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Abstract

In the empirical study of markets, models of entry are often used to study the nature of firms’

profits and the nature of competition between firms. Most of these estimated models have been

parametric. In this paper, we review and extend a number of results on the identification of

models that are used in the empirical literature. We study simple versions of both static and

dynamic entry models. For simple static models, we show how natural shape restrictions can

be used to identify competition effects. We consider extensions to models with heterogeneous

firms, mixed-strategy equilibria and private information and provide insights that can be used

in these settings to conduct inference. In the case of dynamic models, we review existing results

on the model with i.i.d. linear errors, and then consider more realistic cases, such as when the

distribution of fixed costs is unknown.

1 Introduction

In the empirical study of markets, models of entry are often used to study the nature of firms’

profits and the nature of competition between firms. The idea of these models is that firms enter

into a market only when they expect to operate profitably, and therefore entry decisions can be

used as an indicator of a latent profit function.

The study of entry into oligopoly markets is complicated by strategic interactions between firms.

This means that traditional ideas in the econometric literature on discrete choice models have to

be modified somewhat to account for these strategic interactions.
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Most of the empirical literature on entry models has focused on ideas for estimating models

under various assumptions. This literature has typically relied on strong parametric assumptions

and no formal approach to identification has been well examined. In this paper, we review and

extend a number of results on the formal identification of models that are used in the empirical

literature giving insights about the problem and new avenues to explore.

These identification results and ideas are interesting because they provide intuition on the role

of various qualitative assumptions, and of different sources of variation in the data especially when

estimating parametric models.

1.1 Why Study Entry Models

There are a number of important economic questions that one can hope to answer by considering

models of oligopoly entry.

These economic questions might include:

1. The prediction of equilibrium market structure under alternative hypothetical scenarios,

2. Determining the sources of firm profitability,

3. Identifying the “nature of competition.”

The first two questions can sometimes be answered easily from the data, but the “nature of

competition” question is more subtle. Researchers have been interested in questions like “how

fast do profits decline in the number of firms” and “to what degree do high and low quality firms

compete.” Also, the question of predicting equilibrium market structure can also be reasonably

complicated. Predictions within the range of the observable data can often be made without

inferring any “structural” parameters, but sometimes we want predictions about, say, the effect of

changes in the number of potential entrants (as might come about as a result of changes in regulatory

structure.) These latter predictions often require us to first uncover structural parameters.

1.2 Identification Ideas in Entry Models

We study identification of a set of entry models. These are typically binary (enter or not1) choice

models with multiple decision makers and strategic interaction.

1Even though the results will be tailored for the entry case, the insights carry over to models where the discrete

outcome has larger support.
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The identification strategy we follow is the following. We consider the economic model of entry

mostly based on the fact that a firm enters a market when entry is profitable. Heuristically, given

a profit function containing both variable and fixed profits, one can obtain information on the

choice probabilities predicted by the model. Hence, the identification question clarifies what can

and cannot be learned about the parameters of the profits functions under a set of maintained

assumptions, some plausible and others not. This is done by comparing the predicted choice

probabilities under the maintained assumptions to the observed choice probabilities (the data).

Naturally, using fewer assumptions (functional forms or stochastic restrictions) helps to en-

sure credibility and robustness of results. However, using fewer assumptions also puts strain on

identification whereby the econometric model becomes ineffectual in that data are not helpful in

distinguishing between different models (the mapping from parameters to data distribution is not

one-to-one). So, one needs to delicately balance this tension between model assumptions and iden-

tification. Generally two approaches can be followed. A top down approach where one starts

with a complete parametric econometric model and then try to study its robustness to the various

assumptions made. Heuristically, this can be done by studying the sensitivity of the results to

“peeling off” some of the parametric assumptions. The second is the bottom up approach where

the analyst starts with the weakest assumptions (like monotonicity for example) and gradually

moves “up” by adding restrictions. At every step, one examines the prediction of the model or

set of models and sees how these change with the addition of further assumptions. This approach

generally relies on starting first with the necessary conditions that an economic model imply and

seeing what restrictions these conditions impose (if any). In both approaches, one needs to clearly

define the object of interest (a parameter of economic interest).

1.3 Outline of the Paper

We begin with a discussion of “static” entry models. These are models of equilibrium market

structure where firms make a one-time decision to be in or out of the market. First, we review

existing identification results for threshold crossing models. We do this in the context of a simple

“monopoly entry” model. We then turn to the the classic “Bresnahan and Reiss” (or BR) ordered

entry model, which has much in common with traditional threshold-crossing models. We use the

threshold-crossing model results to show that identification of the parameter of interest (the “extent

of competition” for example) depends critically on the underlying assumptions and is sometimes

not identified at all.

One extension to the Bresnahan and Reiss models is to allow for firm heterogeneity. This makes

the econometric model look more like models used in the multi-variate discrete choice literature, but
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the strategic interactions now prove to be a complicating problem. One problem is the possibility of

multiple equilibria and mixed strategies. This complicates the identification problem and in many

cases would lead us to consider inference in models that does not point identify the parameter of

interest. We also discuss models with incomplete information and highlight the inferential problem

and the role different assumptions play.

In the last part of the paper, we consider simple dynamic entry models with i.i.d. errors.

We first review the existing identification results, which typically require one to know the true

distribution of fixed costs, and then suggest some alternative approaches that provide identification

under different assumptions. These alternative approaches help to illustrate the role of different

sources of variation in the data.

2 Identification in Static Entry Models with Complete Informa-

tion

In this section, we study identification and inference strategies in static entry models of complete

information. As a review, we begin with existing results for the “monopoly entry” (or more gen-

erally, “threshold crossing”) model. We then move on to the more interesting oligopoly set-up of

the Bresnahan and Reiss model and then consider models with firm heterogeneity. We emphasize

the role multiple equilibria play in these models and strategies to examine the practical implication

of multiple equilibria on the parameters of interest. We also examine the impact of allowing for

mixed strategies.

2.1 The Monopoly Entry, or Threshold Crossing, Model

It is useful to review some existing results in discrete choice identification by considering the simple

monopoly entry model, which takes the exact form of the traditional econometric threshold-crossing

model. There are no new results in the section, just a review, using the language of entry models,

of older results on the threshold-crossing model.

Consider a cross-section of markets, with one potential entrant in each market. Profits in market

i are given by

π(xi, Fi) = v(xi) − Fi, (2.1)

where v gives the deterministic part of profits, as a function of observable profit-shifters x, and F

is the random component of profits, assumed to enter linearly. In many specific entry applications,
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we will think of v as “variable profits” and F as “fixed costs,” although this strict interpretation

may not be appropriate in some contexts.

The firm enters whenever Fi ≤ v(xi). For purposes of identification, we treat the entry proba-

bilities, p(x), as being observed without error. The unknown objects of interest are the function

v(x) and the distribution of fixed costs, Φ(.), where we assume in the simplest case, that F is

independent of x. We also consider the generalization to a limited dependence of the distribution

of F on x. For example, one traditional assumption (Manski (1988)) is to require that F is median

independent of x and to treat the unknowns as the function v (which is typically known up to a

finite dimensional parameter) and sometimes the (conditional) distribution of F . This allows for

example, for heteroskedasticity of unknown form (assumptions on other quantiles of the distribution

of F can be handled in the same way).

We begin our analysis with the case where F is independent of x. The first classic problem is

suggested by the threshold-crossing condition, F ≤ v(x). It is clear that a monotonic transforma-

tion of both sides of this equation will not change any entry probability. Thus, without further

restrictions, the distribution of F and the function v are identified, at best, only up to a monotonic

transformation.

For example, one can perfectly explain the data via a model where v(x) is set equal to p(x)

and the distribution of F is uniform on [0, 1]. In this case, the entry probability is the probability

of the threshold crossing condition F ≤ p(x), which is exactly p(x), as required. Thus, with the

assumption that F is independent of x, we learn that v(x) is some monotonic transformation of

p(x), but we learn nothing more.

Now, knowing v(x) up to a monotonic transformation is still useful. Simply from the data p(x)

we can answer some questions about predicted “market structure”: i.e. we know the probability

that a market is served by a firm. Also, knowing that p(x) is a monotonic transformation of v, we

learn the sign of ∂v/∂x and thereby can answer questions about the “sources of profitability.” We

can also note that for two different elements of x, say x1 and x2, the relative derivatives,

∂v/∂x2

∂v/∂x1
=

∂p(x)/∂x2

∂p(x)/∂x1
(2.2)

are also invariant with respect to monotonic transformations of v.

One way to proceed is to assume that we already know either v(x) or the distribution of F . We

might learn about v(x) from using traditional data on prices, quantities demand, production and so

forth. Once v is known, we learn about the distribution of F from p(x) = Φ(v(x)). Alternatively,

we might have prior knowledge of the true distribution of F . In practical empirical applications,

auxiliary data relevant to the distribution of fixed costs seems much less common than data relevant
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to v. However, many authors have been willing to simply assume the distribution of Φ(F ), (or that

it is known up to a finite dimensional parameter) in which case it is trivial to solve for v.

Matzkin (1992) considers the case of identification of the threshold-crossing models, with i.i.d.

errors (i.e. our F ), under “qualitative” assumptions on the shape of the deterministic v. In

particular, her theorem implies that if v(x) is homogeneous of degree one in some subset of the x’s,

then both v and the distribution of F can be identified.

Result 1 (Matzkin2) In the model above, if the function v(x) is homogeneous of degree 1 and if

there exists an x0 such that v1(x0) = 1, then the functions v(.) and Φ(.) are identified3.

To illustrate the Matzkin argument in our context, consider the special case where v is homo-

geneous of degree one in exactly one variable. In particular, BR note that there are economic

assumptions that generate a variable profit function that is proportional to population. In partic-

ular, assume that [i] demand is proportional to population and that [ii] marginal cost is constant.4

The first assumption implies that observed x’s account for all the shifts in per-capita demand, so

that we can model market demand as per-capita demand times population. The assumption on

marginal cost is strong, but considered to be approximately true in many markets (note that there

are still economies of scale in the model, generated by the fixed costs.)

Under the assumptions of the last paragraph, the first-order condition for profit maximization

does not depend on population and profit in market i and can be written as

ziv(xi) − Fi, (2.3)

where v is per-capita profit and z is observed population. To set the units of profits, normalize

v(x0) = 1 for some arbitrary x0. The probability of entry at z, x0 is then

p(z, x0) = Pr(F < zv(x0)) (2.4)

= Pr(F < z)

= Φ(z),

where p(., .) is the observed entry probability.

2A more precise statement of the result with all the needed assumptions and regularity conditions is given in

Theorem 1 of Matzkin (1992) on page 244.
3Heuristically, what “identified” means here is that the functions v(.) and Φ(.) can be recovered uniquely from

p(.).
4The necessary assumption on demand is that market demand is equal to population times a per-capita demand

function that can depend on x’s other than population.

6



If across the range of z, p(z, x0) takes on every value between zero and one, then (2.4) defines

the entire function Φ. We can then trivially find v(x) for other values of x and hence recover the

function v on the support of x. This is a simple constructive version of Matzkin’s proof, which

works for a broader array of cases where the (normalized) v function is known along some ray or

curve in the space of exogenous data.

