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1 Introduction

Multiplicity of equilibria is a prevalent feature in games. An implication of multiplicity of equilibria

in the structural estimation of games is that the model predicts more than one probability distrib-

ution of the endogenous variables. The standard criteria used for estimation, such as likelihood or

GMM criteria, are no longer functions of the structural parameters but correspondences, and this

makes the application of these estimation methods impractical in many relevant cases. A substan-

tial part of the recent literature on the econometrics of games of incomplete information proposes

simple two-step estimators that deal with these issues.1 These two-step methods assume that there

are no unobservables that are common knowledge to players, and that the same equilibrium has

been played in all the observations in the data. The model may have multiple equilibria for the

true value of the structural parameters, but only one of them is present in the data.2 Under these

assumptions, structural parameters in these models are identified given the same type of exclusion

restrictions as in games with equilibrium uniqueness (see Bajari et al., 2010).

The assumption that all the data have been generated from a single equilibrium is very strong.

In most empirical games of incomplete information in the literature, uniqueness of the equilibrium

in the data, together with the assumption that there are no common knowledge unobservables,

imply that the actions of players are independent of one another conditional on observables. This

testable implication is likely to fail in most datasets. One possible interpretation of failure of this

conditional independence is that common knowledge unobservables are present.3 An alternative

interpretation is multiple equilibria in the data.4 These two alternative explanations can generate

different estimations of the structural parameters and different predictions when we use the esti-

mated model to make counterfactual experiments. Therefore, a relevant question is whether it is

1See Aguirregabiria and Mira (2007), Bajari et al. (2007), and Pesendorfer and Schmidt-Dengler (2008) as seminal
contributions in this literature. Other recent contributions to this topic in the context of games of incomplete
information are Sweeting (2009), Aradillas-Lopez (2010), and Bajari, Hong, Krainer, and Nekipelov (2010). See
Bajari, Hong, and Nekipelov (2013) for a survey of this literature.

2A weaker version of this assumption establishes that we can partition the data into a number of subsamples
according to the value of an exogenous variable such that the same equilibrium is played within each subsample.

3Aguirregabiria and Mira (2007), Arcidiacono and Miller (2011) extend sequential estimation methods to allow
for common knowledge unobservables in games of incomplete information. They do not allow for multiple equilibria
in the data and consider parametric models.

4De Paula and Tang (2012) relax the assumption of a unique equilibrium in the data. They interpret failure of
independence in terms of multiple equilibria and show that it is actually helpful to identify the sign of the parameters
that capture the strategic interactions between players. However, de Paula and Tang assume that the model does
not contain common knowledge unobservables.
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possible to identify from the data the contribution of unobservables that affect the selection of an

equilibrium from the contribution of unobservables that are payoff-relevant.

Authors in different areas of economics have proposed multiplicity of equilibria as a plausible

explanation for important economic phenomena. This argument has been used in empirical appli-

cations to explain bank runs (Cooper and Corbae, 2002, and Egan, Hortacsu, and Matvos, 2017),

spatial distribution of economic activity (Krugman, 1991, Davis and Weinstein, 2002, 2008, and

Bayer and Timmins, 2005, 2007), macroeconomic fluctuations (Farmer and Guo, 1995), market

variation in firms’behavior (Sweeting, 2009, Ellickson and Misra, 2008, and Grieco, 2014), and

changes in wage inequality (Moro, 2003), among others. In all these applications, the identifica-

tion of the contribution of multiple equilibria has been based on strong restrictions on the role of

payoff-relevant unobserved heterogeneity, e.g., ruling out this form of heterogeneity. One of the

main purposes of this paper is to obtain conditions for the identification of the relative contri-

bution of multiple equilibria and payoff-relevant unobservables when both sources of unobserved

heterogeneity are specified nonparametrically and allowed to have the same degree of variation.

In this paper, we study the identification of games when we allow for three types of unobserved

heterogeneity for the researcher: payoff-relevant, player-specific variables or "types" that are private

information (PI unobservables); payoff-relevant variables that are common knowledge to all the

players (PR unobservables); and variables that are common knowledge to all the players and are not

payoff-relevant but affect the equilibrium selection (multiple equilibria or ME unobservables). The

specification of the payoff function is nonparametric, and the probability distribution of common

knowledge unobservables is also nonparametric but with finite support (i.e., finite mixture model).

The model is semiparametric because we assume that the researcher knows the distribution of the

private information unobservables, which are independent across players, up to a scale parameter.

As far as we know, this is the first paper to study nonparametric identification of games with

these three different sources of unobservables. More specifically, the model in this paper extends

the specifications of several important papers in the literature on identification of games. Sweeting

(2009) and De Paula and Tang (2012) allow for multiple equilibria but not for PR unobservables.

Otsu, Pesendorfer and Takahashi (2016) consider games of incomplete information with common

knowledge unobserved heterogeneity that can be either PR or ME. The paper proposes a test for

the existence of unobserved heterogeneity using panel data but it does not deal with the identifi-
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cation of payoffs or with the separate identification of the contribution of PR and ME unobserved

heterogeneity. Our model is similar to the one in Grieco (2014). Grieco considers a game of market

entry that includes the three types of unobservables in our model, i.e., PI, PR, and ME unobserv-

ables. Grieco’s model is fully parametric in the specification of the payoff function, the distribution

of the PR unobservables, and the distribution of the equilibrium selection. The identification re-

sults in Grieco’s paper rely crucially on these parametric restrictions. In this paper, we consider

identification conditions that are not based on parametric assumptions.

We show that, in a model with N players, J + 1 choice alternatives, L points of support in the

distribution of common knowledge unobservables, and with N ≥ 3 and L ≤ (J + 1)(N−1)/2, all the

structural functions of the model are identified under the same type of exclusion restrictions that we

need for identification without unobserved heterogeneity. In particular, we can separately identify

the relative contributions of payoff-relevant and multiple equilibria unobserved heterogeneity to

explain players’behavior.

Two types of conditions play a key role in our identification results: independence between

players’private information, and an exclusion restriction in the payoff function. Most of our iden-

tification results in this paper are based on a sequential approach. In a first step, we consider

the nonparametric identification of players’strategies (defined as Conditional Choice Probabilities)

and the distribution of common knowledge unobservables in the context of a nonparametric finite

mixture model. The key identifying restriction in this first step is the independence between play-

ers’private information variables. In a second step, we study the identification of payoffs and the

separate identification of payoff-relevant (PR) and multiple-equilibria (ME) common knowledge un-

observables. Identification in this second step is based on a exclusion restriction on players’payoff

functions. We show that the conditions for the identification of the finite mixture model in the first

step are suffi cient but not necessary. In particular, when using a non-sequential identification ap-

proach, the exclusion restrictions in the payoff function can help us to relax some of the restrictions

that we use to identify the finite mixture model in the first step of the sequential approach.

We also find an important and previously neglected issue in the implementation of the sequential

identification approach. In the identification of the finite mixture model in the first step, it is well

known that the distribution of the unobservables is identified up to label swapping of the types.

We can identify the distribution of the unobservables for each value of the exogenous variables but,
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without further assumptions, we cannot “match”unobservable types across different values of these

exogenous variables. We show that this up-to-label-swapping identification in the first step creates

a problem in the identification of the payoff function in the second step: unobserved types have to

be correctly matched across different values of observable explanatory variables. We also show that

this matching-types problem appears in the sequential estimation of other structural models with

nonparametric finite mixtures, such as single-agent models, static or dynamic. We derive necessary

and suffi cient conditions for identification under this problem, and show that additive separability of

unobserved heterogeneity in the payoff function is a suffi cient condition to deal with this problem.

We also present and discuss the relative merits and limitations of other suffi cient conditions for

identification such as independence between unobservables and explanatory variables.

Our identification results and tests rely on the assumption that players’ actions in the data

come from Bayesian Nash equilibria (BNE) for a particular information structure, one where in-

formation is either common-knowledge to all the players or privately known by only one player,

and this player-specific private information is unobservable to the researcher. While our framework

generalizes the specification of the unobservables in the most widely-used class of empirical games

of incomplete information, the assumption on the information structure is maintained. One might

consider environments with the same basic specification as ours but different informational assump-

tions. For instance, some information might be shared by a subgroup of players. Or players might

receive signals containing information about the other players’types. In recent work, Bergemann

and Morris (2013, 2016) have introduced the Bayesian Correlated Equilibrium (BCE) as a solution

concept which is more robust, in the sense that it delivers all predictions compatible with Bayesian

Nash equilibria for any information structure within a wide class. Magnolfi and Roncoroni (2017)

study inference based on the BCE solution concept. Their goal is to identify only the payoff para-

meters, and their work illustrates a tradeoff between robustness to assumptions about information

structures and the ability to achieve point identification.

The rest of the paper is organized as follows. Section 2 introduces the class of models. Section 3

describes the type of data and the assumptions on the data generating process. Section 4 presents

our identification results using a sequential approach. Section 5 presents necessary and suffi cient

conditions for local joint identification. We summarize and conclude in section 6.
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2 Model

Consider a game that is played by N players which are indexed by i ∈ I = {1, 2, ..., N}. Each

player has to choose an action from a discrete set of alternatives A = {0, 1, ..., J}. The decision of

player i is represented by the variable ai ∈ A. Each player chooses his action ai to maximize his

expected payoff. The payoff function of player i is Πi(ai,a−i,x, ω, εi), where: Πi(.) is a real-valued

function; a−i ∈ AN−1 is a vector with choice variables of players other than i; and x ∈ X , ω ∈ Ω,

and εi are vectors of exogenous characteristics of players and of the environment (market). The

variables in x and ω are common knowledge for all players, and the vector εi is private information

of player i. Variables ω and εi are unobservable to the researcher and x is observable.

In addition to these payoff relevant state variables, there are also common knowledge, non-payoff

relevant variables that affect players’beliefs about which equilibrium, from the multiple ones the

model has, is the one that they are playing. We denote these as sunspots and represent them using

the vector ξ. These sunspot variables are unobservable to the researcher. For the rest of the paper,

we denote the unobservables εi as PI (for private information), ω as PR (for payoff relevant), and

ξ as ME (for multiple equilibria).

EXAMPLE 1: Coordination game within the classroom (Todd and Wolpin, 2012). In a school

class the students and the teacher choose their respective levels of effort, ai ∈ A. Each student

has preferences on her own end-of-the-year knowledge, Πi. The teacher cares about the aggregate

knowledge of all the students. A student’s knowledge depends on her own effort, the effort of her

peers, teacher’s effort, and exogenous characteristics of the student, the classroom, and the school.

This type of game is an example of Coordination Game (Cooper, 1999) and its main feature is

the strategic complementarity between the levels of effort of the different players. Coordination

games typically have multiple equilibria. In this example, we can distinguish three different types

of unobservables from the point of view of the outside researcher. The first type consists of payoff-

relevant common knowledge unobservables (PR), e.g., classroom, school, teacher, and students

characteristics that enter in the production function of students’knowledge and are known to all

the players but not to the researcher. The second type consists of private information unobservables

(PI), e.g., part of the students’and teacher’s skills, and their respective costs of effort, are private

information of these players, and they are also unknown to the researcher. Finally, in the presence
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of multiple equilibria, we may have that two classes with exactly the same (payoff relevant) inputs

have selected different types of equilibria. Apparently innocuous characteristics of a class may

affect students’and teachers’beliefs about the effort of others. Part of these non-payoff variables

affecting beliefs are unobservable to the researcher (ME unobservables). �

Assumption 1 contains basic conditions on the structural model that are standard in the em-

pirical literature of discrete games of incomplete information.5

ASSUMPTION 1. (A) Payoff functions {Πi : i ∈ I} are additively separable in the private infor-

mation component, i.e., Πi = π̃i(ai,a−i,x, ω) + ε̃i(ai), where ε̃i ≡ {ε̃i(ai) : ai ∈ A} is a vector of

J + 1 real valued random variables. (B) ε̃i is independently distributed across players and inde-

pendent of common knowledge variables (x,ω, ξ) with a distribution function that is continuously

differentiable with respect to the Lebesgue measure in the Euclidean space RJ+1. �

A player’s optimal choice is invariant to any affi ne transformation of his payoff function such

that we can identify the payoff function only up to an affi ne transformation.6 Given a baseline

choice alternative, say alternative 0, for any ai 6= 0 we define the normalized payoff function,

πi(ai,a−i,x, ω) ≡ [π̃i(ai,a−i,x, ω) − π̃i(0,a−i,x, ω)]/δi, and the normalized private information

variables εi(ai) ≡ [ε̃i(ai) − ε̃i(0)]/δi where δ2
i ≡ V ar(ε̃i(1) − ε̃i(0)). For the rest of the paper, we

describe the model in terms of the normalized payoff functions πi and private information variables

εi.

ASSUMPTION 2. The model is semiparametric in the sense that the researcher knows the distri-

bution function, G, of the vector of (normalized) private information variables εi ≡ {εi(ai) : ai ∈

A− {0}}. �

The standard equilibrium concept in static games of incomplete information is Bayesian Nash

equilibrium (BNE). We assume that the outcome of this game is a BNE. Under this assumption, a

player’s strategy is a function only of payoff-relevant variables, i.e., a function of (x, ω, εi). If the

game has multiple equilibria, then the sunspot variables in ξ affect the selection of the equilibrium
5 In a recent working paper, Liu, Vuong, and Xu (2013) study identification of binary choice games of incomplete

information relaxing the assumptions of additive separability and independence between players’private information.
Wan and Xu (2014) study identification of a semiparametric binary game with correlated private information. These
two papers assume that there is not common knowledge unobserved heterogeneity or multiple equilibria in the data.

