Materials - For Online Publication

Appendix C - Further Computational Details

Computation of Identified Sets ΘBCE
I

We describe in this appendix how we deal with numerical error when computing ΘBCE
I

to construct Figure 3 and Table 2 in the main text. The identified set is defined in Section
3.4 as:

ΘBCE
I = {θ ∈ Θ|G (θ) = 0} ,

where G (θ) =
∫
X supb∈B

[
bTPy|x − h

(
b;QBCE

θ (x)
)]

dPx. Appendix A outlines how to com-
pute G (·), and the choice of discretization for E ; we denote with Ǧ (·) the computed G(·).

As a high-dimensional search over the whole set Θ is infeasible, we conduct a search over
a subset Θ̌. Moreover, since by construction Ǧ (·) > 0, we specify a threshold and report
the computed analog of the identified set:

Θ̌BCE
I =

{
θ ∈ Θ̌|Ǧ (θ) ≤ cI

}
.

There is no general rule to construct an upper bound for this discretization error that
is valid for every game and data generating process. However, for the two-player binary
game with independent payoff types considered in Table 2, we find that r−1 (where r is
the dimension of the discrete grid of εi that we use to compute Ǧ (·)) is an upper bound
of the discretization error if we restrict QBCE

θ (x) to QPSNE
θ (x) . Since r−1 is representative

of the order of magnitude of the discretization error, we use cI = r−1. Our findings on the
informativeness of identified sets are very similar if we use higher values for cI .

To construct Θ̌, we proceed sequentially. We first specify Θ̌1 as a large Halton set of
points around θ0, then find:

Bds =
[(

min
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

,

(
max
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

]

and construct Θ̌2 as another Halton set within Bds × 1.2. This procedure is aimed at
constructing more precise boundaries for the identified set. Increasing the umber of points
in Θ̌1 and Θ̌2 increases the precision in the computation of the identified set, at the cost of
computing time. For Table 2, we use |Θ̌1| = 20, 000 and |Θ̌2| = 5, 000.
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Computation of Identified Sets ΘBNE
I

(
S
)

In Figure 3 in the main text we compute the sharp identified set under the assumption
of complete information and Nash equilibrium behavior, allowing for mixed strategies. The
sharp identified set for this case can be obtained by first defining the criterion function:

GMXNE (θ) = sup
b∈Dir

bTPy|x − sup
p∈QMXNE

θ
(x)
bT p


+

(.1)

where Dir denotes the core-determining class (Galichon and Henry, 2011) and QMXNE
θ (xj)

contains the Nash equilibrium predictions for a game with covariates x and parameters θ.
Since Dir is a discrete set, the computation of GMXNE is fast for games with a small number
of players and actions. Then, we have:

ΘBNE
I

(
S
)

=
{
θ ∈ Θ̌|GMXNE (θ) = 0

}
.

Figure 3 also shows the the identified sets under different behavioral assumptions, R1
and R2. The computation of the corresponding identified sets is analogous to our description
of the construction of ΘBNE

I

(
S
)
. Under the assumptions of R1 and R2, respectively, we

obtain the functions GR1 and GR2 by substituting QR1
θ (x) and QR2

θ (x) for QMXNE
θ into the

function GMXNE . Notice that, as the set of predictions is relatively simple, the computation
of QMXNE

θ (as well as of QR1
θ (x) and of QR2

θ (x)) does not involve numerical simulation of
the values of ε.

Computation of Confidence Sets Cn for ΘBCE
I

To construct a confidence set s Cn for parameters in the identified sets ΘBCE
I we follow

the procedure outlined in Ciliberto and Tamer (2009). The procedure is based on the values
of the empirical criterion Gn, whose computation is described in Appendix A. We get to
our confidence set via the following steps:

1. We construct deterministic parameter grids using Halton sets around the parameter
values of Probit regressions, and select among these 40 starting points for a Simulated
Annealing routine, which runs for 10,000 iterations.