Another example where Matzkin’s proof applies is the partially linear model where v(x) =

x1 + v(x2). Here, v is linear in the variable x1 and is an unknown function of the remaining

variables v(x2). Some version of this partially linear model is frequently used in applied economet-

rics, although in the entry case under discussion, this partial linearity is harder to generate from

qualitative economics assumptions such as the “proportional to population” model.

One criticism of Matzkin’s approach is that it relies on the independence of F and x. Manski

(1988) suggests the weaker assumption of median independence but requires that v be known up to a

finite dimensional parameter (v(x) = xβ for example). Note that once we drop the full independence

assumption and assume median independence (i.e. Med(F |x) = 0), an appropriate qualitative

shape restriction (like linearity) identifies v (up to scale), given the appropriate support conditions

on x. Moreover, once v is identified5, the (conditional) distribution of F can also be recovered using

for example Horowitz (1992)’s estimator. Recently, under the conditional quantile restriction,

Khan (2004) provided a method to get consistent estimates of both v and the distribution of

F using sieve methods. A lot less is known about semiparametric models where F and x are

allowed to be correlated. One approach is to first write down an economically coherent entry

model where this correlation is generated from a well defined optimizing framework and plausible

economic restrictions (like the “proportional to population” restriction of BR) are imposed. Then

at the inference stage, instead of looking for esoteric statistical assumptions that guarantee point

identification, one can study the identified features of the class of models without making these

typically non-plausible assumptions. The econometric structure, tightly linked to the economic

model, admits consistent sets of parameters that rationalize the observed data and so appropriate

inferential methods are required to handle, statistically, the possibility that the parameter of interest

is a set.6

The monopoly model is, however, not typically of interest in the entry literature, which focuses on

potential oligopolies. Questions of identification may become more subtle and new questions start

to arise about the nature of competition, the structure of information across firms and the nature of

equilibrium. In these more complicated models, we might want to know further information about

5One can use Manski’s maximum score estimator to get v for example.
6See Chernozhukov, Hong, and Tamer (2002) and Andrews, Berry, and Jia (2003) for some recent inference

methods in these settings.
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the shape of v(x) and/or the distribution of F . We now take these results to one classic model of

oligopoly entry, the “Bresnahan and Reiss” model.

2.2 Bresnahan and Reiss Models

We first examine the symmetric entry model of Bresnahan and Reiss (1991b)7, in which we assume

that a cross section of markets is available where in each markets we observe the number of sym-

metric firms in the market and other market characteristics. This is the standard benchmark model

of entry where all firms are similar. One object of interest in this kind of work is the shape of the

variable profit function. Specifically, how do variable profits change with the number of firms in

the market? This question is related to important questions about the nature of competition. But

some researchers express skepticism about what exactly we can learn about the shape of variable

profits from entry data alone. A more complete examination of the non-parametric identification

of the model might shed light on this debate.

The Bresnahan and Reiss model is a simple extension of the Monopoly model with identical

potential entrants. Variable profits v are assumed to decline in the number of firms, y: vy(x), where

x is a vector of profit shifters.

Suppose that fixed costs, F , are identical across firms within a market and are distributed i.i.d.

across markets with unknown distribution Φ(·). If there are ym firms in market m, then each firm

operating in the market earns identical profits of

π(ym, xm, Fm) = vym(xm) − Fm (2.5)

Entry is profitable for y firms when vy(xm) ≥ Fm and is profitable for no more than y firms when

vy(xm) < Fm. The unique Nash equilibrium number of firms is the largest y for which entry is

profitable. This implies that the probability distribution over the number of observed firms is given

by:

Pr(y = 0|x) = 1 − Φ(v1(x)) (2.6)

Pr(y = 1|x) = Φ(v1(x)) − Φ(v2(x))

Pr(y = 2|x) = Φ(v2(x)) − Φ(v3(x))

· · · (2.7)

7See also presentations of the same model in Bresnahan and Reiss (1987), and Bresnahan and Reiss (1990).
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This implies that

Φ(v1(x)) = 1 − Pr(y = 0|x) = G1(x)

Φ(v2(x)) = 1 − Pr(y = 1|x) − Pr(y = 0|x) = G2(x)

Φ(v3(x)) = 1 − Pr(y = 3|x) − Pr(y = 1|x) − Pr(y = 0|x) = G3(x)

...

(2.8)

The data identifies the choice probabilities and hence one can assume that the rhs in (2.8) , the

G’s, are known. Taking the first equation in (2.8), we see that this is similar to identification in

binary choice models.

BR make parametric assumptions on both v(.) and Φ(.) and estimate the resulting model by

MLE. One specific economic question that they want to ask is what is the value of the ratio
v2(x)
v1(x)?

This ratio is interesting under various benchmark models. In particular,

1. Given fixed prices, v2(x)
v1(x) = 1/2, while given

2. Cournot competition: v2(x)
v1(x) ∈ (0, 1/2), and given

3. Homogeneous goods Bertrand: v2(x)
v1(x) = 0.

One can think of similar ratios for other y > 2. These ratios are the object of economic interest for

BR.

We can relate the BR model directly to the earlier threshold crossing literature by converting it

into a series of related threshold crossing models. These ordered-probit style “entry probabilities”

can be re-written as follows:

Pr(y ≥ 1|x) = Φ(v1(x)) (2.9)

Pr(y ≥ 2|x) = Φ(v2(x))

· · ·

Pr(y ≥ n|x) = Φ(vn(x))

A very important point that follows directly from the previous section is that the ratios of variable

profits that are of economic interest are not robust to monotonic transformations of vy and F and

so:

the economic parameter of interest is not non-parametrically identified in Bresnahan

and Reiss models without shape restrictions.
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It is easy to show that one can find a monotonic transformation that sets the relevant ratio to

anything between 0 and 1. That is,

Result 2 Let F be independent of x and vy(x) is unspecified except that it is weakly monotonic in

y. Assume that we observe a random sample of iid markets. Then, the ratio v2(x)
v1(x) can take any

value in [0, 1].

This seems like a negative result for the Bresnahan and Reiss model. However, the intuition for

identification in BR depends very much on the use of the “proportional to population” restriction

discussed in the prior subsection. By the same argument as in the prior subsection, restricting

variable profits to be proportional to population will identify variable profits. Indeed, once we

assume the vy(x, z) = zvy(x), then for each number of firms n we can identify both vn and Φ from

the threshold condition Pr(y ≥ n|x) = Φ(zvn(x)). In particular, we have the following result:

Result 3 Consider the symmetric game in (2.5) above. Then,

1. Suppose that there exits (x, x′) such that Gi(x
′) = Gj(x) for i 6= j, then vi(x

′) = vj(x). For

example, for (x, x′) such that G1(x
′) = G2(x) then v1(x

′) = v2(x).

2. If vy(x) = zvy(x̃), and x = (z, x̃) and x′ = (z′, x̃) such that G2(x
′) = G1(x), then the ratio of

interest is identified:
v2(x̃)

v1(x̃)
=

z

z′

3. If vy(x) = zvy(x̃) and v1(x0) = a ≡ 1, then

Φ(z) = G1(z, x0)

and the function Φ(.) is identified on the support of z. Also, for all y,

vy(x̃) =
F−1(Gy(z, x̃))

z

i.e. the function vy(.) is identified on the support of x and z.

In part 1 of the result above, and without making any assumptions, we can match the choice

probabilities (the G’s) from markets with different entrants, to recover regressor values for which

the variable profits match. This matching allows one to examine how much one needs to change

(or compensate) a regressor so that variable profits in a duopoly market is equal to variable profits

in a monopoly market. The second part of the result above shows that the object of interest in

BR is nonparametrically point identified in an oligopoly setting with the usual “proportional to
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population” assumption given variation in z and x. It is interesting to note for example that this

ratio of interest is equal to a specific ratio of the populations. In addition, if we normalize profits,

we can recover the distribution of fixed costs and the variable per capita profit function.

Actually, with the proportional-to-population assumption, we can even relax the model to allow

for a different distribution, Φy(F ), of fixed costs for every y. We then convert the model into a set

of unrelated threshold-crossing models, one for each value of y. One economic motivation for the

distribution of F to shift with the number of firms y would be the possibility of some fixed resource

with an upward sloping supply curve. Indeed, BR include a parametric shift in Φ for different y.

An even easier result is possible when there is additional data available that we can use to identify

vy(x) exactly. There is a large literature in empirical industrial organization on how to use observed

data on prices, and quantities (and possibly product characteristics and/or direct information on

inputs or costs) to identify the oligopoly and (possibly differentiated products) versions of the

“supply and demand” models (see as examples Bresnahan (1989) and Berry, Levinsohn, and Pakes

(1995).) In these cases, we may be able to learn about vy(x) without using the information on entry.

It is then trivial to use the observed v’s to back out the distribution of F from the relationship

Pr(y ≥ n|x) = Φ(vn(x)). This idea is implemented in a parametric context in Reiss and Spiller

(1989) and Berry and Waldfogel (1999). Also, recall from the discussion in section (2.1) that even

when the “nature of competition” is not defined, other features of v that are subject to monotonic

transformations will still be defined.

To summarize, then, in the binary choice symmetric model of entry à la Bresnahan and Reiss, and

without assumptions on the shape of the variable profit function or the distribution of fixed costs

conditional on x, (point) identification is not possible. However, results from the threshold crossing

literature suggest that variable profits are point identified when one imposes shape restrictions like

homogeneity. It is thus important to motivate the assumptions one uses. An example of such

assumptions is the insight of BR to write the variable profit as per capita profit multiplied by

the size of the market. Or, alternatively, in some settings one has additional information on the

variable portion of profits (such as a separate data set from which the form of variable profits can

be ascertained) that can be used and so the problem becomes one on inference on the distribution

of fixed costs.

2.3 Bivariate Game with Heterogenous Profits

We consider a richer version of the BR model by allowing firms’ profits to be different, as in the

work by Berry (1989), Bresnahan and Reiss (1991a), Berry (1992), and Ciliberto and Tamer (2003).
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In particular, consider the simple duopoly model with two firms and heterogenous fixed costs. Let

the profit of firm i in market m be

πim(xim, yjm, fim) = v(yjm, xim) − fim (2.10)

= v0i(xim) + yjmv1i(xim) − fim (2.11)

where the second equality is without loss of generality since yjm is a binary variable. The profit

of firm j is similar. Again, we assume that a firm enters a market when it is profitable to do so,

and hence firm i enters market m, yim = 1, if and only if πim(xim, yjm, fim) ≥ 0 (here non-entry

profits are set to zero) and we also assume that both functions v1i and v1j are nonpositive. Notice

that in the above, the effect of firm i on firm j’s profits is different than the effect of firm j on

firm i’s profits. The objects of interest are the variable profits and the joint distribution of the

fixed costs conditional on the regressors, Ffi,fj |xi,xj
. The correlation among the unobservables is of

interest since it allows one to see whether entry occurs because of unobserved profitability that is

independent of the competition effect.