6 In this paper, we consider that the researcher has data only on players’choices and state variables. Some of our
normalization assumptions can be relaxed when the researcher has data on a component of the payoff function such
as firms’revenue.
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and therefore the outcome of the game. We first describe a BNE and then we incorporate the

equilibrium selection mechanism when the model has multiple equilibria.

Let σ = {σi(x, ω, εi) : i ∈ I} be a set of strategy functions where σi is a function from X×Ω×RJ

into A. Associated with a set of strategy functions we can define a vector of conditional choice

probabilities (CCPs), P(x, ω,σ) ≡ {Pi(ai|x, ω, σi) : (ai, i) ∈ A− {0} × I} such that:

Pi (ai | x, ω, σi) ≡
∫

1 {σi(x, ω, εi) = ai} dG(εi) (1)

where 1{.} is the indicator function. These probabilities represent the expected behavior of player

i from the point of view of the other players, who do not know εi. By the independence of private

information across players in Assumption 1(B), players’actions are independent once we condition

on common knowledge variables (x, ω) and players’s strategies, such that Pr(a1, a2, ..., aN |x, ω,σ) =∏N
i=1 Pi(ai|x, ω, σi).

Given beliefs σ about the behavior of other players, each player maximizes his expected utility.

Let πσi (ai,x, ω) + εi(ai) be player i’s (normalized) expected utility if he chooses alternative ai and

the other players behave according to their respective strategies in σ. We have that:

πσi (ai,x, ω) ≡
∑

a−i∈AN−1

(∏
j 6=i Pj(aj |x, ω, σj)

)
πi(ai,a−i,x, ω) (2)

DEFINITION 1: A Bayesian Nash equilibrium (BNE) in this game is a set of strategy functions

σ∗ such that for any player i and for any (x, ω, εi),

σ∗i (x, ω, εi) = arg max
ai∈A

{
πσ
∗

i (ai,x, ω) + εi(ai)
}

� (3)

We can represent a BNE in the space of players’choice probabilities. This representation is

convenient for the econometric analysis of this model. Solving the equilibrium condition (3) into the

definition of choice probabilities in (1) and taking into account the form of the expected payoff in

(2), we can characterize a BNE as a vector of choice probabilities, P∗(x, ω) = {P ∗i (ai|x, ω) : (ai, i) ∈

A − {0} × I}, that solves the fixed point equation P∗(x, ω) = Ψ (x, ω,P∗(x, ω)). The fixed point

mapping Ψ (x, ω,P) from CCP’s to CCPs is defined as {Ψi(ai|x, ω,P−i) : (ai, i) ∈ A − {0} × I},

and

Ψi(ai|x, ω,P−i) ≡
∫

1

{
ai = arg max

k∈A

(∑
a−i

(∏
j 6=i

Pj(aj)

)
πi(k,a−i,x, ω) + εi(k)

)}
dG(εi)

(4)
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We call Ψi best response probability function because it provides the probability that an action

is optimal for player i given that the player believes that his opponents behave according to the

probabilities in P−i.

The continuous differentiability of the distribution function G(εi) in Assumption 1 implies

that the best response probability mapping Ψi is continuously differentiable in P−i. Therefore,

by Brower’s fixed point theorem, the mapping Ψ(x, ω, .) has at least one equilibrium. The set

of equilibria associated with (x, ω) is defined as Γ (x, ω) ≡ {P : P = Ψ(x, ω,P)}. Under our

regularity conditions, the set of equilibria Γ(x, ω) is discrete and finite for almost all games (x, ω,G).

Furthermore, each equilibria belongs to a particular "type" such that a marginal perturbation in

the payoff function implies a small variation in the equilibrium probabilities within the same type.

The following definitions and lemma establish these results formally.

DEFINITION 2 [Singularity points and Regular BNE]. Let f(x, ω,P) be the function P−Ψ(x, ω,P)

such that an equilibrium of the game can be represented as a solution in P to the system of equations

f(x, ω,P) = 0. A vector P0 is a singularity point of the mapping f(x, ω,P) if the Jacobian matrix

∂f(x, ω,P0)/∂P′ is singular. An equilibrium P∗ is regular if and only if it is not a singularity

point, i.e., if the Jacobian matrix ∂f(x, ω,P∗)/∂P′ is non-singular. �

DEFINITION 3 [Equilibrium types]. Let π(x,ω) ∈ RN(J+1)N be the vector of players’ payoffs as-

sociated to (x, ω). The equilibrium mapping Ψ depends of (x, ω) only through π(x,ω) such that

we can represent the function f(x, ω,P) as f(π(x,ω),P). Let π0 and π1 be two vectors of pay-

offs in RN(J+1)N and let P∗0 and P∗1 be BNEs associated with π0 and π1, respectively. We say

that P∗0 and P∗1 belong to the same type of equilibrium if and only if there is a continuous path

{P[t] : t ∈ [0, 1]} (continuous in t) that satisfies the condition f( [1 − t] π0 + t π1, P[t]) = 0 for

every t ∈ [0, 1], such that this path connects in a continuous way the equilibria P∗0 and P∗1. �

LEMMA 1 [Based on Doraszelski and Escobar (2010)]. Under the conditions of Assumption 1:

(A) The set of vectors of payoffs π(x,ω) for which the Jacobian matrix ∂f(π(x,ω),P)/∂P can be

singular is finite. Therefore, for almost all payoffs π(x,ω), the set of equilibria Γ
(
π(x,ω)

)
includes

only regular equilibria. (B) For almost all payoffs π(x,ω) the set of equilibria Γ
(
π(x,ω)

)
is finite.

(C) Every regular equilibrium belongs to a particular type. �

Proof. Doraszelski and Escobar (2010) study dynamic games of incomplete information. The equi-
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librium concept that they use is Markov Perfect. Our static model and our equilibrium concept

(BNE) are equivalent to the ones in Doraszelski and Escobar when the time discount factor is zero.

Our Assumption 1 implies that the best response probability functions Ψi are continuously differ-

entiable with respect to P−i. This property implies the conditions for Theorem 1 and Proposition

2 in Doraszelski and Escobar (2010). Their Theorem 1 establishes that the set of games for which

the equilibrium mapping has a singular Jacobian matrix is finite. Therefore, almost all the games

have only regular equilibria. This is our Lemma 1(A). Their Corollary 1 to Theorem 1 (that in

turn comes from Haller and Lagunoff, 2000) takes into account that a suffi cient condition for the

set of equilibria Γ
(
π(x,ω)

)
to be finite is that the mapping f(π(x,ω),P) does not have a singularity

point. This Corollary 1 establishes that for almost all games the set of equilibria is finite. This

is our Lemma 1(B). Their Proposition 2 establishes that for every regular equilibrium the map-

ping that relates payoffs π(x,ω) and equilibrium probabilities is a locally continuous function (not

a correspondence). Using the definition of equilibrium type, this implies our Lemma 1(C). �

Based on Lemma 1, for regular equilibria, we can index equilibrium types by τ ∈ {1, 2, ..., Lτ} and

use Υ(π(x,ω)) to represent the set of indexes for the equilibrium types associated to a game with

payoffs π(x,ω).

EXAMPLE 2: Consider a simple version of the coordination game within the classroom in Example

1. Students’choice of effort is binary: ai ∈ {0, 1}. The teacher’s combination of skills and effort is

considered exogenous and represented by the scalar variable x. A student’s payoff for choosing the

high level of effort is πi(1,a−i, x) + εi(1) with πi(1,a−i, x) = α+ β x+ γ x
(

1
N−1

∑
j 6=i aj

)
, where

εi(1) is private information (e.g., a component of the cost of effort) and it is i.i.d. across students

with a standard normal distribution. All the students are assumed identical except for their private

information variables. We assume that the equilibrium is symmetric , i.e., all the students have

the same probability of effort P (x). Then, the best response probability function of any student

in this model is Ψ(1| x, P ) = Φ(α + β x + γ x P (x)). Suppose that x > 0 and γ > 0 such that

there are positive synergies between the teacher’s effort/skills and students’effort. The model is a

coordination game and the best response probability function has an S form as shown in Figure 1.

Figures 1 and 2 come from this example when the parameter values are α = 2.0, β = −7.31, and

γ = 6.75, and variable x is an index in the interval [0, 1]. Figure 1 presents the equilibrium mapping
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when teacher’s effort is x = 0.52. For this value of x the model has three equilibria with low, middle,

and high probability of students’effort. Figure 2 presents the equilibrium correspondence of the

model. This inverted-S curve correspondence has two singularity points, at (x, P ) = (0.4757, 0.2301)

and (x, P ) = (0.6131, 0.8447). At these points, the derivative ∂[P −Ψ(x, P )]/∂P is zero such that

these two equilibria are not regular. For the rest of equilibria in the manifold, the derivative

∂[P −Ψ(x, P )]/∂P is different to zero such that they are all regular equilibria. The two singularity

points divide the correspondence into three functions, from x into P , which correspond to the three

types of equilibria of this model. For values of x in the interval [0, 0.6131], the upper part of the

inverted-S curve corresponds to the high-probability equilibrium type. For values of x in the interval

[0.4757, 1], the lower part of the curve corresponds to the low-probability equilibrium type. Finally,

for values of x in the interval [0.4757, 0.6131], the intermediate part of the curve corresponds to

the middle equilibrium type. In this example, teacher’s effort is a substitute of student’s own effort

in the high and low equilibrium types, i.e., the equilibrium probability of students’effort declines

with teacher’s effort. However, their efforts are complements in the middle equilibrium. �
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Figure 1: Coordination Game. Best Response Function Ψ(x,P)
Teacher’s effort: x = 0.52; Set of Equilibria: {0.054, 0.521, 0.937}

      

Figure 2: Coordination Game. Equilibrium Correspondence
{(x, P ) : P = Ψ(x, P )}
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3 Data and data generating process

Suppose that the researcher observes M different realizations of the game; e.g., M different local

markets in a game of market competition. We use the index m to represent a realization of the

game. For the sake of concreteness in our discussion, we consider that these multiple realizations

of the game represent the same players playing the game at M different markets. For every mar-

ket m, the researcher observes the vector xm and players’actions {a1m, a2m, ..., aNm}. For the

asymptotics of the estimators, we consider the case where the number of players N is small and

the number of realizations of the game is large (e.g., the number of markets M goes to infinity).

As stated in Assumption 2, we assume that the distribution of the normalized private information

unobservables, G, is known to the researcher. We study the nonparametric identification of the nor-

malized payoff functions πi and of the distribution of common knowledge unobservables (ωm, τm),

where τm represents the equilibrium type selected in market m.

Let fω(ωm|xm) be the conditional probability function of ωm given xm, and let λ(τm|xm, ωm) be

the conditional probability function of τm given (xm, ωm) such that p(τm, ωm,xm) = λ(τm|ωm,xm)

fω(ωm|xm) px(xm). Assumption 3 summarizes all the conditions that we impose on the Data

Generating Process (DGP).7

ASSUMPTION 3: (A) The realizations of the vector (ωm, τm,xm) are independent and identi-

cally distributed across markets and independent of the private information variables {εim}. (B)

fω(ω|x) has finite support Ω ≡ {ω(1), ω(2), ..., ω(Lω(x))}, i.e., finite mixture model. (C) For every

value (x, ω), all the equilibria in the DGP are regular; by Lemma 1, this implies that λ(τ |x, ω)

has finite support Υ(π(x,ω)). (D) The observed vector of players actions in market m, am ≡

{a1m, a2m, ..., aNm}, is a random draw from a multinomial distribution, Pr(am|xm, ωm, τm) =∏N
i=1 P

(τm)
i (aim|xm, ωm), where the vector of CCPs P(τm)(xm, ωm) ≡ {P (τm)

i (aim|xm, ωm) : (ai, i) ∈

A−{0}×I} is an equilibrium of type τm, i.e., P(τm)(xm, ωm) = Ψ(xm, ωm, P
(τm)(xm, ωm)). �

Let Q(a|x) be the probability distribution of observed players’actions conditional on observed

exogenous variables: Q(a|x) ≡ Pr(am = a | xm = x). This probability distribution Q is identified

from the data under very mild regularity conditions. For the rest of the paper, we assume the

probability function Q(a|x) to be known. Furthermore, this probability distribution contains all

the information from the data that is relevant to identify the structural parameters of the model,
7Note that in the description of the DGP we do not need to specify the distribution of the vector of unobservable

sunspots ξm but only of the selected equilibrium type τm.
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{π, fω, λ}. According to the model and our assumptions on the DGP, we have the following

relationship between Q and the structural parameters {π, fω, λ}:

Q(a|x) =
∑
ω∈Ω

∑
τ∈Υ(π(x,ω))

fω(ω|x) λ(τ |x, ω)

[
N∏
i=1

P
(τ)
i (ai|x, ω)

]

subject to P(τ)(x, ω) = Ψ(x, ω,P(τ)(x, ω))

(5)

The system of equations in (5) summarizes all the restrictions imposed by the model on the data

for identification of the structural parameters. Therefore, given Q, the primitive functions are

identified if this system of equations has a unique solution for {π, fω, λ}.