2. We collect all the parameters visited by Simulated Annealing, and consider the cor-
responding set Θ̌ as an approximation of Θ. We define as gn = minθ′∈Θ̌Gn (θ′) , and
can then obtain for all θ ∈ Θ̌:

G̃n (θ) = Gn (θ)− gn.
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3. We extract T = 100 subsamples of size nt = n/4. Subsample size can be an important
tuning parameter in this class of models, as argued by Bugni (2014). We follow
Ciliberto and Tamer (2009) in the choice of this parameter. For each subsample s, we
compute the criterion function using the subsampled observations, so that:

Gsn (θ) = 1
nt

nt∑
j=1

sup
b∈B

[
bT P̂ sy|xj − h

(
b;QBCE

θ (xj)
)]
,

and then we find gsn = minθ∈ΘG
s
n (θ) running a Nelder-Mead algorithm.

4. We choose the cutoff value ĉ0 = ngn · 1.25, and define the set:

Θ̂I (ĉ0) =
{
θ ∈ Θ̌| nG̃n (θ) ≤ ĉ0

}
.

5. For all θ ∈ Θ̂I (ĉ0) , we obtain then G̃sn (θ) = Gsn (θ) − gsn and the threshold ĉ1 (θ) as
95th percentile of the distribution across subsamples of the statistic:

L̃sn (θ) = nt (Gsn (θ)− gsn) .

We compute then
ĉ1 = sup

θ∈Θ̂I(ĉ0)
ĉ1 (θ) ,

and
Θ̂I (ĉ1) =

{
θ ∈ Θ̌| nG̃n (θ) ≤ min (ĉ1, ĉ1 (θ))

}
.

6. Iterating steps 4,5 we obtain ĉ2 and report the confidence set:

Cn =
{
θ ∈ Θ̌| nG̃n (θ) ≤ min (ĉ2, ĉ2 (θ))

}
.

Further iterations of this procedure do not alter significantly our results.

We report results for confidence sets for parameters in the identified sets. For both ΘBCE
I

and ΘBNE
I

(
S
)
, constructing confidence sets for the identified set, as opposed to constructing

confidence sets for all points in the identified set, yields similar results (as in Ciliberto and
Tamer,2009).

Computation of Confidence Sets for ΘBNE
I

(
S
)

The construction of the confidence set for parameters in ΘBNE
I

(
S
)
is analogous to the

procedure followed to compute the confidence set under the assumption of BCE behavior,
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except that it is based on the empirical criterion function:

GPSNE
n (θ) = 1

n

n∑
j=1

sup
b∈Dir

bT P̂y|xj − sup
q∈QPSNE

θ
(xj)

bT q


+

,

where Dir contains vectors corresponding to core-determining class (Galichon and Henry,
2011) and QPSNE

θ (xj) contains the pure-strategy Nash equilibrium predictions for a game
with covariates xj and parameters θ. We limit Nash equilibria to pure-strategy to maintain
the parallel with Ciliberto and Tamer (2009), but the extension to mixed strategy is imme-
diate and can be done by considering the empirical analogue of (.1) . The confidence set for
parameters identified under the assumption of pure-strategy Nash equilibrium and complete
information is obtained going through the same steps 1.-6. described for the computation
of Cn, where Gn is substituted with GPSNEn .

Appendix D - Additional Counterfactual Results

Tables 1 and 2 report additional counterfactual results and complement Table 5 in the
main text. Table 1 reports counterfactual results for the model with weak assumptions on
information. Panel (A) reports bounds on the difference in upper bound probabilities of
market structure. Formally, let

D̄Y ′(θ, x) =
(
qCFY ′ (θ, x)− qY ′ (θ, x)

)
,

where x indexes the eight geographical markets that we consider in this counterfactual. We
report in this table the bounds:[

min
θ∈Cn

D̄Y ′(θ, x), max
θ∈Cn

D̄Y ′(θ, x)
]

for each market, as well as the median value across markets. Panel (B) reports instead
bounds on the difference in lower bound probabilities. Formally, let

q
Y ′ (θ, x) = min

ν∈BCEx(θ)