We assume that we have a random sample of observations on markets where every observation

is an observable realization of an equilibrium game played between i and j. The sampling assump-

tions allows us to obtain the choice probabilities Pr(0, 0|x),Pr(1, 0|x),Pr(0, 1|x) and Pr(1, 1|x). To

analyze identification, as usual, one needs to relate these quantities to their counterparts predicted

by the model.

2.4 Pure Strategies

Here, we study inference in the bivariate model above when we allow only pure strategy equilibria.

With mixed strategies ruled out, we can focus on the (0, 0) and (1, 1) outcomes, the only 2 outcomes

of the game that are observed only if they are pure strategy equilibria of the game8. The predicted

choice probabilities for (0, 0) and (1, 1) are

Pr(0, 0|xim, xjm) = Pr(fim ≥ v0i(xim); fjm ≥ v0j(xjm)|xim, xjm)

Pr(1, 1|xim, xjm) = Pr (fim ≤ v0i(xim) + v1i(xim); fjm ≤ v0j(xjm) + v1j(xjm)|xim, xjm)

(2.12)

The strategy is to use the first equation above to identify the v0’s and the second equation to

identify the v1’s (recall that the v1 functions are assumed to be nonnegative). Without any further

8What is meant here is that (0, 0) and (1, 1) are uniquely predicted as pure strategy equilibria by this model. If

one allows for mixing, then these outcomes can show when players mix between entering and not entering. This will

be examined in section 2.5 below.
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assumptions, the v’s and F are not separately identified. One can then use sufficient conditions,

mainly ones involving support conditions, to (point) identify the objects of interests. One example

of sufficient conditions that involve support conditions is contained in the next result and discussed

after the result.

Result 4 Assume that the random vector (fim, fjm) is distributed independently of (xim, xjm)

with a joint distribution F . Assume that only pure strategy equilibria are considered. Suppose

that v0i(xim) = zimv0(x̃im) and similarly for v0j , v0i(x0) = v0j(x0) = 1 and that the v1(.)’s are

non-positive. Moreover, assume that zim|zjm, xim, xjm has a distribution with support on R a.e.

zjm, xim, xjm and similarly for zjm. Then, v0i, v0j , v1i, v1j and F are identified.

To show the above result, and using the first equation in (2.12), we can recover the joint distribution

F from the choice probabilities evaluated at the normalization point x0. Then, again using the

first equation, we can “push” zjm far out so that effectively we can transform the problem into a

simple threshold crossing model with known distribution (marginal of F ) and solve for v0i. We can

then use the second equation in (2.12) to get the v1’s. Notice that the sufficient conditions above

impose exclusion restrictions: zi with wide support is included in the payoff of firm i but not in

firm j’s, and vice versa for j. Notice also that we used only the two outcomes (0, 0) and (1, 1) to

get identification (where we implicitly used the (1, 1) choice probability to get the v1 functions).

These outcomes are observed if and only if they are pure strategy equilibria of the underlying game.

This is a result of this being an entry model (negative v1’s) and the restriction to pure strategy

equilibria.

Identification in more realistic games with a larger set of players is harder under the same

conditions especially if one maintains a rich correlation structure on the joint distribution of the

unobservables (like allowing heterogeneity in the marginal distributions). Mazzeo (2002) allowed

for types of firms and hence his model is a bivariate version of the BR model above. Berry (1992)

introduced a more heterogenous model of entry in airline markets with potential entrants and player

specific variables where the profit functions was specified up to a finite dimensional parameter.

Berry showed there that the model predicts the number of players in a market uniquely which

allows one to reduce the identification into one similar to identification in nonlinear parametric

method of moments model. Ciliberto and Tamer (2005) extended the Berry model by allowing for

heterogeneity and player identities.
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2.4.1 Variation in the Number of Potential Entrants

We will now consider another approach to identification in complete information entry games with

heterogeneous firms: variation in the number or identity of potential entrants (from regulation or

geographic variation.) This idea is related to some intuition on identification found in Berry (1992).

We begin with the relatively simple case of independent draws on F and then consider the more

complicated (and interesting) case of correlated fixed costs. Consider the simple case where the

profits of firm i in market m, given y total firms in the market, are vy(xm) − Fim, which is a sim-

plification from the earlier examples. (This form can be derived from examples with heterogeneity

only in fixed costs.) We continue to assume that F is independent of x.

The basic idea is to return in part to the binary threshold identification literature by breaking

the problem into two parts. First, we think of identifying certain threshold crossing probabilities,

such as the probability that a given firm would be profitable if that firm were (exogenously) made

into a monopoly entrant. We will see that these probabilities can be useful for many exercises,

such as predicting market share, or else considering “sources of profitability” (the relative effect of

different x’s on firm’s profits). These can be derived under fairly weak assumptions – for example

we don’t need “shape” restrictions on the variable profit function. Second, if necessary for the

question at hand, the threshold probabilities can be transformed into the underlying variable profit

function vy(x) under the same conditions (e.g. shape restrictions) as discussed in section (2.1).

Given an appropriate restriction, we can then discuss questions about the “nature of competition”

as in BR.

Define, to begin, the probability that a firm would be profitable as a monopolist as

µ(x) ≡ Pr(Fim < v1(x)) (2.13)

and the probability that a firm would be profitable as a duopolist as

δ(x) = Pr(Fim < v2(x)) (2.14)

Note that these are not equilibrium probabilities, but rather just particular transformation of the

model primitives. For example, δ(x) is the probability that a firm would be profitable if it was

placed exogenously into a market with one rival firm already present.9

In the monopoly case of section (2.1), as in the BR case, µ(x) is just the probability of entry

and so is directly observed in the data. In the case of heterogeneous firms, however, the threshold

9Note that µ and δ could be derived under somewhat weaker assumptions – for example that profits are a non-linear

(but monotonically increasing) function of the independent error, F .
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probabilities must be derived from the observed probabilities of different market structure. The

derivation is simple when the fixed costs F are independent across firms within a market, which is

not a particularly interesting case but provides a good starting point.

In the two-firm case with independent fixed cost, we have for x = (x1, x2), the conditions

Pr(0, 0 |x) = (1 − µ(x1))(1 − µ(x2)) (2.15)

Pr(1, 1 |x) = δ(x1)δ(x2), (2.16)

and these equations can be used to express µ and δ as unique functions of the data probabilities.

In particular, with x1 = x2 ≡ x we have two equations in two unknowns and a unique solution for

µ(x) and δ(x). This is a point-wise (in x) identification argument and, once µ and δ are identified

for multiple x’s, the model has testable restrictions for values of x1 not equal to x2.

These probabilities are useful on their own account. For example, they can be used to solve for

counter-factual predictions of market structure: if one of the potential firms goes bankrupt, what

is the probability that a market will be served by the remaining firm? The answer is µ(xi). Also,

as in (2.1), we can identify the sign of the effect of a specific x on profits and we can identify the

relative (but not absolute) effects of those x’s.

Interestingly, the questions in Berry (1992) concern the sources of profitability and so they might

have been answered without solving for the underlying v functions. However, if (as in BR), one

has questions about the “nature of competition”, then one needs to transform the µ’s and δ’s into

the underlying v’s using, e.g., the shape restrictions discussed in section (2.1). This approach is

relatively easy to extend to more than 2 potential firms.

The advantages of solving for the threshold crossing-probabilities include:

1. weak assumptions on underlying profit function

2. easy to state restrictions (polynomials)

3. the ability to make equilibrium predictions about market structure

4. the ability to learn about “sources of profitability”, and

5. the ability to learn, using stronger restrictions, about v and the distribution of F .

Disadvantages of the approach in this section include:

1. not making use of stronger restrictions from the underlying profit model, and
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2. limited modeling of correlation (but see below)

Adding Market-Level Correlation

So far, this subsection has not considered the realistic case of within-market correlation in the

unobserved fixed costs (or, more generally, the unobserved profit shocks) of the firms. In particular,

one thinks that some markets are more profitable (have lower fixed costs) than others. Say that

ǫm is a market-level scalar random variable that shifts the distribution of fixed costs for all firms

in the market.

The probability of being profitable as a monopolist is now µ(x, ǫ) and the observed probabilities

of market outcomes take forms like

Pr(0, 0 |x) =

∫

(1 − µ(x1, ǫ))(1 − µ(x2, ǫ))dΓ(ǫ). (2.17)

where Γ(.) is the distribution of market level unobservables which are assumed to be independent

of x. For discrete distributions of ǫ, we can try to solve for the threshold crossing probabilities

µ(x, ǫ), but one will typically need some additional variation in the data. As an example, assume

that the market level shifter takes on two values, 0 and 1, with Pr(ǫ = 0) = λ.

In the two potential entrant case, the probability of no firms is now:10

Pr(0, 0 |x) = λ(1 − µ(x1, 0))(1 − µ(x2, 0)) + (2.18)

(1 − λ)(1 − µ(x1, 1))(1 − µ(x2, 1)) (2.19)

Holding the number of potential entrants fixed, it is clear that there are not enough restrictions to

get the monopoly threshold crossing probabilities from this equation alone.

However, we get a further source of identification if there is variation in the number of potential

entrants, as in Berry (1992).11 In that paper, it was assumed (consistent with data), that the only

potential entrants into an airline city-pair were those with some service out of at least one of the

endpoints of the city-pair. Another example would be competition between retail chains that do

not operate in all regions of the country. Or, consider a dataset that contains market outcomes

before and after the entry or exit of a major rival.

To illustrate the possibilities, take even simple case with x = x1 = x2 and let the number of

10Note that the term µ(x, 0) has the interpretation of being the probability that a firm is profitable [i] as a

monopolist [ii] when overall market profitability is “low”.
11Another useful restriction comes from markets that share a value for x1 but have a different x2 (and vice-versa).
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potential entrants be K. With K = 1,

Pr(0 |x) = λ(1 − µ(x, 0)) + (1 − λ)(1 − µ(x, 1)),

whereas with K = 2,

Pr(0, 0 |x) = λ(1 − µ(x, 0))2 + (1 − λ)(1 − µ(x, 1))2,

and so forth for arbitrary K:

Pr(0, 0, . . . |x) = λ(1 − µ(x, 0)K + (1 − λ)(1 − µ(x, 1))K .

Assume now that we observe market outcomes in markets with varying numbers of potential

entrants, from K = 1 to K = K̄. Then we have K̄ polynomial equations in 3 unknowns: µ(x, 0),

µ(x, 1) and the “correlation” term, λ. Hence the problem becomes one of finding solutions to

(nonlinear) equations in 3 unknowns (that are probabilities). As K̄ increases further, we will find

multiple solutions for the unknowns only in degenerate cases and so we can likely solve uniquely

for both the µ’s and the discrete distribution of ǫ.

Once again, “shape restrictions” can be used to uncover variable profits, and the appropriate

marginal distributions of F . In this example, we would be solving for the marginal distribution of

F conditional on the appropriate value of the market-level shock ǫ. Since we also know the discrete

distribution of ǫ, we also uncover the unconditional distribution of F .