DEFINITION 4 (Identification): Suppose that the distribution Q is known to the researcher. The

model is (point) identified if and only if there is a unique value {π, fω, λ} that solves the system

of equations (5). �

We are interested in two main questions: under which conditions is the payoff function iden-

tified? and under which conditions is it possible to separately identify the relative contribution

of payoff-relevant (PR) and multiple-equilibria (ME) unobservables as competing explanations for

non-independence of players’actions in the data?

Since the two common knowledge unobservables, ω and τ , have finite support, we can define

a scalar random variable κ ≡ g(ω, τ), also with finite support, that represents the combination of

these two unobservables. Let h(κ|x) be the PDF of κ, i.e., h(κ|x) =
∑

ω,τ 1{κ = g(ω, τ)} fω(ω|x)

λ(τ |x, ω).

We follow a sequential approach to derive conditions for identification. In the first step, given

Q, we obtain conditions for the identification of the CCPs Pi(ai | x, κ) and the probability distri-

bution h(κ|x) from the system of equations (i.e., nonparametric finite mixture model): Q(a|x) =∑
κ h(κ|x)

[∏N
i=1 Pi(ai | x, κ)

]
. Under Assumptions 1 and 2, we can apply Hotz-Miller inversion

theorem (Hotz and Miller, 1993) to recover the expected payoff function of player i from the vector

of CCPs of this player. Therefore, identification of the CCPs Pi(ai | x, κ) implies the identification

of the expected payoff functions πPi (ai,x, κ) ≡ πσi (ai,x, κ) as defined in equation (2). In the second

step we consider the identification of the payoff function πi(ai,a−i,x, ω) given that the expected

payoff πPi (ai,x, κ) is known and given the system of equations (2). Finally, in step 3, we derive

conditions for the identification of the distributions fω(ω|x) and λ(τ |x, ω) given the payoff function

πi and the distribution h(κ|x).
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4 Identification: Sequential approach

4.1 Model without PR or ME unobserved heterogeneity

Before we present our identification results for the model with the two sources of unobserved

heterogeneity, it is helpful to discuss the identification of the model without any of these two

sources of heterogeneity. This case is a useful benchmark of comparison, and it illustrates the

importance of exclusion restrictions for the identification of payoffs.

Consider the model without any form of common knowledge unobserved heterogeneity, either

payoff relevant or sunspots. In this restricted version of the model, ωm is a constant across markets,

and τm is a deterministic function of the observable xm, i.e., τm = fτ (xm), and the probability

distribution that describes the equilibrium selection is degenerate, i.e., λ(τ |xm) = 1{τ = fτ (xm)},

where 1{.} is the indicator function. This condition is a soft version of the assumption "only one

equilibrium is played in the data".

4.1.1 Step 1: Identification of equilibrium CCP’s

Without common knowledge unobservables, players’actions are independent conditional on observ-

ables x such that Q(a|x) =
∏N
i=1Qi(ai|x) where Qi is the marginal distribution of ai conditional

on x. According to the model, this marginal distribution is the equilibrium CCP for player i:

Pi(ai|x, τ = fτ (x)) = Qi(ai|x). If x has a discrete and finite support, the probabilities Qi can be

consistently estimated under very mild regularity conditions. The case of continuous variables in

x is slightly more complicated because multiplicity of equilibria may generate discontinuity points

in the CCP function. The researcher does not know, ex-ante, the number and the location of these

discontinuity points, and this complicates the application of smooth nonparametric estimators,

such as kernel or sieve estimators.8 However, the discontinuity of the probability function Q does

not imply that the model is not identified. Müller (1992) and Delgado and Hidalgo (2000) study

nonparametric estimation of a regression function with ‘change-points’or discontinuities when the

location of these points is unknown to the researcher. They propose variations of standard kernel

methods and show consistency and asymptotic normality.

8 If the model has multiple equilibria, the probability function Qi(ai|x) may be discontinuous in x if only because
some equilibria can appear and disappear when we move along the space of x. This point is illustrated in Figure 2.
For any value of x in the interval [0.48, 0.60], the model has multiple equilibria. However, the model has a unique
equilibrium for values x < 0.48 or x > 0.60.
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4.1.2 Step 2: Identification of payoffs

Given that Pi(ai|x) = Qi(ai|x), we can apply Hotz-Miller inversion to uniquely recover equilibrium

expected payoffs {πPi (ai,x) : ai ∈ A− {0}} from {Qi(ai|x) : ai ∈ A− {0}}. We can treat expected

payoffs hereafter as known. The problem of identification in step 2 is that of recovering the payoff

function π from the system of equations:

πPi (ai,x) =
∑
a−i

P−i(a−i|x) πi(ai,a−i,x) (6)

where P−i(a−i|x) ≡
∏
j 6=i Pj(aj |x). Because of strategic interactions, there are multiple payoff

values πi(ai,a−i,x) for every πPi (ai,x) that is identified, so a discrete game is severely under-

identified relative to a standard discrete choice - random utility model. Some restrictions on payoffs

are needed to restore identification.

In this literature, exclusion restrictions have been the most common type of identifying restric-

tions (see Bajari et al., 2010). Suppose that x = {xc, zi : i ∈ I} where zi ∈ Z and the set Z is

discrete with at least J + 1 points. Furthermore, suppose that πi(ai, a−i,x) depends on (xc, zi)

but not on z−i ≡ {zj : j 6= i}. Then, for fixed (xc, zi) and different values of z−i the primitive

payoffs πi(ai,a−i,x) on the right-hand-side of (6) are constant. However, the probabilities P−i and

the expected payoffs do vary with z−i because z−i changes the payoffs and equilibrium behavior

of other players. Let ΠP
i (ai,x

c, zi) be the |Z|N−1 × 1 vector collecting
{
πPi (ai,x

c, zi, z−i)
}
for all

z−i, and let Πi(ai,x
c, zi) be the (J + 1)N−1 × 1 vector collecting payoffs πi(ai,a−i,xc, zi) for all

a−i. Then, equations (6) can be written in vector form as

ΠP
i (ai,x

c, zi) = P−i(x
c, zi) Πi(ai,x

c, zi) (7)

where P−i(xc, zi) is a matrix with dimension |Z|N−1×(J+1)N−1 with elements P−i(a−i|z−i, zi,xc)

where each row corresponds to a different value of z−i and each column to a different value of a−i.

We can recover the vector of payoffs Πi(ai,x
c, zi) from (7) as long as matrix P−i(xc, zi) has full

column rank.

4.2 Model with both PR and ME unobserved heterogeneity

4.2.1 Step 1: Identification of equilibrium CCP’s and mixing distributions

The identification of CCPs is based on the set of restrictions:

Q(a|x) =

Lκ(x)∑
κ=1

h(κ|x)

[
N∏
i=1

Pi(ai | x, κ)

]
(8)
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where Lκ(x) represents the number of points in the support of the distribution h(κ|x). This

system of equations describes a nonparametric finite mixture model. The identification of this class

of models has been studied by Hall and Zhou (2003), Hall, Neeman, Pakyari and Elmore (2005),

Allman, Matias, and Rhodes (2009), and Kasahara and Shimotsu (2014), among others. In all

these papers, identification is based on the independence between the N variables {a1, a2, ..., aN}

once we condition on (x, κ) and it does not exploit any variation in the exogenous variables in

x, e.g., independence assumptions between x and κ. Therefore, the analysis that follows applies

separately for every value of x and for notational simplicity we drop x as an argument.

In equation (8), the necessary order condition for identification is (J+1)N−1 > JNLκ+(Lκ−1),

i.e., the number of restrictions or known probabilities Q should be greater or equal than the number

of unknown parameters in the choice probabilities and in the distribution of the unobservables κ.

The basic intuition from this order condition is that the assumption of independent marginals can

deliver identification if the number of variables and/or their support are suffi ciently large. Hall

and Zhou (2003) studied nonparametric identification for a mixture with two branches, Lκ = 2

in our notation. They showed that the model cannot be identified for N = 2, even if J is made

large enough to satisfy the order condition. However, for any N > 3 they showed that the model

is generically identified (Theorem 4.3 in Hall and Zhou, 2003). Allman et al (2009) study the more

general case with Lκ ≥ 2 branches. They establish that a mixture with Lκ components is generically

identified if N > 3 and Lκ ≤ (J + 1)int[(N−1)/2], where int[.] is the integer or floor function9. Note

that the upper bound to the number of identifiable branches not only increases with the number

of variables (players) N but also with the size of support of these variables. Generic identification

here means that the set of primitives for which identifiability does not hold has measure zero.

The following Proposition 1 is an application to our model of Theorem 4 and Corollary 5 in

pages 13-14 of Allman et al (2009). Let {Y1, Y2, Y3} be three random variables that represent a

partition of the vector of players’actions (a1, a2, ..., aN ) such that Y1 is equal to the action of one

player (if N is odd) or two players (if N is even), and variables Y2 and Y3 evenly divide the actions

of the rest of the players. For j = 1, 2, 3, let PYj (κ) be the vector with the probability distribution

of Yj conditional on the unobserved component κ.

PROPOSITION 1. Suppose that: (a) N > 3; (b) Lκ 6 (J + 1)int[(N−1)/2]; (c) h(κ) > 0 for any

κ = 1, 2, ..., Lκ; and (d) for j = 1, 2, 3, the Lκ vectors PYj (κ = 1), PYj (κ = 2), ..., PYj (κ = Lκ)

9The floor function int[x] is the the greatest integer less than or equal to x.
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are linearly independent. Then, the distribution h and players’CCPs Pi’s are uniquely identified,

up to label swapping. �

Proof: From the proof of Theorem 4 and Corollary 5 in Allman et al (2009).

To illustrate the conditions for identification of the mixture components and weights in Propo-

sition 1, consider the following examples. In an binary choice game with three players, the model

is step 1-identified if the DGP has two mixture components, but no more. A binary choice game

with five players is identified in step 1 with up to 4 mixture components, e.g., there might be a

binary payoff-relevant unobservable with two different equilibria being played at each of the two

values of the payoff-relevant unobservable.

In general, the true number of mixture components, Lκ, is not known by the researcher. This is

particularly relevant in our model because the support of τ depends on the number of equilibria of

the model that are selected in the DGP, which is an endogenous object. Therefore, it seems reason-

able not to impose restrictions on the number of mixture components for κ but to identify it from

the data. Kasahara and Shimotsu (2014, hereinafter KS-2014) provide conditions for identification

(and estimation) of a lower bound on the number of mixture components.

Following the finite mixture literature, the number of mixture components (the true value of Lκ)

is defined as the the smallest integer Lκ such that the finite mixture representation in equation (8) is

possible.10 First, consider a model with two players. Let Pa1,a2 be the (J+1)× (J+1) matrix with

the distribution of (a1, a2) such that the elements of this matrix are Pa1,a2 [j, k] = Pr(a1 = j, a2 = k).

According to the finite mixture representation in equation (8), we have that Pa1,a2 =
∑Lκ

κ=1 h(κ)

Pa1(κ) Pa2(κ)′, where Pai(κ) is the (J + 1) × 1 vector with the probability distribution of ai

conditional on κ. Proposition 2 in KS-2014 establishes that, generically, if Lκ ≤ J + 1 then

Lκ = rank(Pa1,a2). Therefore, for a two-players game, the rank of matrix Pa1,a2 provides a lower

bound to the number of components Lκ. For N ≥ 3 players, Proposition 4 in KS-2014 provides a

similar result. To describe this result, let a∗i be a variable that is deterministic function of variable

ai and that may imply some information reduction with respect to ai, e.g., ai ∈ {0, 1, 2} and

a∗i = 1{ai ≥ 1}. Let S1 and S2 be two random variables that come from a partition of the N

variables (a∗1, a
∗
2, ..., a

∗
N ) in two groups, e.g., S1 = {a∗1} and S2 = {a∗2, ..., a∗N}. Let J̃1 and J̃2 be

number of points in the supports of S1 and S2, respectively. Let PS1,S2 be the J̃1×J̃2 matrix with the

10Given a finite mixture representation as in equation (8), it is always possible to construct other finite mixture
representation with a larger value of Lκ and where the choice probabilities are linearly dependent. Therefore, we
define the true number of components as the smallest value Lκ that satisfies this representation.
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distribution of (S1, S2) such that the elements of this matrix are PS1,S2 [j, k] = Pr(S1 = j, S2 = k).

The finite mixture structure of the model implies that PS1,S2 =
∑Lκ

κ=1 h(κ) PS1(κ) PS2(κ)′, where

PSj (κ) is the (J+1)×1 vector with the probability distribution of Sj conditional on κ. Proposition 4

in KS-2014 establishes that, generically, if Lκ ≤ min{J̃1, J̃2} then Lκ = rank(PS1,S2). The following

Proposition 2 is an application to our model of Proposition 4 in Kasahara and Shimotsu (2014).

PROPOSITION 2. (A) The rank of matrix PS1,S2 is a lower bound of the true number of mixture

components Lκ. (B) If the rank of PS1,S2 is strictly lower than min[J̃1, J̃2], then the bound is tight

and the number of components is exactly identified as Lκ = rank(PS1,S2). �

Proof: From Proposition 2 (for N = 2) and Proposition 4 (for N ≥ 3) in Kasahara and Shimotsu

(2014).

From Proposition 2, lower bounds on the number of mixture components are easily identifiable.