∑
y∈Y ′

∫
ν (y,dε) ,

and define for each market x the difference in lower bound probabilities:

DY ′(θ, x) =
(
qCF
Y ′ (θ, x)− q

Y ′ (θ, x)
)
.
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We report in this table the bounds:[
min
θ∈Cn

DY ′(θ, x), max
θ∈Cn

DY ′(θ, x)
]

for each market, as well as the median value across markets. Table 2 reports the same results
for the model estimated under the assumption of complete information. Comparisons across
the two tables yield the same insights that emerge from the discussion of the results in Table
5 in the main text.

[Table 1 about here.]

[Table 2 about here.]

Table 3 contains a full description of the markets included in our counterfactual exercise.

[Table 3 about here.]

Appendix E - Relation with Grieco (2014)

We show in this appendix that the model presented in Grieco (2014) fits within the
class of models described in Section 2. Consider the following simplified version of Grieco’s
model for a game of two players i = 1, 2 with actions yi ∈ {0, 1} . Payoffs are:

πi(y, η) = yi
(
∆y−i + η1

i + η2
i

)
,

and payoff types η are distributed according to:
η1

1
η1

2
η2

1
η2

2

 ∼ N



0
0
0
0

 ,


σ2 σ2ρ 0 0
σ2ρ σ2 0 0
0 0 1− σ2 0
0 0 0 1− σ2



 . (.2)

The realizations of
(
η1

1, η
1
2
)
are publicly observable, so that player i observes

(
η1

1, η
1
2, η

2
i

)
.

Define now:
εi = η1

i + η2
i .

and notice that player i′s beliefs on ε−i conditional on the observables be summarized by
the conditional density:

ε−i|
(
η1
i , η

1
−i, η

2
i

)
∼ N

(
η1
−i, 1− σ2

)
. (.3)
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We want to recast this model so that it fits the framework of Section 2, in which player i
observes its own scalar payoff type εi as well as a signal ti on the opponents’ payoff type.
We interpret η1

−i as the signal that player i gets on ε−i, and η1
i as what player i knows that

−i knows about her payoff, so that
(
τ1
i , τ

2
i

)
=
(
η1
i , η

1
−i
)
. It follows that

(
τ1
i , τ

2
i

)
=
(
τ2
−i, τ

1
−i
)
,

so signals are public. The distribution of ε is:

Pε = N

((
0
0

)
,

(
1 σ2ρ

σ2ρ 1

))
.

The joint distribution of signals and redefined payoff shocks, derived from (.2) is thus:
ε1

ε2

τ1
1
τ2

1

 ∼ N



0
0
0
0

 ,


1 σ2ρ σ2ρ σ2

σ2ρ 1 σ2 σ2ρ

σ2ρ σ2 σ2 σ2ρ

σ2 σ2ρ σ2ρ σ2



 . (.4)

Notice that (.4) implies that the belief of player i about ε−i conditional on her information
set is:

ε−i| (τi, εi) ∼ N
(
τ1
i , 1− σ2

)
,

which is identical to the belief (.3).

Appendix F - BMM Representation of the Identified Set

Beresteanu, Molchanov and Molinari (2011), henceforth BMM, provide a computable
characterization of the identified set of partially identified models making use of random
set theory. In this appendix, we show how our characterization of the identified set maps
into their framework.

Let z = (x, y) and ε be respectively the vector of observable outcomes and covariates,
and the vector of payoff types. The random vectors are defined on a probability space
(Ω,F , P ) , and let G be the sigma algebra generated by the random vector x. We also adopt
the assumptions 3.1(i),(iii) and 3.2 in BMM, and substitute 3.1(ii) with the assumption of
BCE behavior. We restate these assumptions below for ease of reference:

Assumption 4. Assume that:

1. The discrete set of strategy profiles of the game, Y, is finite.

2. Payoffs πi (y, εi;x, θπ) have a known parametric form, and are continuous in x and
εj .
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3. The observed outcome y of the game is the result of BCE behavior in the game of
minimal information S.