In this subsection, expanding on the suggestion of Berry (1992), we have sketched the possibilities

of using the variation in number of entrants as a source of identification. We have also suggested

an identification strategy that is different from most of the existing literature. First, we try to

identify the probability that firms would be profitable if placed (exogenously) into various market

structure. In the case of discrete market-level shocks, this involves a solution to a set of simple

polynomial equations. Then, if necessary, these threshold probabilities can be transformed into the

underlying variable profit function and fixed-cost distribution.

2.5 Multiple Equilibria and Mixed Strategies

Inference in static discrete games with complete information is complicated due to the presence of

multiple equilibria and equilibria in mixed strategies. In the game of the previous section, one is

able to derive a set of sufficient conditions for point identification without dealing with multiplicity.
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The reason for this is that the game, under pure strategies, predicts equilibria that are unique in

the number of players (for example, identification was based on the choice probabilities of the (0, 0)

and (1, 1), outcomes which are equivalent to no firms and two firms in the market while the third

outcome is the union of (1, 0) and (0, 1) and represents the one firm equilibrium). Berry (1992)

studied a more general class of entry games with more players in which the number of firms in

a market is unique. It is worth noting that in these games without mixed strategies, one need

not specify (or model) any equilibrium selection rules since the game is transformed into one that

predicts a unique feature (the number of players in the market).

Uniqueness in the number of firms across equilibria does not always hold. Ciliberto and Tamer

(2003) extend the Berry setup to cover entry games with identity (or type) specific effects. For

example, the effects on American’s profits from having Southwest enter is different than if United

enters. This heterogeneity in the effects leads the game to have multiple equilibria where different

equilibria can differ in the number of firms, even when one is restricted to pure strategies. A

simple two types example of such a game is illustrated in the appendix. Another example where

uniqueness across equilibria does not hold is in games where one allows for mixed strategy equilibria.

In the simple bivariate game studied in section 2.3, if we allow for mixed strategies, then (0, 0) is a

potentially observable outcome of the mixed strategy equilibrium in which the players mix between

entering a market and not since it lies on the support of the mixing distribution. Hence, when one

observes (0, 0), it is not clear whether this was because it is the unique pure strategy equilibrium or

it was a result of the mixing. So, for some values of the unobservables, the econometric model can

predict (0, 0), (1, 1), (1, 0) and (0, 1) as potentially observables. Recently also, Bajari, Hong and

Ryan (2005) provide sufficient conditions based on exclusion restrictions that allow for identification

in the presence of mixed strategies.

Below, we first consider a simple game that involves multiple equilibria and mixing and study

its observable implication. This will illustrate in a clear way the insights needed to analyze these

games and illustrates, in a simple example, that the data might contain information about selection.

Then, we go back to the bivariate game of the previous section and study its empirical content in

the presence of mixing and multiplicity.

Inference in a Game with Mixed Strategies and Multiple Equilibria

Consider the following simple 2 × 2 game
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0 1

0 0 , 0 0 , a

1 a , 0 a - 2 , a - 2

where a is a binary random variable that takes the value of 3 with probability l and 1 with

probability 1 − l. The realization of a is not known to the econometrician but is observed by both

players. This is a symmetric game with no exogenous regressors and no heterogeneity. The question

that we want to ask is what is the observable implication of this game? The “data” we observe is

a sample of observable outcomes each of which corresponds to a draw of the random variable a.

Given a random sample assumptions (say we observe an iid sample of N markets), we are able to

consistently estimate the choice probabilities P (0, 0), P (0, 1), P (1, 0), and P (1, 1) as N increases.

Next, we derive the choice probabilities implied by the model (i.e., as a function of the structural

parameters of the model). When, a = 3, (1, 1) is the unique pure strategy equilibrium of the game

(see the lhs display in figure 1). On the other hand, when a = 1, the game has multiple equilibria.

There are two pure strategy equilibria, (1, 0) and (0, 1) and one mixed strategy equilibrium p = 1
2

where p is the mixing probabilities for both players (See rhs of figure 1). Assuming only pure

Figure 1: Equilibria for the case when a = 3 (left) and when a = 1 (right)

p

q

(1,1)

p

q

(1/2,1/2)

(1,0)

(0,1)

1

1

19



strategies are allowed, the choice probabilities derived by the model are

Predicted probabilities without mixed strategies

Pr(0, 0) = 0

Pr(1, 1) = Pr(1, 1|a = 1)Pr(a = 1) + Pr(1, 1|a = 3)Pr(a = 3)

= Pr(1, 1|a = 3)Pr(a = 3) = l

Pr(0, 1) = Pr(0, 1|a = 1)Pr(a = 1) + Pr(0, 1|a = 3)Pr(a = 3)

= Pr(0, 1|a = 1)Pr(a = 1) = Pr(0, 1|a = 1)(1 − l)

Pr(1, 0) = Pr(1, 0|a = 1)Pr(a = 1) + Pr(1, 0|a = 3)Pr(a = 3)

= Pr(1, 0|a = 1)Pr(a = 1) = Pr(1, 0|a = 1)(1 − l)

We have Pr(1, 1|a = 3) = 1 since (1, 1) is the unique equilibrium when a = 3 and Pr(1, 1|a = 1) = 0

since when a = 1 and without allowing for mixed strategies, (1, 1) is not a potentially observable

outcome of the game. So the predicted choice probability by the model above for the (1, 1) outcome

is Pr(a = 3) = l (and hence l is point identified by looking at (1, 1) markets). On the other hand,

the predicted choice probability for the (1, 0) outcome is Pr(0, 1) = Pr(0, 1|a = 1)Pr(a = 1) =

Pr(0, 1|a = 1)(1 − l) where here Pr(0, 1|a = 1) is the equilibrium selection rule. This selection rule

is also identified (since l is identified from the (1, 1) outcomes). So, as we can see in this simple

game the parameters of the game (l and the selection rule function P (0, 1|a)) are point identified12.

When we allow for mixed strategies, the predicted choice probabilities will change. When a = 3,

the outcome (1, 1) is the unique pure strategy equilibrium of the game and hence is the unique

observable outcome. On the other hand when a = 1, the potentially observable outcomes are all

4: (1, 0), (0, 1), (0, 0) and (1, 1). In particular, Pr(0, 0|a = 1) 6= 0 since (0, 0) will appear as the

observable outcome of the game if players coordinate on the mixed strategy equilibrium in which

(0, 0) will appear with probability 1
4 . So the predicted choice probabilities with mixed strategies

are:

Pr(0, 0) = Pr(0, 0|a = 1)Pr(a = 1)

Pr(1, 1) = Pr(1, 1|a = 3)Pr(a = 3) + Pr(1, 1|a = 1)Pr(a = 1) = l + Pr(1, 1|a = 1)Pr(a = 1)

Pr(1, 0) = Pr(1, 0|a = 1)Pr(a = 1) + Pr(1, 0|a = 3)Pr(a = 3) = Pr(1, 0|a = 1)Pr(a = 1)

Conditional on a = 1, let the random variable d denote the equilibrium selection mechanism:

d = 1 if (1, 0) equilibrium is selected with probability P1 , d = 2 if the (0, 1) equilibrium is chosen

with probability P2, and d = 3 if the mixed strategy equilibrium (1
2 , 1

2) is chosen with probability

12The selection rule depends on unobservables. But since the support of a has only two points, the probabilities

are tractable.
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P3 = 1 − P1 − P2. Hence,

Predicted choice probabilities with mixed strategies

Pr(0, 0|a = 1) =
∑

i=1,2,3

Pr(0, 0|a = 1, d = i) Pr(d = i|a = 1) = Pr(0, 0|a = 1, d = 3)P3 =
1

4
P3

Pr(1, 0|a = 1) =
∑

i=1,2,3

Pr(1, 0|a = 1, d = i) Pr(d = i|a = 1)

= Pr(1, 0|a = 1, d = 3)P3 + Pr(1, 0|a = 1, d = 1)P1 =
1

4
P3 + P1

Pr(1, 1|a = 1) =
∑

i=1,2,3

Pr(1, 1|a = 1, d = i) Pr(d = i|a = 1)

= Pr(1, 1|a = 1, d = 3)P3 =
1

4
P3

This implies that

Pr(0, 0) =
1

4
P3(1 − l)

Pr(1, 0) = (
1

4
P3 + P1)(1 − l)

Pr(0, 1) = (
1

4
P3 + P2)(1 − l)

Pr(1, 1) = l +
1

4
P3(1 − l)

P1 + P2 + P3 = 1

0 ≤ l ≤ 1

The parameters of interest in this game are (P1, P2, P3, l). The identification question in this game

reduces to one of studying the set of solutions to the above system of equalities/inequalities. The

game (or parameters) is point identified if there exists a unique solution, and is set identified if

the game restricts the parameters to a non-singleton set of parameters (and of course in case of no

solutions, then the game is misspecified).

A simple insight that emerges from this example is the importance of pinpointing the set of

potentially observable outcomes in a game. Heuristically, given a value for the exogenous vari-

ables, the set of potentially observable outcomes or POO is the set of outcomes that can be

observed when the game is played. For example, when a = 1, the set of observable outcomes is

{(0, 0), (1, 1), (1, 0), (0, 1)}. The POO consists of the pure strategy equilibria (which can be mapped

one to one to a set of outcomes) and the set of outcomes that are on the support of the mixed

strategy distribution.

The equilibrium selection mechanism plays a key role in forming the predicted choice proba-

bilities. Usually, the economist has no information about equilibrium selection or is not willing
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Table 1: Bivariate Entry Game

0 1

0 0,0 0, x2β2 − ǫ2

1 x1β1 − ǫ1 ,0 x1β1 + ∆1 − ǫ1, x2β2 + ∆2 − ǫ2

to make assumptions on equilibrium selection. The reason is that it is not unusual that different

equilibria can be chosen in otherwise “similar” markets. So, the key practical question becomes:

what can we learn about the features of the model (like the variable profit functions and the joint

distribution of unobserved fixed costs) without imposing any restrictions on equilibrium selection?

in other words, is using an ad-hoc selection rule practically important? Another important issue is

whether the model contains information about the selection mechanism. The simple game above

shows that it does. So, the data does have identifying power regarding the selection mechanism

(the data generally point identifies the selection rule in the simple game above).

2.5.1 Bivariate Entry Game: Inference, Multiplicity, and Mixed Strategies

Reconsider the bivariate entry game studied in section (2.3) above except that here and for sim-

plicity we parametrize the profit functions as in Table 1. This game is similar to the one studied

in Tamer (2003).