Clearly, different definitions of variables S1 and S2 are possible and different lower bounds may be

obtained depending on the researcher’s choice.11

EXAMPLE 3: (i) Two-player game. As shown in Hall and Zhou (2003), the parameters of this

model are not uniquely identified if Lκ ≥ 2. However, using Proposition 2 we can identify the

number of components Lκ, or at least a lower bound. With only two players we can set S1 = a1

and S2 = a2 without any data reduction, and matrix PS1,S2 has dimension (J+1)×(J+1). If PS1,S2
is full rank, then we can say that Lκ ≥ J + 1. Otherwise, we have that Lκ is exactly identified as

the rank of PS1,S2 . For instance, in a two-player binary choice game we have that |PS1,S2 | = Q(0, 0)

Q(1, 1)− Q(1, 0) Q(0, 1). If this determinant is zero, then the rank of PS1,S2 and the value of Lκ

are equal to 1. In this particular example the identification of the bound on Lκ is equivalent to the

test of no common knowledge unobserved heterogeneity that we describe in section 3.3.4 below.

(ii) Three-player binary choice game. By Proposition 1, this model is step 1 identified if the

DGP has two mixture components, but no more. Define S1 = {a1, a2} and S2 = {a3} such that

J̃1 = 4 and J̃2 = 2. If the rank of PS1,S2 is 2, then we can tell that the number of components is at

least 2. If the rank of PS1,S2 in the data is 1 then the number of components is exactly 1 such that

the model does not have unobserved heterogeneity.

11Section 3 in Kasahara and Shimotsu (2014) describes a fairly simple sequential algorithm for estimation of the
bound based on the rank tests of Kleibergen and Paap (2006). The estimator allows the researcher to aggregate
information from different choices of S1 and S2. Intuitively, S variables with larger supports may give more accurate
lower bounds but their distributions will be estimated with less precision in any given sample than those of S variables
which use data reduction.
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(iii) Five-player binary choice game. This game is identified in step 1 with up to Lκ = 4 mixture

components, e.g., there might be a binary payoff-relevant unobservable and two different equilibria

being played at each of the two values of the payoff-relevant unobservable. In this case we can set

S1 = (a1, a2, a3), S2 = (a4, a5) and PS1,S2 would be 8× 4. With 4 mixture components in the DGP,

the rank of this matrix would be 4 and the researcher would obtain this as a lower bound on the

unknown true number of components.

(iv) Five player game with three choice alternatives. The maximum number of components that

can be identified is 9. If we set a∗i = 1(ai ≥ 1) for i = 1, 2, 3, S1 = (a∗1, a
∗
2, a
∗
2) and S2 = (a3, a4),

then PS1,S2 is 8× 9. If the DGP had 6 components the rank of PS1,S2 would be 6 which is smaller

than min[8, 9] so the bound is tight and the researcher would know this to be the exact number of

components. �

4.2.2 Step 2: Identification of payoff function and matching types problem

Suppose that the conditions of Propositions 1 and 2 hold such that the distribution h and the

CCPs {Pi(ai|x, κ)} are identified, and the number of mixture components for the unobserved het-

erogeneity, Lκ(x), is known to the researcher.12 Given these CCPs, we can invert the best response

probability function to obtain expected payoffs πPi (ai,x, κ). Then, the identification of the payoff

function π is based on the system of equations:

πPi (ai,x, κ) =
∑
a−i

P−i(a−i|x, κ) πi(ai,a−i,x, ω) (9)

where P−i(a−i|x, κ) =
∏
j 6=i Pj(aj |x, κ). The researcher has not identified yet which part of the

unobserved heterogeneity is PR and which part is ME. It should be clear that the worst-case scenario

for the identification of the payoff function πi is when all the unobserved heterogeneity is payoff

relevant, i.e., Lκ(x) = Lω(x). Our identification strategy is agnostic but allows for this worst-case

scenario. Therefore, as a working hypothesis, we allow the payoff function to depend freely on the

whole unobserved component κ, i.e., πi(ai,a−i,x, κ). Note that this working assumption does not

introduce any bias in the estimation of the payoff function. Furthermore, once the payoff function

has been recovered we will be able to identify whether for two different values of κ the payoff function

is the same, and therefore these two values of κ represent variation in non-payoff-relevant unobserved

heterogeneity. That procedure will be part of the identification of the probability distributions of

ω and τ in step 3.
12Note that we allow for the number of mixtures Lκ(x) to vary with the vector of exogenous observables x.
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The identification of players’ payoffs is based on a similar identification argument as in the

model without unobserved heterogeneity. We assume that the vector of observable state variables

is x ={xc, zi : i ∈ I} where, for every player i, variable zi enters in the payoff function of this player

but not in the payoffs of other players.

However, a new diffi culty arises in the model with unobserved heterogeneity. As mentioned in

Proposition 1, the identification of the distribution h and of CCPs is up to label swapping, and

"pointwise" or separately for each subpopulation defined by a value of the observable x. In order

to implement the identification argument in Step 2, the researcher needs to be able to "match"

mixture components which correspond to the same value of ω across different subpopulations of

observables defined by the instruments. Suppose that, for every x, every mixture component is

assigned a label κ from the same set K, e.g. a subset of natural numbers indexed by κ. A label

assignment is any mapping from the set of all mixture components identified in step 1 to the set of

labels K. Suppose the researcher matches mixture components with the same label across different

values of x. If the researcher uses a label assignment which incorrectly gives the same label κ to

mixture components corresponding to different values of ω, then the system of equations which

exploits exclusion restrictions is not satisfied at the true payoffs, and the estimation of payoffs in

step 2 will be inconsistent. Example 4 below illustrates this problem.

First we define formally a label assignment. Given identification in step 1, an unobserved type

can be described in terms of the vector {x, hκ(x), P(x,κ)}, e.g., the unobserved type that has

probability hκ(x) = 0.2 and CCPs P(x,κ) = (0.3, 0.4, 0.1) when x = (5, 2, 1). Let K1 be the set

with all the values of {x, hκ(x), P(x,κ)} that have been identified in step 1. A label assignment is

a function from the set K1 into the set of labels for unobserved types.

DEFINITION 5: (A) A label assignment consists of a set of labels K2 = {1, 2, ..., L∗κ}, one label

for each unobserved type, and a function `(x, hκ(x),P(x,κ)}) from the set K1 into the set of labels

K2 with the property that two different values in K1 with the same value of x should have different

labels. This label assignment function determines whether unobserved types for different values of

x are "matched" to the same label or not. (B) A true label assignment is one that assigns the same

label to unobserved types with the same (ω, τ) in the DGP. (C) A label assignment is payoff-correct

if it matches payoff-relevant unobservable types ω correctly.

The following example illustrates the problem of matching-unobserved-types.
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EXAMPLE 4: Consider a three-player binary choice game. Suppose that in step 1 the researcher

has identified Lκ = 2 mixtures or points in the support of the unobservable κ, that we represent as

κA and κB. The observable exogenous variables zi are binary: zi ∈ Z = {0, 1} for i = 1, 2, 3. Here

we concentrate in the identification of player 1’s payoff. For any value of (z1, κ), we have a system

of four equations (one for each value of (z2, z3)) to identify the four unknowns π1(1,a−1, z1, κ) for

a−1 ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. For notational simplicity, in this example we omit the arguments

(a1, z1) in the payoff functions. This system of equations is,
πP1 ((z2, z3) = (0, 0), κ)
πP1 ((z2, z3) = (0, 1), κ)
πP1 ((z2, z3) = (1, 0), κ)
πP1 ((z2, z3) = (1, 1), κ)

 =


P−1(0, 0|0, 0, κ) P−1(0, 1|0, 0, κ) P−1(1, 0|0, 0, κ) P−1(1, 1|0, 0, κ)
P−1(0, 0|0, 1, κ) P−1(0, 1|0, 1, κ) P−1(1, 0|0, 1, κ) P−1(1, 1|0, 1, κ)
P−1(0, 0|1, 0, κ) P−1(0, 1|1, 0, κ) P−1(1, 0|1, 0, κ) P−1(1, 1|1, 0, κ)
P−1(0, 0|1, 1, κ) P−1(0, 1|1, 1, κ) P−1(1, 0|1, 1, κ) P−1(1, 1|1, 1, κ)



π1(a−1= (0, 0), κ)
π1(a−1= (0, 1), κ)
π1(a−1= (1, 0), κ)
π1(a−1= (1, 1), κ)


(10)

Given an assignment of unobserved types across the different values of z−1, the researcher constructs

the vector πP1 (κ) and the matrix P−1(κ) and solves in equation (10) for the vector of payoffs as

π1(κ) = [P−1(κ)]−1 πP1 (κ). A key condition for the consistency of this estimator is that the

matching of unobserved types is correct. Table 1 presents a numerical example. Panel I illustrates

the case when the researcher makes a correct matching of unobserved types such that the estimator

of payoffs is consistent. Panel II presents the case when the researcher makes a correct assignment

of unobserved types for (z2, z3) = (0, 0) and (z2, z3) = (0, 1), but for values (z2, z3) = (1, 0) and

(z2, z3) = (1, 1) the researcher swaps the correct types. Therefore, in the estimation of payoffs

the researcher solves the incorrect system of equations. In the system of equations for κA the two

bottom rows come incorrectly from πP1 (κB) and P−1(κB), and the opposite occurs in the system of

equations for κB. We see that the estimated payoffs are very seriously biased for the two unobserved

types. The bias is not just in the level or/and the scale of the payoffs but the whole pattern of

strategic interactions is inconsistently estimated. �
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Table 1
Matching unobservable types across different values of the instruments

Panel I: Consistent Matching

Unobserved type κA
Probs P−1(a−1 | z−1, κA) Estimated π1(a−1, κA)

z−1 P2(1|z−1, κA) P3(1|z−1, κA) πP1 (z−1, κA) a−1 [P−1(κA)]−1πP1 (κA) True π1(a−1, κA)

(0,0) 0.70 0.60 1.04 (0,0) 6.0 6.0

(0,1) 0.50 0.75 1.00 (0,1) 2.0 2.0

(1,0) 0.90 0.45 0.96 (1,0) 2.0 2.0

(1,1) 0.80 0.70 0.42 (1,1) -1.0 -1.0

Unobserved type κB
Probs P−1(a−1 | z−1, κB) Estimated π1(a−1, κB)

z−1 P2(1|z−1, κB) P3(1|z−1, κB) πP1 (z−1, κB) a−1 [P−1(κB)]−1πP1 (κB) True π1(a−1, κB)

(0,0) 0.20 0.15 1.03 (0,0) 2.0 2.0

(0,1) 0.10 0.50 -0.15 (0,1) 0.0 0.0

(1,0) 0.60 0.05 0.63 (1,0) -2.0 -2.0

(1,1) 0.50 0.40 -0.40 (1,1) -3.0 -3.0

Panel II: Inconsistent Matching

Unobserved type κA [∗ represents incorrect matching]
Probs P−1(a−1 | z−1, κA) Estimated π1(a−1, κA)

z−1 P2(1|z−1, κA) P3(1|z−1, κA) πP1 (z−1, κA) a−1 [P−1(κA)]−1πP1 (κA) True π1(a−1, κA)

(0,0) 0.70 0.60 1.04 (0,0) -15.1 6.0

(0,1) 0.50 0.75 1.00 (0,1) 11.1 2.0

(1,0) 0.60∗ 0.05∗ 0.63∗ (1,0) 8.1 2.0

(1,1) 0.50∗ 0.40∗ -0.40∗ (1,1) -4.1 -1.0

Unobserved type κB [∗ represents incorrect matching]
Probs P−1(a−1 | z−1, κB) Estimated π1(a−1, κB)

z−1 P2(1|z−1, κB) P3(1|z−1, κB) πP1 (z−1, κB) a−1 [P−1(κB)]−1πP1 (κB) True π1(a−1, κB)

(0,0) 0.20 0.15 1.03 (0,0) 1.4 2.0

(0,1) 0.10 0.50 -0.15 (0,1) 1.6 0.0

(1,0) 0.90∗ 0.45∗ 0.96∗ (1,0) -2.0 -2.0

(1,1) 0.80∗ 0.70∗ 0.42∗ (1,1) 0.4 -3.0

The problem of matching-unobserved-types in the identification of payoffs in step 2 may appear

not only in games but also in single-agent models, static or dynamic, with a single equilibrium.

Example 5 illustrates this problem in the context of a single-agent decision model.

EXAMPLE 5: Consider a single-agent decision model where the payoff function of agent i is

π(ai,xi,ωi) + εi(ai). The researcher has panel data on {ait,xit} from many agents over a short

period of time. The unobservable ωi is time invariant and has a nonparametric finite mixture
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distribution. The unobservables εit are i.i.d. over time and independent of (xit, ωi). In step 1, with

T ≥ 3, the CCP function P (ai|x, ω) is nonparametrically identified, up to label swapping. Applying

Hotz-Miller inversion, we can identify nonparametrically, up to label swapping, the payoff function

π(a,x,ω). The identification of π(a,x,ω) up to label swapping is not a problem if the researcher

is interested in the variation of payoffs with respect to the choice variable a keeping both x and ω

constant, or if she is interested in the average payoffgiven (a,x) and integrated over the distribution

of ω. However, label swapping creates an identification problem if the researcher is interested in the

identification of the ceteris paribus effect of a change in x keeping ω constant (or viceversa). The

researcher does not know how to keep the unobserved type constant when the observable variables

x vary.