4. The conditional distribution of outcomes Py|x is identified by the data, and ε has a
continuous distribution function.

Let us adapt our notation and denote the set of BCE equilibrium distributions ν
with BCEθ (x), for any given realization of x.. Considering x (ω) as a random vector,
BCEθ (x(ω)) = BCEθ (ω) is a random set. Let Sel(BCEθ) denote the set of all ν (ω), mea-
surable selections of BCEθ (ω). In order to characterize the identified set, we need to map
these equilibria into observable outcomes of the game for each ω ∈ Ω. A realization of ω
implies both a realization of (x (ω) , ε (ω)) , and also a BCE distribution ν (ω) , which in
turn determine the following probability distribution over outcomes:

q(ν (ω)) = ν (·|ε (ω)) ∈ PY ,

where ν (·|ε (ω)) is the conditional distribution implied by the joint distribution ν (ω) ∈ PY,E ,
and the realization ε (ω). Q̃θ is the set of all equilibrium predictions:

Q̃θ = {q (ν) : ν ∈ Sel (BCEθ)} .

Then the conditional Aumann expectation of this random set is:

E
(
Q̃θ|x

)
= {E (q (ν) |x) : ν ∈ Sel (BCEθ)} .

Notice however that:

E (q (ν) |x) = E [ν (·|ε (ω)) |x]

=
∫
E
ν (y|ε) dF

=
∫
E
ν (y,dε) ,

so that E
(
Q̃θ|x

)
= QBCEθ (x) . Hence, our characterization of the identified set is equivalent

to the one proposed in BMM.
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Table 1: Additional Counterfactual Results: BCE

Panel (A): Bounds on Difference in Upper Bound Probabilities

Outcome: No Entry Entry by Coop. Entry by IT Entry by FR Entry by >=1 Entry by >=2

Mkt. 1 [-0.34, 0.27 ] [-0.09, 0.32 ] [-0.11, 0.59 ] [-0.07, 0.46 ] [-0.03, 0.16 ] [-0.21, 0.45 ]
Mkt. 2 [-0.31, 0.26 ] [-0.18, 0.47 ] [-0.14, 0.64 ] [-0.12, 0.57 ] [-0.07, 0.34 ] [-0.27, 0.5 ]
Mkt. 3 [-0.29, 0.3 ] [-0.24, 0.5 ] [-0.21, 0.65 ] [-0.16, 0.56 ] [-0.14, 0.48 ] [-0.3, 0.36 ]
Mkt. 4 [-0.32, 0.24 ] [-0.12, 0.3 ] [-0.07, 0.39 ] [-0.08, 0.5 ] [-0.02, 0.19 ] [-0.2, 0.44 ]
Mkt. 5 [-0.31, 0.32 ] [-0.17, 0.42 ] [-0.18, 0.69 ] [-0.12, 0.55 ] [-0.08, 0.38 ] [-0.28, 0.49 ]
Mkt. 6 [-0.37, 0.35 ] [-0.24, 0.53 ] [-0.12, 0.57 ] [-0.15, 0.56 ] [-0.07, 0.4 ] [-0.25, 0.45 ]
Mkt. 7 [-0.31, 0.25 ] [-0.18, 0.48 ] [-0.14, 0.66 ] [-0.14, 0.59 ] [-0.07, 0.32 ] [-0.26, 0.48 ]
Mkt. 8 [-0.2, 0.22 ] [-0.35, 0.57 ] [-0.3, 0.59 ] [-0.23, 0.45 ] [-0.25, 0.52 ] [-0.26, 0.21 ]

Average [-0.3, 0.28 ] [-0.2, 0.45 ] [-0.16, 0.6 ] [-0.13, 0.53 ] [-0.09, 0.35 ] [-0.26, 0.42 ]
Median [-0.31, 0.27 ] [-0.18, 0.47 ] [-0.14, 0.62 ] [-0.13, 0.56 ] [-0.07, 0.36 ] [-0.26, 0.45 ]