Again, we assume that ∆1 and ∆2 are negative. So, for ǫ1 ∈ [x1β1 + ∆1, x1β] and ǫ2 ∈ [x2β2 +

∆2, x2β] the game has multiple equilibria: (0, 1) and (1, 0) are pure strategy equilibria and there

is a mixed strategy equilibrium. To study identification in this game in the presence of mixed

strategies (and multiplicity), we follow the insights given in the simple game above13. Notice

that, (1, 1), (0, 0), (1, 0) and (0, 1) are potentially observed outcomes in the case where the mixed

strategy is an equilibrium. So, again we assume that we have a random sample of markets and

that the vector (ǫ1, ǫ2) is independent of x = (x1, x2) and has a known (up to some parameter)

joint density with support on the real plane14. We are interested in inference on the parameter

vector θ = (β1, β2,∆1,∆2, γ) where γ is the parameter of the joint distribution of the ǫ’s. Define

the following sets. First, let

Ax,θ

(p,q) = {(ǫ1, ǫ2) : (p, q) is the unique equilibrium }

13Tamer (2003) studied identification in this game without allowing for mixed strategies. The inequalities based

approach used in Ciliberto and Tamer (2005) can easily be extended to allow for mixing. Recently also, Bajari, Hong

and Ryan (2005) introduce a model where mixed strategies are explicitly accounted for.
14Identification in this game with unknown F is complicated and will not be dealt with here.
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In the case of multiplicity, define

Mx,θ
C = {(ǫ1, ǫ2) : C is a set of multiple equilibria }

where either set A or M can be empty. Similar definitions can be written for any discrete game in

general, but we keep this example specific definitions for simplicity. For example, sets A are regions

for the epsilon’s where the outcome (p, q) ∈ [0, 1]× [0, 1] is the unique equilibrium for a given value

of x and θ. This equilibrium can either be in pure or in mixed strategies. For example Ax,θ

(1,1) is

the set of epsilons where (1, 1) is the unique pure strategy equilibrium. This region is (ǫ1, ǫ2) ∈

[−∞, x1β1 + ∆1]× [−∞, x2β2 + ∆2] for the game above. On the other hand, sets M are regions for

the epsilon’s where the game predicts multiple equilibria (some of which can be in mixed strategies).

In the above game for example, Mx,θ

{(1,0),(0,1),(p,q)} = {(ǫ1, ǫ2) ∈ [x1β1 + ∆1, x1β]× [x2β2 + ∆2, x2β]}.

For a given x and θ, the game predicts the following choice probabilities:

P(x; θ, π) =










Pr((0, 0)|x, θ, π)

Pr((1, 1)|x, θ, π)

Pr((1, 0)|x, θ, π)

Pr((0, 1)|x, θ, π)










=










∫ ∑

i∈C Pr((0, 0)|x, θ, π, ǫ, d = i) Pr(d = i|ǫ, x)dFǫ
∫ ∑

i∈C Pr((1, 1)|x, θ, π, ǫ, d = i) Pr(d = i|ǫ, x)dFǫ
∫ ∑

i∈C Pr((1, 0)|x, θ, π, ǫ, d = i) Pr(d = i|ǫ, x)dFǫ
∫ ∑

i∈C Pr((0, 1)|x, θ, π, ǫ, d = i) Pr(d = i|ǫ, x)dFǫ










=











Pr(Ax,θ

(0,0)
) +

∫

M
x,θ

(0,0)

(1 − x1β1−ǫ1
−∆1

)(1 − x2β2−ǫ2
−∆2

) Pr(d = 3|x, ǫ1ǫ2)dF

Pr(Ax,θ

(1,1)) +
∫

M
x,θ
C

x1β1−ǫ1
−∆1

x2β2−ǫ2
−∆2

Pr(d = 3|x, ǫ1ǫ2)dF

Pr(A(1,0)) +
∫

M
x,θ
C

Pr(d = 1|x, ǫ1, ǫ2)dF +
∫

M
x,θ
C

x1β1−ǫ1
−∆1

(1 − x2β2−ǫ2
−∆2

) Pr(d = 3|x, ǫ1ǫ2)dF

Pr(A(0,1)) +
∫

M
x,θ
C

Pr(d = 2|x, ǫ1, ǫ2)dF +
∫

M
x,θ
C

(1 − x1β1−ǫ1
−∆1

)x2β2−ǫ2
−∆2

Pr(d = 3|x, ǫ1ǫ2)dF











(2.20)

where C = {(0, 1), (1, 0), (p, q)} and π = (Pr(d = i|x, ǫ1, ǫ2), i = 1, 2, 3),
∑

i Pr(d = i|x, ǫ1, ǫ2) = 1 is

the equilibrium selection mechanism in the region of multiplicity. Notice, this equilibrium selection

mechanism is left unspecified and can depend on market unobservables. The outcome d = 1

corresponds to “selecting” (1, 0), d = 2 corresponds to selecting (0, 1) and d = 3 corresponds to
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selecting the mixed strategy equilibrium. Examining the probability of (0, 1) we find that

Pr((1, 0)|x, θ, π) = Pr(Ax,θ

(1,0))
︸ ︷︷ ︸

(1)

+

∫

M
x,θ
C

Pr(d = 1|x, ǫ1, ǫ2)dF

︸ ︷︷ ︸

(2)

+

∫

M
x,θ
C

(3a)
︷ ︸︸ ︷

x1β1 − ǫ1

−∆1
(1 −

x2β2 − ǫ2

−∆2
) Pr(d = 3|x, ǫ1ǫ2)dF

︸ ︷︷ ︸

(3)

The first term (1) is the probability of the region A(1,0) under F , i.e., (1) = Pr(ǫ1 ≤ x1β1; ǫ2 ≥

x2β2) + Pr(ǫ1 ≤ x1β1 + ∆1;x2β2 + ∆2 ≤ ǫ2 ≤ x2β2). This is the probability mass of the region

where (1, 0) is the unique equilibrium of game. Next, the region Mx,θ
C is the region of multiplicity

and this model it is the “square” where x1β1 + ∆1 ≤ ǫ1 ≤ x1β1 and x2β2 + ∆2 ≤ ǫ2 ≤ x2β2. So,

in (2) we calculate the probability that the outcome (1, 0) is selected (i.e. d = 1) which is the

weighted probability of selection integrated against F in the region of multiplicity. The third term

(3) takes account of mixed strategies. If mixed strategies are allowed, all 4 outcomes are potentially

observed. In particular, conditional on d = 3 (mixed strategy equilibrium), (3a) gives the (mixing)

probability of observing (1, 0).

As we can see, observing event (1, 0) is a consequence of several distinct possibilities (three here):

first, either that (1, 0) is the unique equilibrium of the game (term (1)), (1, 0) is an equilibrium of

a game with multiplicity where: it is a pure strategy equilibrium (term (2)), or it is on the support

of a mixed strategy equilibrium (term (3)). So, without making equilibrium selection assumptions,

the presence of multiple equilibria complicates the inferential problem by introducing nuisance pa-

rameters (selection probabilities). Moreover, with mixed strategies the model does not necessarily

predict multiple equilibria that are unique in the number. So, here, the observable implication of

multiple equilibria is that (1, 0) or (1, 1) can show up and hence these observables do not involve

the same number of firms entering.

Common equilibrium selection assumptions are the requirements that the distribution of d condi-

tional on x be independent of (ǫ1, ǫ2) and sometimes also the x’s, i.e. one uses the same selection

mechanisms in similar markets. One then usually parametrizes the probability (as in using a

multinomial logit) and uses maximum likelihood for inference. See for example Bjorn and Vuong

(1985) and more recently Bajari, Hong, and Ryan (2005).

Identification In this setup, identification is defined as follows. The sharp identified set ΘI is

ΘI =
{
θ : ∃π such that Pr

(
P(x) = P(x; θ, π)

)
= 1

}
(2.21)

The set ΘI is the sharp identified set, i.e., the set of parameters θ that are consistent with the
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data and the model. Heuristically, a θ ∈ ΘI if and only if there exists a (proper) selection mech-

anism π = (P (d = i|x, ǫ1, ǫ2), i = 1, 2, 3) such that the induced probability distribution P(x; θ, π)

matches the choice probabilities P(x) for all x almost everywhere. So, the presence of multiple equi-

libria introduces nuisance parameters that are not specified and hence makes it harder to identify

the parameter θ. In the case of point identification, ΘI reduces to a singleton (this set is non-empty

otherwise the model would be misspecified). When one models equilibrium selection (by specifying

a consistent π), the identification problem reduces to one in a modified multivariate discrete choice

model where sometimes, one is able to provide sufficient point identification conditions (usually

involving large support). Under these conditions, the model identifies a unique parameter θ which

is associated with that particular selection mechanism. So, if one considers another consistent se-

lection mechanism, the model would point identify another parameter θ. Hence, the set ΘI collects

the set of (structural) parameters that are consistent with a well defined selection mechanism.

Allowing for mixed strategies adds an additional selection function (when d = 3) and so the set

C increases in size. Hence, the observational implication of mixed strategies is that any outcome

on the support of the mixing distribution is potentially observable. So, mixing, although qualita-

tively similar to multiplicity, complicates the identification problem (and thus makes the task of

identification harder) since we require the data to identify more functions.

Remark In other models (like in the case where the ∆’s have a different sign) it is possible that

for some values of the ǫ’s the game only admits an equilibrium in mixed strategies (the unique

equilibrium is one in mixed strategies). So, it does not seem natural in those games to only allow

pure strategies. Hence, one needs to pay special attention to the assumption of not allowing mixed

strategy equilibria since it might lead to regions of the exogenous variables where the model does not

predict any outcomes (this might not be a big problem in some entry models where unique equilibria

in mixed strategies only, are less common).

Inference on the set ΘI based on definition (2.21) though theoretically attractive is not practi-

cally feasible since one needs to deal with infinite dimensional nuisance parameters (the π’s).15 A

practical approach to inference in this class of models, follows the approach in Ciliberto and Tamer

(2003) by exploiting the fact that the selection mechanism π is a probability and hence bounded

between zero and one. Although this approach does not provide a sharp set, it is practically attrac-

tive . So, exploiting the fact that Pr(d = i|x, ǫ1, ǫ2) ∈ [0, 1] for i = 1, 2, 3 we can get the following

model with inequality restrictions on regressions:

15Inference is more practical in settings where one discretizes the model, i.e., uses discrete x’s and assumes that

the epsilons take finitely many values with given probabilities. This makes it into a finite dimensional problem that

is easier to handle.
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Notice here that the above inequalities represent a cube that consists of a super set of the feasible

probabilities. This superset was generated by taking the extreme points of the selection probabilities

equation by equations. For example the (0, 0) probability in (2.20) can be as low as Pr(Ax,θ

(0,0)) and

as high as Ax,θ

(0,0))+
∫

M
x,θ

(0,0)
(1− x1β1−ǫ1

−∆1
)(1− x2β2−ǫ2

−∆2
)dF . And, then we repeat this exercise for every

outcome. By transforming the predictions of the model into ones with inequality restrictions, we

are able to bypass the specification of the selection probabilities. Note that, we have ignored in

constructing the cube the cross equation restrictions (basically that the selection probabilities sum

to one). One can certainly exploit these restrictions but we omit this for simplicity of description.

The econometric structure of this model is a method of moments model with inequality restrictions.

Inference in models with inequality restrictions is studied in Chernozhukov, Hong, and Tamer (2002)

and Andrews, Berry, and Jia (2003) and applied in these settings by Ciliberto and Tamer (2003).