Label swapping creates also an identification problem if the researcher wants to impose semi-

parametric restrictions on the payoff function. Suppose that the vector of explanatory variables

has two components, x = (z,w), and the payoff function has the following semiparametric struc-

ture, π(a,x,ω) = f(a, z)′θ + g(a,w,ω) where f(a, z) is a vector of known functions, θ is a vector

of unknown parameters, and g(a,w,ω) is a nonparametric function. To identify θ we need to fix

the value of g(a,w,ω) and construct a system of equations for different values of z. This identifi-

cation is subject to the matching-types problem because the researcher should be able to keep the

unobserved type ω constant for different values of the observable z. �

Therefore, without further assumptions, step-2 identification requires a label assignment that

matches payoff-relevant unobservable types ω correctly across different values of the observable

variables x. We call this a payoff-correct assignment, or a correct assignment in short. The true

label assignment assigns the same label to mixture components with the same (ω, τ) in the DGP.

The true label assignment is (of course) payoff-correct. An assignment which is not the true one is

still payoff-correct if it matches correctly the mixture components corresponding to the same value

of the payoff-relevant unobservable ω, but not the mixture components corresponding to different

equilibrium types. Note that if multiple equilibria is the only source of unobserved heterogeneity,

then all assignments are payoff-correct. On the contrary, if all unobserved heterogeneity is payoff-

relevant only the true assignment is correct. Because the problem of matching-unobserved-types,

identification in step 2 requires an extended rank condition. Consider the vector form representation

of the system of equations (9):

ΠP
i (ai,x

c, zi, κ) = P−i(x
c, zi, κ) Πi(ai,x

c, zi, κ) (11)
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where the vectors ΠP
i and Πi and the matrices P−i have the same dimension and interpretation as

in equation (7) but now they are conditional on the unobservable κ. For any correct assignment, this

system of equations holds at the true vector of payoffs Πi. In general, for any incorrect assignment,

the system does not hold at the true vector of payoffs. This is regardless the matrix P−i is full

rank or not. We say that a label assignment is consistent if it is payoff-correct and the matrix P−i

is full column rank for any player i. By definition, for a consistent label assignment the system

has a unique solution and this solution provides the true payoffs. Clearly, the set of consistent

assignments is included in the set of correct assignments. The set of correct assignments is non-

empty because it always includes the true assignment. Instead, the set of consistent assignments

can be empty if for every correct assignment the matrix P−i is not full column rank.

Two sets of necessary and suffi cient conditions should be satisfied in order to achieve step 2

identification. First, the set of consistent assignments should be non-empty. This is a necessary

condition for identification but it is not suffi cient. Suppose that there is an incorrect assignment

for which the system of equations has a solution. This solution is different to the true payoffs

but the researcher cannot distinguish between the solution from a consistent assignment and the

solution from an incorrect assignment. To avoid this under-identification, we need to impose the

condition that the system does not have a solution for any of the incorrect assignments. Proposition

3 establishes formally these necessary and suffi cient conditions for identification in step 2.

PROPOSITION 3: Under exclusion restrictions, the model is identified in step 2 if and only if:

(a) the set of consistent label assignments is non-empty, i.e., there exists one payoff-correct label

assignment for which matrix P−i(xc, zi, κ) has full column rank for every player i; and (b) for every

payoff-incorrect label assignment, there is at least one player i for which the rank of the augmented

matrix [ΠP
i (ai,x

c, zi, κ) | P−i(xc, zi, κ)] is larger than the rank of matrix P−i(xc, zi, κ), i.e., the

system of equations does not have a solution. �

Proof: By contradiction and the application of Rouché-Capelli theorem. As explained above,

conditions (a) and (b) are suffi cient to obtain step 2 identification. If (a) does not hold, it is

clear that we cannot recover the true vector of payoffs. If (b) does not hold, there is an incorrect

assignment and a vector of payoffs different to the true payoffs that solve the system of equations.

The researcher has two different solutions and cannot distinguish which one is the true. �

Condition (a) is like the standard rank condition of the model with no heterogeneity. Condition
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(b) rules out that incorrect label assignments and payoffs can explain the data. Unlike the rank

condition for the model with no heterogeneity, the extended rank conditions of Proposition 3 are

not testable. Because the number of label assignments is finite, the researcher can sweep through

all of them, check the associated system of step 2 restrictions, and more specifically, construct the

set S∗ of assignments for which the system has a unique solution, i.e., for every player i, P−i is

full column rank. However, conditions (a) and (b) are not jointly testable because the researcher

does not know ex-ante whether a particular label assignment is correct or incorrect. For instance,

suppose that the researcher sweeps all the possible label assignments and finds that there is only one

assignment in set S∗. Without further restrictions, the researcher does not know if this assignment

is payoff-correct, such that conditions (a) and (b) hold and the model is step 2 identified, or if the

assignment is incorrect, such that neither condition (a) nor condition (b) hold and there is not step

2 identification.

However, based on sweeping through all the possible assignments and the construction of set

S∗, it is possible to obtain a testable necessary condition for step 2 identification. Proposition 4

establishes this identification result.

PROPOSITION 4: Suppose that exclusion restrictions hold. Define S ∗ as the set of label assign-

ments for which the system (11) has a unique solution, i.e., for every player i , P−i is full column

rank. A necessary condition for step 2 identification is that S ∗ is non-empty and all the assignments

within this set imply the same solution. This identification condition is testable. �

Proof: From Proposition 3, there is step 2 identification if and only if conditions (a) and (b) hold.

It is clear that if conditions (a) and (b) hold, then set S∗ is not empty and all the assignments

within this set imply the same solution. �

The identification conditions in Propositions 3 and 4 are not on the primitives of the model.

In some applications, the researcher may be interested in imposing restrictions on the primitives

of the model that imply step 2 identification. Here we present two different suffi cient conditions

on the primitives that provide identification of payoffs in step 2: (i) ranking independence be-

tween unobservables and observables; and (ii) additive separability and mean independence of the

unobservables.

(i) Ranking independence. Suppose that the distribution of κ may vary with x but this dependence

does not affect the ranking of unobserved types according to the values of the probabilities h(κ|x).

25



That is, for any value of x we have that h(κ(1)|x) > h(κ(2)|x) > ... > h(κ(Lκ)|x). Under this

condition, we can use the ranking of probabilities to match correctly unobserved types. For any

value x, type κ(1) corresponds to the highest probability, type κ(2) to the second largest probability,

and so on. This restriction is weaker than independence, it still restricts the number of unobserved

types Lκ to be constant across different values of x. This particular restriction is testable after the

identification of h(κ|x) in step 1.

(ii) Additive separability. Suppose that the payoff function πi(ai,a−i,x, ω) is additively separable

between the unobservable ω and the opponents’actions a−i:

πi(ai,a−i,x, ω) = βi(ai,a−i,x) + ηi(ai,x, ω) (12)

Furthermore, for any value of (ai,x) the random variable ηi(ai,x, ω) is mean independent of x and,

without loss of generality, this mean is zero, i.e., Eω|x(ηi(ai,x, ω)) = 0. We also assume that the

component βi(ai,a−i,x) of the payoff function satisfies the standard exclusion restriction such that

(with some abuse of notation) βi(ai,a−i,x) = βi(ai,a−i, zi,x
c). Under these conditions, equation

(9) has the following form:

πPi (ai,x, κ) = ηi(ai,x, ω) +
∑
a−i

P−i(a−i|x, κ) βi(ai,a−i, zi,x
c) (13)

From the identification in step 1 the researcher knows the probability distribution h(κ|x) up to label

swapping. Using this information we can construct a version of equation (13) integrated over the

distribution of h(κ|x). Note that this integration is not subject to any problem of matching-types,

i.e., for any fixed x, the distribution h(κ|x) is known. This integrated equation is:

πPi (ai,x) =
∑
a−i

P−i(a−i|x) βi(ai,a−i, zi,x
c) (14)

where πPi (ai,x) ≡
∑

κ h(κ|x) πPi (ai,x, κ), P−i(a−i|x) ≡
∑

ω h(κ|x) P−i(a−i|x, ω), and we have

used the condition Eκ|x(ηi(ai,x, ω)) = Eω|x(ηi(ai,x, ω)) = 0. Note that functions πPi (ai,x) and

P−i(a−i|x) are identified from step 1 and, very importantly, they are not subject to the matching-

types problem. Given equation (14), the payofffunction βi(.) is identified under similar conditions as

the model without unobserved heterogeneity. We can construct a matrix P−i(zi,xc) with elements

P−i(a−i|z−i, zi,xc) where each row corresponds to a different value of z−i and each column to a

different value of a−i. Function βi is identified if matrix P−i(zi,xc) is full column rank for any

value of (zi,x
c).
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The restriction of additive separability can be relaxed if the interaction between ω and a−i in

the payoff function has a parametric form. For instance, suppose that the payoff function has

the following form, πi(ai,a−i,x, ω) = βi(ai,a−i,x) g(ω) + ηi(ai,x, ω), where g(.) is a parametric

function that is perfectly known to the researcher, e.g., g(ω) = exp{ω}. It is straightforward to

extend the previous identification argument to this semiparametric model.13

4.2.3 Step 3: Identification of distributions for the two types of heterogeneity

Suppose that the conditions in Propositions 1 and 3 hold such that the researcher has identified

the distribution h(κ|x) and the payoff functions πi. Now, we want to identify the probability

distributions fω(ω|x) and λ(τ |x, ω). There are two sets of restrictions that we can exploit to

identify these distributions: (1) the payoff πi depends on ω but not on τ ; and (2) by definition,

h(κ|x) = 1{κ = g(ω, τ)} fω(ω|x) λ(τ |x, ω).

Let Πi(x) be the matrix with dimension J(J + 1)N−1 × Lκ(x) that contains all the payoffs

{πi(ai,a−i,x, κ)} for a given value of x. More specifically, each column corresponds to a value of

κ and it contains the payoffs πi(ai,a−i,x, κ) for every value of (ai,a−i) with ai > 0. If two values

of κ represent the same value of ω, then the corresponding columns in the matrix Πi(x) should be

equal. Therefore, the number of distinct columns in the payoff matrix Πi(x) should be equal to

Lω(x). That is, we can identify the number of mixtures Lω(x) as:

Lω(x) = Number of distinct columns in Πi(x) (15)

The information in matrix Πi(x) not only identifies the number of points in the support of the

PR unobservables ω, but it also identifies the inverse of the mapping κ = g(ω, τ) such that we

know the value of (ω, τ) that corresponds to each value of κ. We use ω(κ) and τ(κ) to represent

this inverse mapping. Without loss of generality we can make τ(κ) = κ for every κ.14 We sweep

through the different columns of Πi(x) (i.e., the different of κ): (a) if two columns, say κ and κ′,

are equal, then we assign them the same value ω, i.e., ω(κ) = ω(κ′); (b) if the columns are different,

then ω(κ) 6= ω(κ′).

13With a nonparametric payoff function that does not impose additive separability, the equation integrated over
the distribution of ω is similar to (14) but includes an additional term that depends on the covariance between
P−i(a−i|x, κ) and βi(ai,a−i,x, κ) conditional on (ai,a−i,x). This covariance term is not zero and it is unknown to
the researcher. This implies that the average payoff is not identified from this integrated equation.
14Note that at this stage, without solving the equilibrium (and applying an homotopy method) we cannot establish

whether two vectors of CCPs for two different values of ω correspond to the same equilibrium type or not. Therefore,
for the moment we consider that they are different equilibrium types.
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Given the identification of the mappings ω(κ) and τ(κ), the probability distribution of the

payoff relevant heterogeneity, fω(ω|x), is identified as:

fω(ω|x) =
Lκ(x)∑
κ=1

1 {ω(κ) = ω} h(κ|x) (16)

Taking into account that τ(κ) = κ, the probability distribution of multiple equilibria heterogeneity,

λ(τ |x, ω), is identified as:

λ(τ |x, ω) =
h(τ |x)

Lκ(x)∑
κ=1

1 {ω(κ) = ω(τ)} h(κ|x)

(17)

PROPOSITION 5. Under the conditions of Propositions 1 and 3, the probability distributions of

the unobservables, fω(ω|x) and λ(τ |x, ω), are nonparametrically identified. �

EXAMPLE 6. Suppose that Lκ(x) = 7 such that Πi(x) has seven columns that we label as

κ = 1, 2, ..., 7. Suppose the number of distinct columns of Πi(x) is 4 such that Lω(x) = 4. Columns

1, 2, and 4 are equal to each other, and columns 6 and 7 are also equal to each other. Then, we have

that fω(1|x) = h(1|x) + h(2|x) + h(4|x), with λ(τ |x, ω = 1) = h(τ |x)
h(1|x)+h(2|x)+h(4|x) for τ ∈ {1, 2, 4};

fω(2|x) = h(3|x), with λ(3|x, ω = 2) = 1; fω(3|x) = h(5|x), with λ(5|x, ω = 3) = 1; and fω(4|x) =

h(6|x) + h(7|x), with λ(τ |x, ω = 4) = h(τ |x)
h(6|x)+h(7|x) for τ ∈ {6, 7}. �

4.3 Testable restrictions on unobserved heterogeneity

(i) Testing null hypothesis of no common knowledge unobserved heterogeneity. The model without

PR and ME unobservables imposes the restriction that players’actions are independent conditional

on the observable x: Q(a|x) =
∏N
i=1Qi(ai|x). This assumption can be easily tested using a test of

the null hypothesis of independence. For instance, for a binary choice game with two players the

testable restriction is:

Q(1, 1|x) Q(0, 0|x) = Q(1, 0|x) Q(0, 1|x) (18)

(ii) Testing null hypothesis of no ME unobserved heterogeneity. If there is not ME unobserved

heterogeneity, then the number of points in the support of ω, Lω(x), should be equal to the points

of support of κ for any value of x in the sample. Therefore, taking into account that Lκ(x) =

cols(Πi(x)) and that Lω(x) = distinct_cols(Πi(x)), testing for the null hypothesis of "no ME

unobserved heterogeneity" is equivalent to testing for:

For every value of x, cols(Πi(x)) = distinct_cols(Πi(x)). (19)
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(iii) Testing null hypothesis of no PR unobserved heterogeneity. If there is not PR unobserved

heterogeneity, then for any value of x in the sample the number of points in the support of ω

should be equal to the 1. This implies that testing for the null hypothesis of "no PR unobserved

heterogeneity" is equivalent to testing for:

For every value of x, distinct_cols(Πi(x)) = 1. (20)

Therefore, the tests for these null hypotheses can be described in terms of tests of the rank of

a matrix of statistics. They can be implemented using, for instance, the rank tests proposed by

Kleibergen and Paap (2006).