Panel (B): Bounds on Difference in Lower Bound Probabilities

Outcome: No Entry Entry by Coop. Entry by IT Entry by FR Entry by >=1 Entry by >=2

Mkt. 1 [-0.16, 0.03 ] [-0.09, 0.16 ] [-0.05, 0.32 ] [-0.35, 0.34 ] [-0.27, 0.34 ] [-0.09, 0.33 ]
Mkt. 2 [-0.34, 0.07 ] [-0.07, 0.06 ] [-0.04, 0.14 ] [-0.07, 0.14 ] [-0.26, 0.31 ] [-0.07, 0.19 ]
Mkt. 3 [-0.48, 0.14 ] [-0.29, 0.05 ] [-0.05, 0.07 ] [-0.05, 0.08 ] [-0.3, 0.29 ] [-0.04, 0.09 ]
Mkt. 4 [-0.19, 0.02 ] [-0.08, 0.23 ] [-0.08, 0.28 ] [-0.08, 0.29 ] [-0.24, 0.32 ] [-0.1, 0.31 ]
Mkt. 5 [-0.38, 0.08 ] [-0.17, 0.08 ] [-0.03, 0.13 ] [-0.06, 0.11 ] [-0.31, 0.31 ] [-0.06, 0.18 ]
Mkt. 6 [-0.4, 0.07 ] [-0.04, 0.05 ] [-0.29, 0.13 ] [-0.06, 0.1 ] [-0.35, 0.36 ] [-0.06, 0.15 ]
Mkt. 7 [-0.32, 0.07 ] [-0.04, 0.06 ] [-0.04, 0.17 ] [-0.08, 0.13 ] [-0.25, 0.31 ] [-0.08, 0.19 ]
Mkt. 8 [-0.52, 0.25 ] [-0.03, 0.02 ] [-0.09, 0.03 ] [-0.05, 0.04 ] [-0.22, 0.21 ] [-0.03, 0.04 ]

Average [-0.35, 0.09 ] [-0.1, 0.09 ] [-0.09, 0.16 ] [-0.1, 0.15 ] [-0.28, 0.31 ] [-0.07, 0.18 ]
Median [-0.36, 0.07 ] [-0.08, 0.06 ] [-0.05, 0.14 ] [-0.07, 0.12 ] [-0.27, 0.31 ] [-0.07, 0.18 ]
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Table 2: Additional Counterfactual Results: Complete Information - Nash

Panel (A): Bounds on Difference in Upper Bound Probabilities

Outcome: No Entry Entry by Coop. Entry by IT Entry by FR Entry by >=1 Entry by >=2

Mkt. 1 [-0.42, 0 ] [-0.04, 0.77 ] [-0.16, 0.9 ] [-0.38, 0.57 ] [0, 0.42 ] [0.09, 0.81 ]
Mkt. 2 [-0.75, 0.03 ] [0.06, 0.86 ] [-0.13, 0.87 ] [-0.19, 0.7 ] [-0.03, 0.75 ] [0.06, 0.52 ]
Mkt. 3 [-0.76, 0.13 ] [0.11, 0.74 ] [-0.19, 0.76 ] [-0.1, 0.76 ] [-0.13, 0.76 ] [0.04, 0.21 ]
Mkt. 4 [-0.25, 0 ] [-0.02, 0.96 ] [-0.08, 0.83 ] [-0.27, 0.62 ] [0, 0.25 ] [0.05, 0.79 ]
Mkt. 5 [-0.72, 0.05 ] [0.03, 0.83 ] [-0.11, 0.84 ] [-0.17, 0.69 ] [-0.05, 0.72 ] [0.08, 0.52 ]
Mkt. 6 [-0.77, -0.06 ] [-0.03, 0.8 ] [-0.52, 0.72 ] [-0.39, 0.67 ] [0.06, 0.77 ] [0.02, 0.32 ]
Mkt. 7 [-0.75, 0.03 ] [0.06, 0.86 ] [-0.13, 0.88 ] [-0.2, 0.7 ] [-0.03, 0.75 ] [0.06, 0.53 ]
Mkt. 8 [-0.42, 0.11 ] [0.09, 0.44 ] [-0.18, 0.44 ] [0, 0.38 ] [-0.11, 0.42 ] [0, 0.04 ]