Are Multiple Equilibria and Mixed Strategies a Problem? As we can see from above,

dealing with multiple equilibria and mixed strategy equilibria in games with complete information

introduces functions that, if left unspecified, complicate the identification problem. In addition,

policy analysis in the presence of multiplicity is complicated by the fact that the model is only able

to predict uniquely in some regions of multiplicity. Motivated by practical convenience, another

approach to inference in games is to make simple equilibrium selection assumption or/and pick

an equilibrium on the support of a mixed strategy equilibrium using a predetermined rule. This

will yield a complete (nonlinear) econometric model where methods for identifying the model can

be studied. So the practical question of interest is whether parameters or policy functions can

change significantly with different selection rules. One way to examine this question is to look

for set estimates of the parameters of interest without making selection assumptions. The “size”

of this set is an indicator of how important selection assumptions are. Finally, the framework

above maintains parametric assumptions on the variable profits and the joint distribution of the

unobservables. It is thus important to study identification in settings where these distributional

assumptions are relaxed. In general, in multivariate discrete models, relaxing these complicates

the identification problem (See Bajari, Hong and Ryan (2005) for more on this). This is a largely

unexplored area of research.
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3 Static Games of Incomplete Information

In this section, we examine the question of inference in a discrete game under different informational

assumptions. It is maintained that decision makers’ profit functions contain a variable that is not

observed to them. One may assume that an entrant does not observe another’s fixed costs for

example. Seim (2002) considers a model of endogenous entry and product positioning where she

assumes that some “idiosyncratic sources of profitability are hard to observe by competitors.”

Another example is the paper by Sweeting (2004) which analyzes an incomplete information model

of different radio stations’ decision to play a commercial break. Also, a recent paper by Aradillas-

Lopez (2005) examines the identified feature in a game similar to the one in Table 1 above but with

incomplete information and provides conditions for uniqueness under the assumptions that player

belief can depend on variables that do not enter the variable profits function. Most of the work on

empirical games with incomplete information16 deal with the presence of multiple equilibria in two

ways. In one way, they provide conditions for uniqueness of equilibria; usually, these are constraints

on the shape of the profit function guaranteeing that the equilibrium correspondence admits a

unique fixed point. Another way, it is assumed that the same equilibrium is chosen in similar

markets or that one uses the same equilibrium selection distribution in observationally similar

markets. This equilibrium is the one that can be estimated from the data nonparametrically or using

a parametric equilibrium selection mechanism. These assumptions rest on the underlying principle

that “similar” equilibria are being played in markets that are observationally equivalent. Here, we

provide a different but complementary approach to inference by studying the inferential problem

without making equilibrium selection assumptions. We relate our findings to results obtained in

the complete information games. We illustrate our insights using a simple bivariate game where we

derive the econometric restriction of this game and analyze its identification problem. The objective

is to try and nest the different assumptions that are made under a more general framework.

Multiple Equilibria in a Simple Bivariate Game

The nature of equilibria in games with incomplete information is slightly different from the complete

information counterpart. Strategies now are mappings from players’ types to actions where types

are private to the players. We maintain throughout the assumption of common priors , i.e., that the

distribution of signals or types is common knowledge to the players and we also restrict ourselves to

pure strategies, i,e, we do not allow for mixing. Again, we focus on the bivariate game below where

we assume that players have imperfect information about the profit function of their opponent. The

16Sweeting (2004) is an exception.
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functions ui and vi for i = 1, 2 are left unspecified as also F the distribution of the unobservables

ǫ1 and ǫ2 which are assumed to be independent of the observable exogenous variables with F as

their joint distribution. Both ǫ1 and ǫ2 are not observed by the econometrician but ǫ1 is private

information to player 1 and similarly for player 2.

Table 2: Bivariate Game
0 1

0 0 , 0 0 , v2(x2) − ǫ2

1 v1(x1) − ǫ1 , 0 v1(x1) + u1(x1) − ǫ1 , v2(x2) + u2(x2) − ǫ2

We fix X = (x1, x2) and derive the observable implication of the game. It is easy to see that

equilibrium mappings are going to be step functions that are decreasing in a threshold. So the

Bayesian Nash equilibrium of the game in Table 2 is a pair of mappings
(
1[ǫ1 ≤ t1], 1[ǫ2 ≤ t2]

)

where T = (t1, t2) are threshold variables that are functions of X, θ = (v1, v2, u1, u2) and the

common prior distributions. Player 1 believes that ǫ2 has a distribution G1
b and similarly for player

2. These distribution functions can depend on X and θ.17 So, T solves the following

(v1(x1) − t1)(1 − G1
b(t2)) + (v1(x1) + u1(x1) − t1)G

1
b (t2) = 0

(v2(x2) − t2)(1 − G2
b(t1)) + (v2(x2) + u2(x2) − t2)G

2
b (t1) = 0

where these represent the “zero-profit” conditions. Hence, the equilibrium thresholds T are fixed

points of the following mapping

Hb(t1, t2) =

[

v1(x1) + u1(x1)G
1
b(t2)

v2(x2) + u2(x2)G
2
b(t1)

]

For example, assuming that G1
b ≡ G2

b ≡ G then we get that the equilibrium thresholds solve

t1 = v1(x1) + u1(x1)G(t2)

t2 = v2(x2) + u2(x2)G(t1)
(3.23)

The above map can have multiple solutions (equilibria) and so the set of solutions to the above

system of equations, E , is defined as

E(X, θ,G) =
{
(t1, t2) : (t1, t2) solves (3.23)

}

The cardinality of this set is a function of X and (v1, v2, u1, u2). See the next section for an example

where the belief distribution G is normal and the set E can be shown to have at most three solutions

17The belief distribution can also depend on other “excluded” variables Z as in Aradillas-Lopez.
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(three equilibria). It is possible to obtain distributions G with a continuum of equilibria (we assume

that away below for simplicity). Now, we derive the model predicted probability P(X, θ) where

t = (t1, t2) ∈ E(X, θ):

P(X, θ) =










P(0,0)(X, θ,G)

P(1,1)(X, θ,G)

P(1,0)(X, θ,G)

P(0,1)(X, θ,G)










=










∑

ti∈E

∫ +∞
v1(x1)+u1(x1)G(t1i)

∫ +∞
v2(x2)+u2(x2)G(t2i)

P (ti|x, ǫ1, ǫ2)dF
∑

ti∈E

∫ v1(x1)+u1(x1)G(t1i)
−∞

∫ v2(x2)+u2(x2)G(t2i)
+∞ P (ti|x, ǫ1, ǫ2)dF

∑

ti∈E

∫ v1(x1)+u1(x1)G(t1i)
−∞

∫ +∞
v2(x2)+u2(x2)G(t2i)

P (ti|x, ǫ1, ǫ2)dF
∑

ti∈E

∫ −∞
v1(x1)+u1(x1)G(t1i)

∫ v2(x2)+u2(x2)G(t2i)
−∞ P (ti|x, ǫ1, ǫ2)dF










(3.24)

where
∑

ti∈E
P (ti|x, ǫ1, ǫ2) = 1 for all x, ǫ a.e. Then, one can define identification constructively

as we have done above. See (2.21). It is clear that without prior assumptions on the shape of G

and the functions u and v that the identified set is not a singleton (and can be large). Note here,

that the joint distribution of ǫ’s played no role in the cardinality or construction of the equilibria.

What matters is the assumption of common priors which we maintain18, and its distribution. In

addition, there is the added complication that one has to “solve” for the set of equilibria for

every “parameter” iteration. Notice, that the above formulation in (3.24) is general and hence

does not allow one to characterize the identified features of the model. The identification problem

becomes less complicated if one imposes assumptions on P (t|x, ǫ1, ǫ2). For example, one assumption

is requiring that P (t|x, ǫ1, ǫ2) ≡ P (t|x) = Pλ(t|x) where Pλ is a known probability distribution

up to the parameter λ. This assumption requires that in markets with similar observables, the

same equilibrium selection distribution is used. The presence of multiple equilibria introduces

the unknown parameter λ and so the inferential problem becomes one of trying to identify the

parameters of interest in the presence of the “selection” parameter λ. A more stringent assumption

would require that P (t|x, ǫ1, ǫ2) be degenerate at one of the equilibria. This would be the one

that can be estimated from the data. If we also require that the the distribution G ≡ F (i.e. the

common prior distribution is the same as the distribution of the ǫ’s) then the choice probabilities

solve a fixed point theorem.

The presence of multiple equilibria here is of a different nature than in games with complete

information in that one is not able to just focus on games where the outcome is uniquely predicted.

18In reality, it is not clear why a common prior assumption is usually made in these settings. In addition, even

with this assumption, it is not clear why one would want to assume that the common distribution is known to the

econometrician.
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So, to that extent it might appear that inference in this class of games is simpler. As we can see,

this is so only if one makes equilibrium selection assumptions.

The nature of the data is important in models with incomplete information. For example, if one

has a data set where the number of players goes to infinity from one market, then one can assume

that the equilibrium that is being played is the “observed” equilibrium. This is usually done in

“social interactions” models as in Brock and Durlauf (2001). However, in industrial organization,

it is more common to have a cross section of markets or games where each data “point” represents

an observable outcome of a game. In this case, there is a subtle but crucial difference between

the distribution of the data and the underlying economic model. For a given set of observable

covariates, the distribution of the data provides an “aggregator” that tells us a summary of the

observed outcomes. This data distribution in turns needs to be related to an economic model. In

each market, a different game (different equilibrium) might be played since in the general case,

equilibrium selection depends on the unobservables. Hence, one has a single observation per game

(market). So, the link between the observed data distribution and the underlying distribution of

interest is complicated in the presence of multiplicity19. The statistical structural is similar to

inference in a mixture model with unknown mixing distributions. It is possible to characterize the

identified set in more parametric examples. See section 3.2 below. But basically, without making

selection assumption, the characterizing identification can be complicated.

3.1 Complete vs Incomplete Information

The sharp econometric restrictions from a model with incomplete information (equations (3.24)

above) look strikingly similar to the restrictions from a model with complete information (2.20).

Basically, restrictions from both models share the same statistical structure due to the presence of

unknown equilibrium selection probabilities. Both models are a version of a discrete mixture with

an unknown mixing distribution. So, methods for inference in games with incomplete information

without selection assumptions can be used to analyze models with complete information. This

mixture framework is similar to one studied in Honoré and Tamer (2005) in a different setup.

There, the incompleteness in the model is a result of the ambiguity regarding the initial condition

in a single agent dynamic discrete choice model. In cases with discrete x’s and discrete ǫ’s, the

identified regions for these models can be characterized as solutions to linear programming problems.

So, this strategy of discretizing the data and the distribution of equilibrium selection will transform

19For example, in general games with multiple equilibria, standard descriptive statistics from the observed data are

related in a nontrivial way to the underlying statistics from the economic model. For example, the average number

of entrants in observationally similar markets is an average with respect to a mixture where the mixing distributions

correspond to different equilibria. For more on this point, see Echenique and Komunjer (2005).
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the structure of the problem of inference in both complete and incomplete information games into

one of solving a linear (and sometimes nonlinear) programming problem. We leave this connection

to future work. Finally, it is also worth mentioning that the approach to inference above requires

that one is able to solve for the equilibria of the game repeatedly which increases the computational

burden.