Our identification results and tests rely importantly on our model specification and assump-

tions, e.g. independence of private information unobservables, a particular information structure

of the game and the equilibrium concept of BNE. In our model, unobservables are either common-

knowledge to all the players or privately known by only one player. Some departures from our

specification of the information structure can invalidate our identification results. For instance, if

private information unobservables are not player-specific but shared by a subgroup of players, our

current step-1 identification, and for that matter the identification of the whole model, would not

be valid.

5 Joint identification

All the previous identification results are based on the sequential approach. The exclusion restric-

tions we exploit in step 2 are quite natural in the estimation of games, and they are necessary for

nonparametric identification even in games without common knowledge unobserved heterogeneity.

However, the conditions for the identification of the nonparametric finite mixture in step 1 are more

stringent and rule out some interesting applications, e.g., two-player games. An important question

is whether these restrictions are really necessary for identification. More precisely, suppose that we

do not follow a sequential approach to identify/estimate the model but we estimate jointly all the

structural functions: is it possible to obtain identification even when the conditions in Proposition

1 are not satisfied? In this section we study this issue. We do this by comparing rank conditions

for sequential and joint identification. We provide some insights into the relationship between se-

quential and joint identification. and we show that when the exclusion restrictions that are needed

to identify the payoff function in step 2 provide over-identifying restrictions, these can help identify
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the mixture components even when Step 1 identification conditions are not satisfied.

It is important to underline that, while in section 4 we present conditions for global (sequential)

identification, our analysis below deals with local identification, both sequential and joint. We are

particularly interested in showing that there is a class of models where local step-1 identification

fails, yet local joint identification holds. We characterize this class in terms of rank conditions. In

section 5.4, we use an example to illustrate that this class is not empty. Because local identification

is necessary for global identification, for all the models within this class the suffi cient conditions for

step 1 identification of Proposition 1 fail.15

As we have shown above, once the mixing distributions h and the payoff vectors π have been

identified, disentangling PR and ME heterogeneity in step 3 does not require any additional as-

sumptions. Therefore, our discussion of sequential versus joint identification concentrates on steps

1 and 2.

Define the vectors of parameters: h, with the mixing probabilities h(κ|x) for every value of (κ,x);

P, with the choice probabilities Pi(ai | x, κ) for every player and value of (ai,x, κ); and π, with

the payoffs πi(ai,a−i,x, κ) for every player and value of (ai,a−i,x, κ). Let (h0,P0,π0) be the true

value of (h,P,π) in the population. We are interested in the point identification of (h0,P0,π0).16

To compare the rank conditions for identification under the sequential and joint approaches, it is

convenient to describe the identification problem as a constrained maximum likelihood problem in

the population. The model implies that Pr(a| x,h,P) =
∑Lκ(x)

κ=1 h(κ|x)
∏N
i=1 Pi(ai | x, κ). The

(population) log-likelihood function for the actions a conditional on x and parameters (h,P) is:

` (h,P) =
∑
x∈X

∑
a∈AN

Q(a|x) ln

Lκ(x)∑
κ=1

h(κ|x)

(
N∏
i=1

Pi(ai | x, κ)

) (21)

We use ∇`0 and ∇2`0 to represent the gradient vector and the Hessian matrix, respectively, of the

likelihood function evaluated at the true value (h0,P0).

5.1 Rank condition for sequential identification

5.1.1 Rank condition for step 1 identification

By the information inequality, the true value (h0,P0)maximizes the likelihood ` (h,P). We say that

(h0,P0) is point identified in step 1 (up to label swapping) if it uniquely maximizes this likelihood.
15 It is also important to keep in mind that: (i) the conditions in Proposition 1 for global step-1 identification are

suffi cient; (ii) the conditions in Proposition 3 for global step-2 identification are necessary and suffi cient; and (iii) the
conditions that we present below for local identification (either step-1, or step-2, or joint) are necessary and suffi cient.
16We assume that Lκ(x) is known for all x, e.g. by use of Proposition 2.
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It is clear that ` (h,P) is twice continuously differentiable with respect to (h,P). Suppose that

(h0,P0) is an interior point in the probability space such that every probability in these vectors

is strictly greater than zero. Then, (h0,P0) should satisfy the first order conditions of optimality

∇`0 = 0. The rank condition for local identification in step 1 is that the Hessian matrix ∇2`0 (or

equivalently, the information matrix) is non-singular.

In general, the non-singularity of the information matrix is a necessary and suffi cient condition

for local identification in a likelihood model where the vector of parameters has finite dimension

(Rothenberg, 1971). Therefore, the non-singularity of the Hessian of the likelihood function is a

necessary and suffi cient condition for local identification in step-1. A necessary condition for local

identification is also necessary for global identification. Thus, the suffi cient conditions for global

step-1 identification in Proposition 1 imply that the Hessian is non-singular.

5.1.2 Rank condition for step 2 identification

Given a label assignment, define the system of restrictions in step 2 as c (π,P) = 0, where c (π,P) =

{ci(ai,x, κ;π,P) : i ∈ I, ai ∈ A− {0}, κ = 1, 2, ..., Lκ(x), x ∈ X} and:

ci(ai,x, κ;π,P) ≡
∑
a−i

(∏
j 6=i

Pj(aj |x, κ)

)
πi(ai,a−i,x, κ)− πPi (ai,x, κ) (22)

The number of restrictions in c (π,P) is equal to the number of free probabilities in P. We use

∇c0 to represent the Jacobian matrix of c (π,P) evaluated at the true
(
π0,P0

)
. We use ∇π′c0

and ∇P′c0 to represent the columns of this Jacobian associated to π and P, respectively, such

that ∇c0 ≡ [∇π′c0, ∇P′c0]. Note that the vector of functions c (π,P) is linear in π. We can

represent c (π,P) as A (P) π − b (P) where b (P) is a vector with elements {πPi (ai,x, κ)}, and

A (P) is a matrix with elements
∏
j 6=i Pj(aj |x, κ) and zeroes. Therefore, the Jacobian matrix ∇π′c0

is A0 ≡ A
(
P0
)
.

As defined in section 4, π0 is globally identified in step 2 if: (a) there exists at least one label

assignment for which π0 is the unique value of π that solves the system c
(
π,P0

)
= 0; and (b)

there is no other label assignment delivering a different unique solution for π. The rank condition

for local identification in step 2 is that the Jacobian matrix ∇π′c0 (or A0) is full column rank given

a correct label assignment. This condition is equivalent to condition (a) in Proposition 3.

In summary, the rank condition for the sequential identification of (h0,P0,π0) using steps 1
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and 2 can be described in terms of the full-column rank of the matrix:

Jseq ≡

 ∇2
hh′`

0 ∇2
hP′`

0 0
∇2
Ph′`

0 ∇2
PP′`

0 0
0 0 A0

 (23)

where we use ∇2
hh′`

0, ∇2
hP′`

0, ∇2
Ph′`

0, and ∇2
PP′`

0 to represent the submatrices that form the

Hessian matrix.

5.2 Rank condition for joint identification

The true value (h0,P0,π0)maximizes the likelihood ` (h,P) subject to the constraints c (π,P) = 0.

The Lagrange function of this constrained maximum likelihood problem is L(θ) = ` (h,P) + λ′

c (π,P) where λ is a vector of Lagrange multipliers, and θ ≡ (h,P,π,λ). We say that the

true value θ0 ≡ (h0,P0,π0,λ0) is point-identified if it is the unique solution of this constrained

maximum likelihood problem. This Lagrange function L(θ) is twice continuously differentiable

in θ. Suppose that θ0 is an interior point in the parameter space. Then, θ0 should satisfy the

Lagrange first order conditions of optimality.

∇h`0 = 0
∇P`0+[∇Pc0]′ λ0 = 0

A0′ λ0 = 0
A0 π0 − b0 = 0

(24)

where the last two sets conditions take into account the particular structure of the constraints

c (π,P) = 0.

In this constrained optimization problem, the true value of the vector of Lagrange multipliers,

λ0, is zero. Remember that the Lagrange multipliers are the shadow prices of the constraints. By

the information inequality, the true (h0,P0) maximizes the likelihood ` (h,P) (and satisfies the

constraints) and there is not any value (h,P) that does not satisfy the constraints and implies a

larger value for the likelihood. Therefore, the value of the shadow prices of the constraints, λ0

at any solution to the constrained problem should be zero. This implies that (h0,P0,π0) should

satisfy the following conditions:
∇h`0 = 0
∇P`0 = 0

A0 π0 − b0 = 0
(25)

The rank condition for local joint identification is that the Jacobian matrix of this system of equa-

tions with respect to (h,P,π) (and evaluated at (h0,P0,π0)) is full-column rank. This Jacobian
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matrix has the following form:

Jjoint =

 ∇2
hh′`

0 ∇2
hP′`

0 0
∇2
Ph′`

0 ∇2
PP′`

0 0
0 ∇P′c0 A0

 (26)

5.3 Relationship between sequential and joint identification

We can determine the relationship between sequential and joint identification by comparing the

conditions for full-column rank of matrices Jseq and Jjoint. Note that the only difference between

these two matrices is in the submatrix ∇P′c0 that appears in Jjoint but not in Jseq. That is,

joint identification rank conditions incorporate additional constraints on choice probabilities and

parameters which are implied by equilibrium behavior and the structure of the model and may

resolve step-1 under-identification.

Proposition 6 below presents necessary and suffi cient conditions to have local joint identification

without local step-1 identification. Before we present this Proposition, it is worthwhile to present

several results on the relationship between joint and sequential identification that are straightfor-

ward implications of the full-column rank conditions of Jseq and Jjoint.17

(A) The condition of full-column rank of the matrices A0 and
[
∇2
hh′`

0

∇2
Ph′`

0

]
is necessary both for

sequential and for joint identification. This follows from the structure of the columns in matrices

Jseq and Jjoint. The condition of full column rank of matrix
[
∇2
hh′`

0

∇2
Ph′`

0

]
means that the mixture

distribution h0 is locally identified if we know the vector of choice probabilities P0. Similarly, full

column rank of matrix A0 is equivalent to say that the vector of payoffs π0 is identified if we know

the vector of choice probabilities P0.

(B) Sequential identification implies joint identification. Sequential identification requires: (i) the

Hessian matrix ∇2`0 is full-column rank; and (ii) A0 is full-column-rank. Condition (i) implies that

the matrix that results from vertically stacking the Hessian and [0 , ∇P′c0] is also full-column rank,

regardless the value of ∇P′c0. This condition, together with (ii), implies the rank condition for

joint identification.

(C) Joint identification implies step 2 identification. Joint identification requires A0 to be full-

column-rank, and this implies step-2 identification.

17We are comparing rank conditions at a correct label assignment only. Note that the only effect of label reassign-
ments on the rank of matrices Jseq and Jjoint is through the blocks of matrix A0. Extended rank conditions which
remove incorrect label assignments, such as the ones in condition (b) of Proposition 3, are necessary and suffi cient
for both joint and sequential global identification.
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(D) LEMMA 2. The Jacobian matrix ∇P′c0 is non-singular if the equilibria in the DGP are

regular.18 �

Proof: By an appropriate rearrangement of the rows in the system of equations c (π,P) = 0, we

can represent it as a set of sub-systems one for each value of (x, κ). Let c
(
x, κ,π(x,κ),P(x,κ)

)
= 0

be the sub-system for a value of (x, κ), where π(x,κ) and P(x,κ) represent the vectors of pay-

offs and choice probabilities associated to (x, κ). Since the vector of choice probabilities P(x,κ)

enters only in the sub-system of equations for the corresponding value (x, κ), we have that the

Jacobian matrix ∇P′c0 is a block diagonal matrix that contains the Jacobians ∇P′c0
(x,κ) for each

value of (x, κ). Therefore, ∇P′c0 is non-singular if and only if the Jacobians ∇P′c0
(x,κ) are non-

singular for each value of (x, κ). We can represent the equilibrium equations of the model as

P(x,κ)−Ψ(x, κ,P(x,κ)) = 0. The definition of regular equilibrium is that the Jacobian matrix

∂[P(x,κ)−Ψ(x, κ,P(x,κ))]/∂P′(x,κ) is non-singular. By definition, the system c
(
x, κ,π(x,κ),P(x,κ)

)
is equal to Λ−1[P(x,κ)] − Λ−1[Ψ(x, κ,P(x,κ))], where Λ[.] is the function mapping choice-specific

utilities into choice probabilities. This well-known mapping is invertible so the Jacobian matrix

Λ−1
P is non-singular. Therefore, we have that ∇P′c0

(x,κ) = Λ−1
P ∂[P(x,κ)−Ψ(x, κ,P(x,κ))]/∂P′(x,κ),

so ∇P′c0
(x,κ) is non-singular because the product of non-singular matrices is non-singular. �

PROPOSITION 6. We have local joint identification without local sequential identification if and

only if the following conditions hold: (i) The Hessian matrix ∇2`0 is singular, but its submatrix[
∇2
hh′`

0

∇2
Ph′`

0

]
is full-column rank; (ii) matrix A0 is full-column rank; and (iii) the column space (or

span) of matrix A0 does not include any of the vectors ∇P′c0 βP , where βP is the P-component

of any vector (β′h,β
′
P ) from the nullspace of ∇2`0. �

Proof: Suppose that conditions (i) and (ii) hold. We need to show that it is possible to have

a matrix Jjoint that is full-column rank so there is joint identification. First, since ∇2`0 is not

full-column rank, there should be vectors βh and βP with (β′h,β
′
P ) 6= 0 such that:[

∇2
hh′`

0

∇2
Ph′`

0

]
βh +

[
∇2
hP′`

0

∇2
PP′`

0

]
βP = 0 (27)

Recall that the nullspace of the Hessian matrix, Null(∇2`0), is defined as the set of vectors

(β′h,β
′
P ) 6= 0 that satisfy equation (27). Note that any vector in this nullspace cannot have

βh 6= 0 and βP = 0 because this contradicts the condition that
[
∇2
hh′`

0

∇2
Ph′`

0

]
is full-column rank.