Average [-0.61, 0.04 ] [0.03, 0.78 ] [-0.19, 0.78 ] [-0.21, 0.64 ] [-0.04, 0.61 ] [0.05, 0.47 ]
Median [-0.74, 0.03 ] [0.04, 0.82 ] [-0.15, 0.83 ] [-0.2, 0.68 ] [-0.03, 0.74 ] [0.05, 0.52 ]

Panel (B): Bounds on Difference in Lower Bound Probabilities

Outcome: No Entry Entry by Coop. Entry by IT Entry by FR Entry by >=1 Entry by >=2

Mkt. 1 [-0.42, 0 ] [-0.07, 0.67 ] [-0.56, 0.82 ] [-0.46, 0.71 ] [0, 0.42 ] [0.05, 0.8 ]
Mkt. 2 [-0.75, 0.03 ] [-0.23, 0.34 ] [-0.72, 0.38 ] [-0.76, 0.11 ] [-0.03, 0.75 ] [0.02, 0.44 ]
Mkt. 3 [-0.76, 0.13 ] [-0.03, 0.47 ] [-0.67, 0.5 ] [-0.44, 0.38 ] [-0.13, 0.76 ] [0.01, 0.2 ]
Mkt. 4 [-0.25, 0 ] [-0.07, 0.7 ] [-0.48, 0.71 ] [-0.48, 0.45 ] [0, 0.25 ] [0.12, 0.78 ]
Mkt. 5 [-0.72, 0.05 ] [-0.07, 0.6 ] [-0.73, 0.59 ] [-0.5, 0.41 ] [-0.05, 0.72 ] [0.05, 0.5 ]
Mkt. 6 [-0.77, -0.06 ] [-0.13, 0.76 ] [-0.38, 0.64 ] [-0.48, 0.55 ] [0.06, 0.77 ] [0.01, 0.31 ]
Mkt. 7 [-0.75, 0.03 ] [-0.23, 0.35 ] [-0.72, 0.4 ] [-0.76, 0.12 ] [-0.03, 0.75 ] [0.02, 0.46 ]
Mkt. 8 [-0.42, 0.11 ] [-0.04, 0.06 ] [-0.37, 0.03 ] [-0.23, 0.03 ] [-0.11, 0.42 ] [0, 0.03 ]

Average [-0.61, 0.04 ] [-0.11, 0.49 ] [-0.58, 0.51 ] [-0.51, 0.35 ] [-0.04, 0.61 ] [0.04, 0.44 ]
Median [-0.74, 0.03 ] [-0.07, 0.54 ] [-0.61, 0.54 ] [-0.48, 0.4 ] [-0.03, 0.74 ] [0.02, 0.45 ]
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Table 3: Description of Counterfactual Markets

Market: Population Surface, in km2 Tax Income Per Capita, in EUR

Ancona 105,367 146.73 15,602.05
Aosta 77,822 1627.24 16,306.34

Cesenatico II 56,297 95.33 12,712.45
Empoli 105,156 340.28 13,994.89
Formia 74,402 255.11 11,586.54

Portogruaro 66,839 359.96 13,658.51
Rovereto 79,281 540.14 15,466.23
Trento II 35,768 223.67 14,845.97

Average 75,116.5 448.56 14,271.62
Median 76,112 297.69 14,420.43

Std. Dev. 23,341.05 495.85 1,592.85
Max 105,367 1627.24 16,306.34
Min 35,768 95.33 11,586.54
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