3.2 A Parametric Example

Consider again the example of Table 2 above where now we assume that player i does not observe

player 1−i’s fixed costs ǫ1−i for i = 0, 1. Assume that ǫ1, ǫ2 are independent of x with a joint distri-

bution F and also that the common belief distribution G is the normal CDF Φθ with mean µ and

variance σ2 (normality is assumed here without loss of generality). Then to examine multiplicity,

one needs to look at the map

t1 = x1β1 + ∆1Φθ(t2)

t2 = x2β2 + ∆2Φθ(t1)
(3.25)

For some values of x, θ and (β,∆) = (β1, β2,∆1,∆2), this map has multiple solutions. An example

is illustrated in Figure (2). It can be shown that in the case of normal beliefs, we can have at most

3 equilibria in this model.

Figure 2: Equilibria for some value of X and θ when F = Φ
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P(X, θ, β,∆) =










∑2
i=1

∫ +∞
x1β1+∆1Φθ(t1i)

∫ +∞
x2β2+∆2Φθ(t2i)

P (ti|x, ǫ1, ǫ2)dF
∑2

i=1

∫ x1β1+∆1Φθ(t1i)
−∞

∫ x2β2+∆2Φθ(t2i)
+∞ P (ti|x, ǫ1, ǫ2)dF

∑2
i=1

∫ x1β1+∆1Φθ(t1i)
−∞

∫ +∞
x2β2+∆2Φθ(t2i)

P (ti|x, ǫ1, ǫ2)dF
∑2

i=1

∫ −∞
x1β1+∆1Φθ(t1i)

∫ x2β2+∆2Φθ(t2i)
−∞ P (ti|x, ǫ1, ǫ2)dF










(3.26)

The restrictions in (3.24) can be adapted here (we restrict ourselves to the two stable equilibria

for simplicity) where for some values of the parameters, the equilibrium is unique, and the set

E is a singleton. The presence of the selection mechanisms P (ti|ǫ1, ǫ2) for i = 1, 2 complicate

the identification. But, for example, assume that x11 has large support conditional on the other

regressors with a nonzero positive coefficient β11. Then, for example by looking at the second

equation in (3.25) above, we see that as x11 becomes large for a given value of the other regressors,

t1 becomes large, and hence t2 becomes close to x2β2 + ∆2 and the equilibrium correspondence

is unique. For these values of x11, the model becomes a standard bivariate discrete choice model

where one can use usual methods for identification. Another way to make inference in this model

without making equilibrium selection assumptions, is to use the requirement that the function P

is a probability and is hence between zero and one. This implies that










min
(
P (0, 0|x, β,∆, t1), P (0, 0|x, β,∆, t2)

)

min
(
P (1, 1|x, β,∆, t1), P (1, 1|x, β,∆, t2)

)

min
(
P (1, 0|x, β,∆, t1), P (1, 0|x, β,∆, t2)

)

min
(
P (0, 1|x, β,∆, t1), P (0, 1|x, β,∆, t2)

)










≤










Pr(0, 0|x)

Pr(1, 1|x)

Pr(1, 0|x)

Pr(0, 1|x)










≤










max
(
P (0, 0|x, β,∆, t1), P (0, 0|x, β,∆, t2)

)

max
(
P (1, 1|x, β,∆, t1), P (1, 1|x, β,∆, t2)

)

max
(
P (1, 0|x, β,∆, t1), P (1, 0|x, β,∆, t2)

)

max
(
P (0, 1|x, β,∆, t1), P (0, 1|x, β,∆, t2)

)










(3.27)

where









P (0, 0|x, β,∆, ti)

P (1, 1|x, β,∆, ti)

P (1, 0|x, β,∆, ti)

P (0, 1|x, β,∆, ti)










=










∫ +∞
x1β1+∆1Φθ(ti)

∫ +∞
x2β2+∆2Φθ(ti)

dF
∫ x1β1+∆1Φθ(ti)
−∞

∫ x2β2+∆2Φθ(ti)
+∞ dF

∫ x1β1+∆1Φθ(ti)
−∞

∫ +∞
x2β2+∆2Φθ(ti)

dF
∫ −∞
x1β1+∆1Φθ(ti)

∫ x2β2+∆2Φθ(ti)
−∞ dF










and t is the solution to the set of equations in (3.25). If this equilibrium fixed point relation

has a unique solution, then the inequalities in (3.27) become equalities. This system of inequality

restrictions is not sharp, but is more practically feasible to use. Similarly to games with complete

information where one needs to solve the equilibria of the game at each parameter value and for
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each market, here one needs to solve the fixed point problem at each iteration.20

20We can take a transformation of both sides in (3.25) to get

Φθ(t1) = Φθ

�
x1β1 + ∆1Φθ(t2)

�
Φθ(t2) = Φθ

�
x2β2 + ∆2Φθ(t1)

�
One can solve for Φθ(ti) as a fixed point of the above mapping (as opposed to ti). This is easier since solving for Φ

can be done using a grid search method on [0, 1].
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4 Some thoughts on Identification in Dynamic Entry Games

There has been a set of mostly methodological papers exploring the inferential properties of dynamic

models with multiple decision makers. A summary of these papers is contained in Ackerberg,

Benkard, Berry, and Pakes (2006). Most of the recent papers21 build on existing results in the

single agent dynamic optimization models as explored in Rust (1994) and further studied in Hotz

and Miller (1993). In this paper, we extend the identification framework we explored earlier to a

dynamic setting. Most of the discussion will be a review of existing work with some emphasis on

some of the subtle details. In the first section, we examine a simple monopoly entry model and

show that how the model can be identified under a set of assumptions, some of which are strong

and suspect. For example, we show that if the distribution of fixed costs is known (up to a finite

dimensional parameter), then one can identify variable profits under the assumptions that the fixed

costs are iid over time and markets and that the same equilibrium is played in observationally similar

markets. Then, we examine the reverse question, i.e., what can we learn about the distribution

of fixed costs if one observes variable profits. Here, we see that under some support conditions,

one can identify the distribution of fixed costs. But that generally, this distribution is partially

identified. In the last section we provide some heuristics about dealing with multiplicity in dynamic

models.

4.1 Identification in a Simple Dynamic Exit Game

Consider the problem of a monopolist operating in a market and facing the choice of staying the

next period or exiting. Once out, the monopolist receives zero profits and stays out forever. At the

beginning of every period, the monopolist observes ǫ, a random variable representing fixed cost of

staying an extra period. This random variable is not observed by the economist and is the only

unobservable in the model. The crucial assumption is that ǫ is independent and identically distrib-

uted over time and markets which restricts the presence say of unobserved market heterogeneity

that can affect profits. The economist observes the sequence of exit decisions by monopolists in

an independent cross section of markets. As usual, the objective of the problem is to see what we

can learn about variable profits and the distribution of fixed costs under a set of assumptions. The

data identifies the choice probability of exit P0(x) (or entry P1(x) = 1−P1(x)) as a function of the

state variable x. The question becomes one of relating these choice probabilities to the underlying

parameters of interest. To start with, this simple set up, which can be generalized to oligopoly

21The papers are Pakes, Ostrovsky, and Berry (2005), Bajari, Benkard, and Levin (2005), Aguiregabiria and Mira

(2004) and Pesendorfer and Schmidt-Dengler (2004). For a summary of these papers see Ackerberg, Benkard, Berry,

and Pakes (2006).
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cases, imposes strong assumptions that are unlikely to hold in practice. These assumptions though,

provide a benchmark for analysis (and are used by most of the recent papers) and are a natural

starting point for studying identification.

The Bellman equation for the model above is

v(x, ǫ) = max
{
u(x) − ǫ + β

∫

v(x′, ǫ′)γ(x′, ǫ′|x, ǫ)dǫ′dx′, 0
}

where u(.) is variable period profit and is an object of interest. Moreover, γ(x′, ǫ′|x, ǫ) = γ(x′|x)γ(ǫ′)

is the equilibrium transition probability that we assume here is the same across markets and hence

γ(x′|x) can be consistently estimated. The expected Bellman equation is

v(x) =

∫

v(x, ǫ)dF = P1(x)
{
u(x) + E[ǫ|ǫ ≤ δ(x)] + β

∫

v(x′)γ(x′|x)dx′
}

= P1(x)
{
δ(x) + E[ǫ|ǫ ≤ δ(x)]

}
(4.28)

where

δ(x) = u(x) + β

∫

v(x′)γ(x′|x)dx′ (4.29)

is the deterministic part of present and future returns. In addition, the choice probabilities are

related to δ(.) in the obvious manner,

P1(x) = F (δ(x)) (4.30)

where F (.) is the distribution function of ǫ. Without strong assumptions on F (.) or δ(.), one can

use results from the binary choice literature by Matzkin to identify both these functions up to some

homogeneity and normalizations. Assuming that F is known (up to a finite dimensional θ) and

is sufficiently smooth, we have δ(x) = F−1(P1(x)) and so we can “solve” for v by substituting δ

from (4.30) into (4.28). This will give us a functional space map v = Ψ(F ) (this is the map that

Aguiregabiria and Mira use). Notice here, that other than support conditions and smoothness on

F , all we require to get the conditional expected value function is knowledge of F . To solve for u(x)

we use the equation for δ to back out u as a function of the discount parameter β. We summarize

identification in the following lemma.

Result 5 Let the model above hold. Assume that ǫ has a continuous density on the real line with

distribution F with finite mean.

1. If F is known, then v(.) is identified on the support of x. In addition, if β is known, then

u(.) is also identified on the support of x. If β is not known, then if there exists an x̄ such

that u(x̄) = a where a is known, then β and u(.) can be identified.
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2. If F is known up to a finite dimensional parameter θ and β is an unknown parameter, then

we can get vθ and uθ,β on the support of x. The identified set ΘI is defined as

ΘI =
{
(θ, β) : Pr

[
x : P1(x) = Fθ(uθ,β(x) + β

∫

F−1
θ (P1(x

′))γ(x′|x)dx′
]

= 1
}

Notice here, that we do not require discrete support on the x’s. In addition, the results above

can be extended to multinomial models. For more on this see Magnac and Thesmar (2002), Hotz

and Miller (1993) and Aguireghaberia and Mira. Of course identification is easier (the set ΘI is

“smaller”) if one makes more parametric assumptions on the variable profit function u(.). The

question of point identification thus focuses on conditions under which the set ΘI shrinks to a

singleton. Those are not simple to obtain especially in nonlinear models like the one above.