18Note that Assumption 3(C) establishes that all the equilibria in the DGP are regular.
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Therefore, all vectors in this nullspace should have βP 6= 0. Since βP 6= 0 and ∇P′c0 is non-

singular at a regular equilibrium, it should be true that ∇P′c0 βP 6= 0, otherwise we would find

the contradiction that βP = 0. Given these conditions,we have that matrix Jjoint is full-column

rank if and only if, for any value of βP in Null(∇2`0), the vector ∇P′c0 βP does not belong to the

column space (span) of matrix A0. �

Conditions (i) and (ii) in Proposition 6 are quite intuitive identification conditions. Condition

(iii) has a clear interpretation in term a matrix algebra but it is not intuitive from the point of

view of identification. The following corollaries of Proposition 6 are intuitive conditions which are

necessary for condition (iii) in Proposition 6.

COROLLARY 1. A necessary condition for condition (iii) is that the number of restrictions

c (π,P) = 0 is strictly greater than the number of parameters in π. Otherwise, A0 is a square

matrix, and given that it is non-singular (condition (ii)) its column space includes any vector ∇P′c0

βP . Therefore, if the number of restrictions is equal to the number of payoff parameters, then Jjoint

is full-column rank if and only if Jseq is full-column rank.

COROLLARY 2. A necessary condition for condition (iii) is that the number of free probabilities

in the distribution Q(a|x) is greater or equal than the number of structural parameters (h,π).

COROLLARY 3. A necessary condition for (iii) is that the square Jacobian matrix ∇P′c0 is non-

singular. As established in Lemma 2, this condition is satisfied if the equilibria in the DGP are

regular.

Ideally, we would like that the identification conditions in Proposition 6 were conditions on the

primitives of the model. With that type of suffi cient conditions, we would be sure that there is a

subclass of DGPs where we have local joint identification without local sequential identification. In

the absence of suffi cient conditions on the primitives of the model, it is reasonable to wonder whether

there are DGPs within our class of models that satisfy the necessary and suffi cient conditions in

Proposition 6. Unfortunately, deriving this type of suffi cient conditions on the primitives of the

model is a very complicated task. Instead, in the following section we study a general class of games

where sequential identification never applies. We particularize the conditions of Proposition 6 to

this example, and provide more intuitive identification conditions for this case. We also present

a numerical example showing that there is a continuum of parameter values (of DGPs) for which

there is not sequential identification but there is local joint identification.
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5.4 Example: 2 x 2 x 2 games

Consider a game with two players, binary choice, and two points in the support of the unobserved

market heterogeneity κ. Let {A,B} be the two values of the unobserved type. We use hA(x)

to represent h(A|x), and PiA(x) and PiB(x) to represent the CCPs Pi(ai = 1|x, κ = A) and

Pi(ai = 1|x, κ = B), respectively. The vector x has two variables, z1 ∈ Z and z2 ∈ Z, with

Z ≡ {z(1), z(2), ..., z(|Z|)}. We use πiA(aj , zi) and πiB(aj , zi) to represent the payoff of player i

when ai = 1 and for κ = A and κ = B, respectively.

5.4.1 Proposition 6 in 2 x 2 x 2 games

First, we particularize to this model conditions (i) to (iii) in Proposition 6.

Condition (i). "The Hessian matrix ∇2`0 is always singular". Hall and Zhou (2003) have proved

this result for a general nonparametric finite mixture model with two independent discrete random

variables (e.g., two players) and two points of support for the unobserved heterogeneity. We briefly

illustrate this result for our 2 x 2 x 2 game. Let `x (x;hA(x),P(x)) be the log-likelihood conditional

on a value of x, where P(x) is the vector of CCPs (P1A(x), P1B(x), P2A(x), P2B(x))′. This log-

likelihood function is:

`x (x;hA(x),P(x)) =
∑

(a1,a2)∈{0,1}2
Q(a1, a2|x) ln

[
hA(x) d(a1, P1A(x)) d(a2, P2A(x))

+(1− hA(x)) d(a1, P1B(x)) d(a2, P2B(x))

]
(28)

with d(a, P ) ≡ P a (1−P )1−a. The full log-likelihood function is ` (h,P) =
∑
x∈X `

x(x;hA(x),P(x)).

Note that the vector of parameters (hA(x),P(x)) associated to x enters only in the log-likelihood

`x (x;hA(x),P(x)) and not in the log-likelihood for any other value of x. Therefore, the Hessian

matrix of the complete log-likelihood function is a block diagonal matrix of the x−specific Hessians

∇2`x (x), i.e., ∇2` = diag
{
∇2`x (x) : for x ∈X

}
. This implies that the Hessian matrix ∇2`0 is

non-singular if and only if the Hessian matrices ∇2`x,0 (x) are non-singular for every value of x.

The Hessian evaluated at true parameter values is equal to minus the variance-covariance matrix

of the vector of scores. The variance of a random vector is singular if and only if the components

of the vector are linearly dependent with probability one. Linear dependence always follows if the

support of the random vector has fewer points than the number of elements in the vector. In this

model, the score vector has 5 components and its support is (at most) the number of points in the

support of (a1, a2) which is 4. Therefore, the Hessian matrix is always singular in this model.
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Condition (i). "Submatrix ∇2
[h,P]h′

`0 is full-column rank". As described above, the Hessian matrix

has a block diagonal structure. Therefore, submatrix ∇2
[h,P]h′

`0 is equal to diag{∇2
[h,P]h`

x,0 (x) :

for x ∈X}, where ∇2
[h,P]h`

x,0 (x) is the 5 × 1 vector (∇2
hh`

x,0, ∇2
hP1A

`x,0, ∇2
hP1B

`x,0 ∇2
hP2A

`x,0,

∇2
hP2B

`x,0)′. The condition that a vector has full column rank is that at least one of its elements is

not zero. We show in the Appendix that ∇2
[h,P]h`

x,0 is full column rank if and only if PiA 6= PiB for

at least one of the players. Therefore, we need that for every value of x the unobserved heterogeneity

has an effect on the choice probability of at least one player.

Condition (ii). "Matrix A0 is full-column rank". For every player i, unobserved type κ, and state

variables (z1, z2) ∈ Z2, we have a constraint ciκ(z1, z2;π,P) = 0 with:

ciκ(z1, z2;π,P) ≡ [1− Pjκ(z1, z2)] πiκ(0, zi) + Pjκ(z1, z2) πiκ(1, zi)− Λ−1 (Piκ(z1, z2)) (29)

For a value of (i, κ, zi), we can define the |Z| × 1 vector of restrictions ciκ(zi;π,P) for every value

of zj with j 6= i. Note that the vector ciκ(zi;π,P) depends on π only through the 2× 1 vector of

payoffs πiκ(zi) ≡ (πiκ(0, zi), πiκ(1, zi))
′. Furthermore, the payoff vector πiκ(zi) only enters in the

restrictions ciκ(zi;π,P) and not in restrictions for values different to (i, κ, zi). Therefore, the Jaco-

bian matrix A0 ≡ ∇π′c0 has a block-diagonal structure, i.e., A0 = diag
{
A0
iκ(zi) : for any (i, κ, zi)

}
where A0

iκ(zi) ≡ ∇πiκ(zi)′c
0
iκ(zi). This implies that A0 is full column rank if and only if every sub-

matrix A0
iκ(zi) is full column rank. Taking into account the structure of the constraints in equation

(29), we have that:

A0
iκ(zi) =


1− Pjκ(zi, z

(1)
j ), Pjκ(zi, z

(1)
j )

1− Pjκ(zi, z
(2)
j ), Pjκ(zi, z

(2)
j )

...
...

1− Pjκ(zi, z
(|Z|)
j ), Pjκ(zi, z

(|Z|)
j )

 (30)

A necessary and suffi cient condition for A0
iκ(zi) to be full column rank is that there are two values

of zj , say z
(a)
j and z(b)

j , such that Pjκ(zi, z
(a)
j ) 6= Pjκ(zi, z

(b)
j ). Therefore, A0 is full column rank if

this condition holds for every value of (i, κ, zi). That is, for any value of (i, κ, zi) the probability

Pjκ(zi, zj) varies with zj such that the exclusion restriction has power.

Condition (iii). "The column space (or span) of matrix A0 does not include any of the vectors

∇P′c0 βP ". We consider here the three necessary conditions established in the Corollaries 1 to 3.

Corollary 1: "The number of restrictions c (π,P) = 0 is strictly greater than the number of

parameters in π". In this example, the number of restrictions is 4 |Z|2 and the number of payoff
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parameters is 8 |Z|. Therefore, condition (iii) requires the support set Z to have 3 points or more:

|Z| ≥ 3.

Corollary 2: "The number of free probabilities in the distribution Q(a|x) is greater or equal

than the number of structural parameters (h,π)." In this example, the number of free probabilities

in Q is 3|Z|2, and the number of structural parameters in (h,π) is |Z|2 + 8 |Z|. Therefore, this

order condition requires |Z| ≥ 4. Note that this order condition is tighter that the one that comes

from Corollary 1.

Corollary 3: "The square Jacobian matrix ∇Pc0 is non-singular". Let c(z1,z2,κ)(π,P) be the

vector of functions ciκ(z1, z2;π,P) associated to a particular value of (z1, z2, κ), i.e., c(z1,z2,κ)(π,P)

is the 2 × 1 vector (c1κ(z1, z2;π,P), c2κ(z1, z2;π,P))′. Given the expression of ciκ(z1, z2;π,P)

in equation (29), we have that c(z1,z2,κ)(π,P) depends on P only through the two probabilities

P(z1,z2,κ) = (P1κ(z1, z2), P2κ(z1, z2)). Furthermore, these probabilities do not enter in the vector

of constraints c(z′1,z
′
2,κ
′)(π,P) for values (z′1, z

′
2, κ
′) different to (z1, z2, κ). Therefore, the Jacobian

matrix ∇P′c0 has a block diagonal structure: ∇P′c0 = diag{∇P(z1,z2,κ)c
0
(z1,z2,κ) : for any value

(z1, z2, κ)}. The Jacobian matrix ∇P′c0 is non-singular if and only if every (sub) Jacobian matrix

∇P(z1,z2,κ)c
0
(z1,z2,κ) is non-singular. Given equation (29), we have that this Jacobian is the following

2× 2 matrix:

∇P(z1,z2,κ)c
0
(z1,z2,κ) =

[
ϕ(P1κ(z1, z2)), π1κ(1, z1)− π1κ(0, z1)

π2κ(1, z2)− π2κ(0, z2), ϕ(P1κ(z1, z2))

]
(31)

where ϕ(.) is the derivative of the Quantile function (inverse CDF) of the private information vari-

able ε.19 It is clear that this matrix is singular only if ϕ(P1κ(z1, z2)) ϕ(P2κ(z1, z2)) = [π1κ(1, z1)−

π1κ(0, z1)] [π2κ(1, z2)− π2κ(0, z2)]. This condition corresponds to a an equilibrium that is a singu-

larity point, as described in Definition 2. The condition that the equilibrium is regular implies that

this matrix is non-singular.

Unfortunately, even for this relatively simple model, the complete characterization of condition

(iii), in Proposition 6, is not much simpler or intuitive than for the general model. Therefore, we

present here a specific numerical example.

19For instance, if Λ(.) is the logistic function (Logit model), we have that Λ−1(p) = ln(p) − ln(1 − p) and ϕ(p) =
1/p− 1/(1− p).
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5.4.2 Numerical example

The following numerical example shows that there is a continuum of DGPs for the 2 x 2 x 2

game where there is joint identification of the structural parameters but there is not sequential

identification.