4.2 Identification of the Fixed Costs Distribution

Pakes, Ostrovsky, and Berry (2005) note that we often have information about variable profits from

the analysis of data on prices, demand, costs and so forth. Entry data is called on to learn about

the distribution of fixed costs. This is the reverse of the question we asked above, i.e., given that

we know u(.), what can we learn about F (.). We know from above that given F , we can get v

through the map v = Ψ(F ). Given that we know v (and u), we can get δ(x) through (4.29). Then,

this allows us to get F on the support of δ(x) through P1(x) = F (δ(x)). Hence, one can define

the map F = Φ(v). Sufficient condition for point identification of F (on the support of δ) can be

obtaining by analyzing the fixed points of the following map
[

F

v

]

=

[

Φ(v)

Ψ(F )

]

Sufficient conditions for uniqueness of fixed points in Banach exist, but in general those are hard to

satisfy. Below, we characterize solutions to the fixed point map in two cases. The first case provides

necessary conditions for local solutions to the value function v(.) which then allows one to construct

the fixed cost distribution (modulo measurability). The second case constructs a consistent fixed

costs distribution in the case where x takes discretely many values.

Case 1: Continuous x

Interestingly, one can provide a necessary condition for a value function v(x) to be a solution to

the above problem in the case F is unknown. In this analysis, we deliberately omit exact conditions

for differentiability, measurability for the sake of simplicity. Start with the fact that

P1(x)E[ǫ|ǫ ≤ δ(x)] =

∫ δ(x)

ǫf(ǫ)dǫ
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This means that from (4.28),

v(x) = δ(x)P1(x) +

∫ δ(x)

ǫf(ǫ)dǫ

Taking a derivative with respect to x (examining v(x) locally), we get

v′(x) =
(
δ(x)P1(x)

)′
+ δ(x)f(δ(x))δ′(x)

=
(
δ(x)P1(x)

)′
+ δ(x)P ′

1(x)

= δ′(x)P1(x) + 2δ(x)P ′
1(x)

(4.31)

The second equality follows from P1(x) = F (δ(x)) which implies that P ′
1(x) = f(δ(x))δ′(x). Hence,

replacing δ(x) = u(x) + β
∫

v(x′)γ(x′|x) we get a nonlinear differential equation in v and v′ where

methods can be used to examine existence and uniqueness of solutions. Given a solution v, that

will give us the function δ(x) which in turns gives us F (.) on the support of δ(x). Another avenue

for identification is making parametric assumptions on v(.). Conditions for identifications can then

be obtained more easily (of course, making assumptions on v(.) is a little tenuous since v is not a

model primitive).

Case 2: Discrete x

We present insights about an interesting case where x has discrete support. In particular, let

x ∈ {x1, . . . , xK}. Moreover, let the order be such that δ(x1) < . . . < δ(xK). We know this

order since P1(x) = F (δ(x)) (here, the strict inequality is without loss of generality since one can

only learn F (.) on the support of δ) and P1(x) is known. We construct a distribution function

which is consistent with the model and the data. Consider a distribution function FL that takes

K values and has support on δ(x1), . . . , δ(xK) with probability P1(x1), P1(x2) − P1(x1), P1(x3) −

P1(x2) . . . , P1(xK) − P1(xK−1). By construction, this distribution is consistent with the empirical

evidence (in fact, this provides a lower bound on the true underlying F (.)). What remains is to

derive the implied function v(.). The implied conditional expectation is

E[ǫ|ǫ ≤ δ(xi)] =

∑

j<i δ(xj)(P1(xj) − P1(xj−1))

P1(xi)

=

∑

j<i

(
u(xj) + β

∑K
i=1 v(xi)γ(xi|xj)

)
(P1(xj) − P1(xj−1))

P1(xi)

(4.32)

Using a discrete version of the optimized Bellman equation we have,

v(x) = P1(x)
{
u(x) + E[ǫ|ǫ ≤ δ(x)] + β

K∑

i=1

v(xi)γ(xi|x)
}

(4.33)

substituting for E[ǫ|ǫ ≤ δ(x)] from (4.32) above, one can set up a system of equation to obtain

information about v(.) given that we know u(.).
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Another distribution function that is consistent with the empirical evidence is FU in the figure

below. This distribution obeys (4.30). One can then derive the function v which in turns gives us

the “support” functions (the δ’s).

Figure 3: Two Discrete Distributions F
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F_U

1

P_1

P_2

δ_2δ_1 δ_3
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4.3 Multiple Equilibria in a Simple Dynamic Model

In this section, we provide insights about the effect of multiple equilibria on inference in a simple

dynamic game. In the above, we have always assumed that one knows (or can consistently esti-

mate) the transition probability function γ(.|.). Most existing papers, this function is replaced by

its empirical counterpart. What rationalizes this is a common equilibrium assumption, i.e., that

conditional on observables, the same equilibrium is played across markets. If one allows for mul-

tiple equilibria in different markets then the empirical transition probability (the empirical analog

of γ(.)) will have no particular structural meaning but rather it aggregates observations across

markets that come from potentially different equilibria. In this section we provide simple insights

about cases when one drops this equilibrium selection assumption.

Consider the entry decision of two firms 1 and 2. Firm 1 makes profit u(1, y2) − ǫ1 from entry

where ǫ1 are the fixed costs of staying next period. If firm 1 decides to stay out next period, it gets

zero profits forever. The same holds for firm 2. In this example, all markets are identical to the

econometrician (no x’s). The belief for firm 1 about firm two’s actions next period are P b
1 (y′2|y1, y2)

where y′2 is player 2’s decision to enter next period. The objective function for player 1 (similarly

38



for player 2) is to enter next period if

ǫ1 ≤ u(1, y2) + β
∑

y′

2

W (1, y′2)P
b
1 (y′2|y1, y2)

= u(1, y2) + β
(
(W (1, 1) − W (0, 1))P b

1 (1|y1, y2) + W (0, 1)
)

where W is the value function that depends on (y1, y2). Again as in the static game with incomplete

information the equilibrium here is a threshold (ǭ1, ǭ2) for the ǫ’s at which the firms are indifferent

between dropping out and staying in. These thresholds are solutions to the following fixed point

map:

ǭ1 = u(1, y2) + β
(
(W (1, 1) − W (1, 0))F b(ǭ2|y1, y2) + W (1, 0)

)

ǭ2 = u(y1, 1) + β
(
(W (1, 1) − W (0, 1))F b(ǭ1|y1, y2) + W (0, 1)

)

where F b is the common prior belief distribution. This map can have multiple solutions. This

depends on F b and the other parameters u, W and β. One can immediately see that without

further assumptions, the model adds an equilibrium selection function that can depend on the

unobservables. For example, instead of the moment condition in (4.30), we have the following

P1(x) =
∑

i

∫ δi(x)

P (ti|ǫ, x)dFǫ

where P (.) is the equilibrium selection function and the index i runs over the set of equilibria

(assumed discrete here). Then, identification in these settings involves the set of variable profits and

fixed cost distributions that obey the Bellman equation and the above modified choice probability

map. This is further complicated by the fact that the above map involves solving for the equilibria

of the game at each iteration. As we can see that without further assumptions, identification in

dynamic Markov games while allowing for players to play different equilibria in different markets

is hard. There are other avenues that one might want to consider. One avenue might be one where

one knows ex-ante that there are two types of markets and that in one type one equilibrium is

played and another is played in the other market. We leave this and other identification results for

dynamic games as a topic for further research.

5 Conclusion

In this chapter, we review and study the identification question in parametric and nonparametric

models of entry. We find for example that combinations of economic insights into the nature

of competition coupled with results from the binary choice literature help clarify what can and

cannot be learned from the data. We also pay particular attention to the role multiple equilibria
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and mixed strategies play. The common econometric specification to both models of complete and

incomplete information is the mixture model with unknown mixing distributions. We also provide

some insights for identification in dynamic models. But, in general, there has not been much work

on identification in dynamic discrete games that clarifies the role different assumptions (especially

ones related to selection functions) play.
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A Entry game with 2 types: An illustration

This example shows that in games with heterogenous effects, multiple equilibria occur that are not

unique in the number. Applications to these games are studied in Ciliberto and Tamer (2003).

Here, consider an entry game similar to the BR baseline model in (2.5) above, but where we allow

for two types, type 1 and 2 with the following profits functions:

π1(y1m, y2m, xm, f1m) = v1(y1m + y2m, xm) − f1m

π2(y1m, y2m, xm, f2m) = v2(y1m, y2m, xm) − f2m

We assume that the variable profits for type 1 firms does not depend on the types of firms in the

market but only on the total number of firms in the market while the profits for type 2 firms depends

on the number of type 1 and type 2 firms. In addition, assume that v2(1, 1, xm) < v(0, 2, xm) for

all x a.e. (this is not essential). We will also make a set of assumptions that simplify the model.

First, assume that

v1(y1 + y2, x) = α0 + α1(y1 + y2) + α2x − f1

v1(y1 + y2, x) = β0 + β1y1 + β2y2 + β3x − f2

where β2, β1 and α1 are strictly negative and β2 > β1 (profits for type 2 firms will decrease by a

larger amount if a type 1 firm enters the market vs a type 2 firms). Second, assume that only 4

firms, two of each type, can be in any market (just for simplicity). One can then easily write down

the probability of all the outcomes. For example,

Pr(0, 0|x) = Pr(f1 > α0 + α1 + α2x; f2 > β0 + β2 + β3x)

Pr(1, 0|x) = Pr(α0 + α1 + α2x ≥ f1 ≥ α0 + 2α1 + α2x; β0 + β1 + β2 + β3x ≤ f2)

Pr(0, 2|x) = Pr(f1 ≥ α0 + 3α1 + α2x; f2 ≤ β0 + 2β2 + β3x|x)

It is easy to see that if (f1, f2) has wide support, then there is region for which (1, 0) and (0, 2) are

multiple pure strategy equilibria of the game if β2 > β1. This heterogeneity in the effect on type

2 variable profits of the two types of firms entering causes the model to have multiple equilibria

where each equilibrium involves a different number of firms. Looking at figure 4, we see that (1, 2)

and (2, 0) can also appear as equilibria of the game. Finally, we assume that we are going to restrict

ourselves to games with pure strategies only. So, given a random sample of markets, where in each

market m we observe its configuration in terms of the number of type 1 and type 2 firms and a

vector of regressors xm (that can be type specific), we can relate the (conditional) distribution of

the total number of firms to the predictions of the model. For example, Borzekowski and Cohen

(2004) study a technology adoption game with network effects where the decision of a credit union

to adopt a particular technology depends on the the number of other credit unions that adopt
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the technology. Strategies for identification in these models is similar to ones we highlighted in

section 3 above. To relate the observed choice probabilities to ones predicted by the model, one

can use figure 4 below. For example, for values of (f1, f2) when (0, 0) is the unique equilibrium,

Pr((0, 0)|x;A0) = 1 and so

Pr((0, 0)|x) =

∫

A0

dFf1;f2 ≡ Pr(A0)

where A0 = {f1, f2 : v(1, x) ≤ f1; v2(0, 1, x) ≤ f2} since (0, 0) is a potentially observable outcome

in cases when it is a unique equilibrium of a game (assuming no mixing). On the other hand, to

write down the the probabilities of observing (1, 2) predicted by the model, one needs a selection

mechanism as in section 2 above. In general though, entry models with types reduces the dimension

of the problem and makes inference more practically feasible since instead of dealing with whether

a particular firm enters, now we deal with the number of firms of a given type enter.
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