Description of DGPs. The distribution of the private information is Logistic. The support Z of the

exogenous variables zi consists of |Z| points uniformly spaced over the interval [0, 1] including the

values 0 and 1. That is, Z = {0, 1
|Z|−1 ,

2
|Z|−1 , ...,

|Z|−2
|Z|−1 , 1}. We implement numerical experiments

for different values of |Z|. The support of the unobserved heterogeneity κ is {A,B} = {0, 1}. In all

our experiments, the unobserved heterogeneity is payoff relevant and there is not multiple equilibria

in the DGP. For the results that we report here, the probability distribution hA(z1, z2) = hA for

any value of (z1, z2), where hA is a constant such that there is independence between κ and (z1, z2).

Of course, this independence is not known by the researcher, who estimates all the parameters

hA(z1, z2) without restrictions. We have also implemented numerical experiments where the values

of the probabilities hA(z1, z2) are generated as random draws from a Uniform (0,1) distribution,

and we have obtained the same identification results as the ones reported here. In the experiments

that we report here, we consider different values for the parameter hA.

The form of the payoff functions is: πiκ(0, zi) = αi0 +αiz zi +αiκ κ and πiκ(1, zi)−πiκ(0, zi) =

βi0 + βiz zi + βiκ κ. Again, this linear form of the payoff function is not known to the researcher,

who estimates unrestricted payoff functions πiκ(aj , zi). For the results that we report here, the

values for the coeffi cients α and β are: α10 = −2; α1z = 5; α1κ = 1; β10 = −2; β1z = 0; β1κ = 0;

α20 = −3; α2z = 4; α2κ = 0.5; β20 = −3; β2z = 0; and β2κ = 0. That is, π1κ(0, z1) = −2 + 5 z1 +κ,

π1κ(1, z1)−π1κ(0, z1) = −2, π2κ(0, z2) = −3+4 z2 +0.5κ, and π2κ(1, z2)−π2κ(0, z2) = −3. We can

interpret this DGP as a model of market entry because the strategic interactions πiκ(1, zi)−πiκ(0, zi)

are negative. As we describe below, we have also considered DGPs where payoff parameters are

randomly chosen, and we have obtained the same identification results.

For every value of (z1, z2, κ), we compute an equilibrium by iterating simultaneously in the best

response probability functions of the two players, and using as the initial value of this algorithm

the vector of probabilities (P1, P2) = (0, 0). We have always converged to an equilibrium using this

procedure. Figure 3 presents the equilibrium probabilities for the two players for the DGP with

|Z| = 4.
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Figure 3: Equilibrium Probabilities

Player 1 Player 2

  

Local identification.20 Table 2 presents local identification results for DGPs with different values of

|Z| and with hA = 0.7. For the Jacobian matrices Jseq, Jjoint, A0, and ∇2
[h,P]h′

`0, we report their

number of columns, their rank, and the minimum absolute eigenvalue of the corresponding square

matrix, e.g., for the Jacobian matrix A0, the minimum absolute eigenvalue of the square matrix

A0′A0. This minimum absolute eigenvalue is strictly greater than zero if and only if the original

matrix is full column rank.21

In table 2, we can see that for any value of |Z| the matrices A0 and ∇2
[h,P]h′`

0 are full column

rank such that conditions (i) and (ii) in Proposition 6 hold. Also, as we expect, for any value of |Z|

the Jacobian matrix Jseq is not full column rank and there is not sequential identification. In fact,

as the dimension of the state space increases, the degree of under-identification also increases, as

measured by the difference between the number of columns and the rank of matrix Jseq. As shown

above, the application of Corollary 2 to this 2 x 2 x 2 model implies that a necessary condition

for joint identification is that |Z| ≥ 4. This result is illustrated in table 2: when |Z| = 3, the

Jacobian matrix Jjoint is not full column rank. However, for any value of |Z| greater or equal than

four, this DGP has a Jacobian matrix Jjoint that is full column rank such that there is local joint

20The code in GAUSS that we have used for the implementation of these numerical experiments can be found at
http://individual.utoronto.ca/vaguirre/wpapers/mequidata_endpaper_example.gss
21The rank and the eivengavalues of these matrices are computed using the GAUSS commands rank and eig,

respectively.
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identification without sequential identification. Furthermore, for |Z| ≥ 4, the minimum absolute

eigenvalue of (Jjoint)
′Jjoint increases with |Z| such that identification becomes "stronger".22

Table 2
Numerical example of local joint identification
Two-players, Binary choice, Two unobserved types

DGP: Parameters hA(z1, z2) are equal to 0.7 for any value of (z1, z2)
Payoffs: πiκ(0, zi) = αi0+ αiz zi+ αiκ κ,
and πiκ(1, zi)− πiκ(0, zi) = βi0+ βiz zi+ β1κ κ,
with α10= −2, α1z= 5, α1κ= 1, β10= −2, β1z= 0, β1κ= 0,

α20= −3, α2z= 4, α2κ= 0.5, β20= −3, β2z= 0, β2κ= 0

|Z| matrix Jseq matrix Jjoint matrix A0 matrix ∇2
[h,P]h′`

0

|Z|=3 columns 69 69 24 9

rank 51 63 24 9

min abs eig. 8.7*10−18 7.4*10−18 0.0111 0.4066

|Z|=4 columns 112 112 32 16

rank 80 112 32 16

min abs eig. 5.6*10−18 2.8*10−5 0.0119 0.4066

|Z|=12 columns 816 816 96 144

rank 528 816 96 144

min abs eig. 6.6*10−18 6.3*10−4 0.0211 0.3876

|Z|=20 columns 2160 2160 160 400

rank 1360 2160 160 400

min abs eig. 1.4*10−18 1.9*10−3 0.0313 0.3877

This numerical example illustrates that there are DGPs where the conditions of Proposition 6

hold. Still, it might be possible that there is only a finite number of DGPs where these conditions

hold such that the conditions of Proposition 6 do not hold generically. To show that this is not

the case, we have implemented two types of numerical experiments. First, we consider a set of 100

DGPs with the same parameter values as those in the DGP in table 2 expect for parameters hA and

22For |Z| ≥ 4, the minimum absolute eigenvalue of matrix (Jjoint)
′Jjoint is small. However, there is a substantial

difference, of several orders of magnitude, between the computed minimum absolute eigenvalues of matrices (Jseq)′Jseq
and (Jjoint)

′Jjoint. Similarly, there is the same order of magnitude in the difference between the minimum absolute
eigenvalues of the matrices (Jjoint)

′Jjoint when |Z| = 3 and when |Z| ≥ 4. Therefore, there is a clear cut between
identification and no-identification in this numerical example.
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α10 that are changed marginally. Remember that in the DGP table 2 we have (hA,α1z) = (0.7,5).

Then, in this experiment we consider 100 DGPs where the values of (hA,α1z) are those in the

grid {0.65, 0.66, 0.67, 0.68, 0.69, 0.71, 0.72, 0.73, 0.74, 0.75} × {4.95, 4.96, 4.97, 4.98, 4.99, 5.01,

5.02, 5.03, 5.04, 5.05}. For all these DGPs we obtain the same identification results as in table

2. The second experiment consists of 100 DGPs where the values of the probabilities hA(z1, z2)

are independent random draws from a Uniform(0, 1) distribution, and the values of the payoffs

πiκ(aj , zi) are independent random draws from a Normal(0, 1) distribution. Again, for all these

100 "random" DGPs we obtain the same identification results as in table 2. We interpret these

results as evidence that there is a continuum of DGPs where the conditions of Proposition 6 hold.

6 Conclusion

In empirical applications of games of incomplete information, we typically find that conditional

on observable exogenous variables players’actions are correlated. One possible interpretation of

this correlation is that common knowledge unobservables are present. Some of these unobservables

may be payoff relevant while others may be ’sunspots’that affect players’beliefs and the selected

equilibrium but do not have a direct effect on players’payoffs. This paper is motivated by the

following question: is it possible to separate empirically the contribution of unobservables that affect

the selection of an equilibrium in the data (i.e., non-payoff relevant unobservables or "sunspots")

from the contribution of unobservables that are payoff-relevant? Is it possible to conclude that we

need multiple equilibria to explain players’observed behavior?

We investigate this question by studying semiparametric identification of games when we allow

for three types of unobserved heterogeneity for the researcher: payoff-relevant variables that are

private information of each player (PI unobservables); payoff-relevant variables that are common

knowledge to all the players (PR unobservables); and variables that are common knowledge to all

the players, are not payoff-relevant but affect the equilibrium selection (multiple equilibria or ME

unobservables). Two types of restrictions are crucial for our identification results: independence

between private players’private information, and a exclusion restriction in the payoff function.

We show that implementation of a sequential identification/estimation approach requires that

the researcher be able to match unobserved types across different values of the explanatory vari-

ables. We show that this problem of matching unobserved types can also appear in the sequential

estimation of single-agent models. We provide necessary and suffi cient conditions for the identifica-
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tion of payoffs in step 2 under this matching-types problem. We also show that some restrictions on

the primitives (e.g., additive separability of the unobservables in the payoff function) are suffi cient

conditions for identification.

Our results show that it is possible to separately identify the relative contributions of payoff-

relevant and multiple equilibria unobserved heterogeneity to observed players’ behavior. As De

Paula and Tang (2012) and others have shown, multiplicity of equilibria can help identify some

elements of the structure such as the sign of strategic interactions. However, without the exclusion

restrictions that are needed to identify payoffs, it does not seem possible for the researcher to

ascertain ex-ante that the correlation between the actions of players is induced by the occurrence

of multiple equilibria in the data.
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APPENDIX: 2 x 2 x 2 Game

This Appendix presents the expressions for the Hessian matrix ∇2`0 and the Jacobian matrices
∇P′c0 andA0 for the 2 x 2 x 2 game. We can represent the log-likelihood function `x (x;hA(x),P(x))

as:
`x (x;hA(x),P(x)) =

∑
(a1,a2)∈{0,1}2

Q(a1, a2|x) ln
[
Qθ(a1, a2 | x;hA(x),P(x))

]
(A.1)

where Qθ(.) represents the distribution of (a1, a2) conditional to x predicted by the model,

Qθ(a1, a2|x;hA(x),P(x)) ≡ hA(x) d(a1, P1A(x)) d(a2, P2A(x))+(1−hA(x)) d(a1, P1B(x)) d(a2, P2B(x))

(A.2)
with d(a, P ) ≡ [P ]a[1− P ]1−a. For notational simplicity, in the expressions below we omit x as an
argument, but we refer all the time to the log-likelihood `x (x;hA(x),P(x)).

In the likelihood `x (hA,P), the vector of scores is:

∂ lnQθ(a1, a2 | hA,P)

∂[hA,P]
=

1

Qθ(a1, a2|hA,P)


d(a1, P1A) d(a2, P2A)− d(a1, P1B) d(a2, P2B)

hA (2a1 − 1) d(a2, P2A)
(1− hA) (2a1 − 1) d(a2, P2B)

hA d(a1, P1A) (2a2 − 1)
(1− hA) d(a1, P1B) (2a2 − 1)


(A.3)

The Hessian, evaluated at true parameter values, is equal to negative expected value of outer
product of the scores, that we can represent as:

−∇2`x,0 =
∑

(a1,a2)∈{0,1}2

1

Q(a1, a2)

∂Qθ(a1, a2 | h0
A,P

0)

∂[hA,P]

∂Qθ(a1, a2 | h0
A,P

0)

∂[hA,P]′ (A.4)

The first column of the Hessian matrix is −
∑

(a1,a2)∈{0,1}2 Q(a1, a2)−1 ∂Qθ/∂[hA,P] ∂Qθ/∂hA.
Applying equation (A.4), we have that:

−∇2`x,0[h,P ]h =
[(1− P1A) (1− P2A)− (1− P1B) (1− P2B)]

Q(0, 0)


(1− P1A) (1− P2A)− (1− P1B) (1− P2B)

−hA (1− P2A)
− (1− hA) (1− P2B)
−hA (1− P1A)

− (1− hA) (1− P1B)



+
[(1− P1A) P2A − (1− P1B) P2B]

Q(0, 1)


(1− P1A) P2A − (1− P1B) P2B

−hA P2A

− (1− hA) P2B

hA (1− P1A)
(1− hA) (1− P1B)



+
[P1A (1− P2A)− P1B (1− P2B)]

Q(1, 0)


P1A (1− P2A)− P1B (1− P2B)

hA (1− P2A)
(1− hA) (1− P2B)

−hA P1A

− (1− hA) P1B



+
[P1A P2A − P1B P2B]

Q(1, 1)


P1A P2A − P1B P2B

hA P2A

(1− hA) P2B

hA P1A

(1− hA) P1B


(A.5)
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The vector ∇2`x,0[h,P ]h has full column rank (i.e., rank 1) if and only if it has at least one element
different to zero. Consider the first element of this vector:

−∇2`x,0hh =
[(1− P1A) (1− P2A)− (1− P1B) (1− P2B)]2

Q(0, 0)

+
[(1− P1A) P2A − (1− P1B) P2B]2

Q(0, 1)

+
[P1A (1− P2A)− P1B (1− P2B)]2

Q(1, 0)

+
[P1A P2A − P1B P2B]2

Q(1, 1)

(A.6)

It is the sum of four components that are greater or equal to zero. Therefore, ∇2`x,0hh is equal to zero
only if its four components are zero. It is straightforward to show that these four restrictions hold
only if P1A = P1B and P2A = P2B. Also, taking into account (A.5), we can see that if P1A = P1B

and P2A = P2B then ∇2`x,0[h,P ]h is a vector of zeroes. Therefore, −∇
2`x,0[h,P ]h is full column rank if

and only if PiA 6= PiB for at least one of the players.
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