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Much like in other semiconductor environments, dynamic random access memory (DRAM) manufacturers
face significant demand uncertainty before production and capacity decisions can be implemented. This

paper investigates the role of market information in DRAM manufacturing and the consequences of allowing
information sharing in the industry. An oligopoly model of competition with correlated private information
is developed in which firms make decisions about production and capacity. In this setting, firms consider
the information their competitors are likely to hold, conditional on their own. We find that both firms and
customers benefit when firms share information with their competitors. In particular, sharing information is
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case-by-case basis.
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1. Introduction
Over the last six decades, strategic behavior has
remained as one of the centerpieces of economic
thought and inquiry. Its prominence is likely to source
from its being central to understanding human and
institutional behavior, as well as from its intricate fea-
tures, which naturally attract deliberation.

One of the sources of the intricate features of
strategic behavior is that agents may hold different
information about the phenomenon at hand. In finan-
cial markets, investors can be more or less optimistic
about the same asset depending on their private infor-
mation and the same can be said about economic
agents deciding their consumption/savings alloca-
tions. In an industrial market, such as the one focused
in this paper, companies can be more or less opti-
mistic about future conditions. The reason asymmet-
ric information adds complexity to strategic behavior
is that an agent is required to deliberate on the other
players’ likely actions conditional on the information
available privately to her. In market competition situ-
ations this assumption is central for decision making
whenever agents face significant uncertainty but have
some information to spear through it.

This paper focuses on the case of dynamic random
access memory (DRAM) manufacturers, the makers
of everyday “computer memory” chips, a pervasive
component of most electronic products. As with other

semiconductor industries, DRAM manufacturers face
significant uncertainty about economic outcomes, and
market information is vital for their most important
decisions, such as production and capacity invest-
ments. The analysis investigates how market infor-
mation shapes this industry at various levels. First, it
recovers the fundamental market parameters, includ-
ing the precision of the information available to the
agents. Second, it considers the hypothetical scenario
of information sharing across firms, and its impact
on firm performance, market volatility, and consumer
welfare. Finally, the paper provides an identification
argument for a game of asymmetric information and
adds to the present knowledge on incentives for infor-
mation sharing in strategic settings.

Accessing reliable and complete data on public and
private information of firms in any market is largely
infeasible. Instead, our approach recovers the unob-
servable information that is consistent with observable
firms’ actions by use of a strategic model of compe-
tition. The model allows for correlated private infor-
mation in the sense that, for example, when a firm
receives “good news” about future market perfor-
mance, it is aware that its competitors may be equally
optimistic for similar reasons.

The seminal literature on competition and incen-
tives for information sharing (Vives 1984; Gal-Or
1985, 1986) has considered the cases where firms
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have access to correlated private information about
market performance or about their own costs.1 Gal-
Or (1986), who focuses on sharing cost informa-
tion with competitors, provides the following incisive
intuition about the incentives to share information
with competitors:

The pooling of private information about unknown
costs has two effects on the firm. On one hand, more
accurate information about the rival’s cost is available,
and the strategies can be more accurately chosen. 0 0 0On
the other hand, the pooling of the information reduces
the correlation among the decision rules. 0 0 0 Reduced
correlation has a positive or negative effect dependent
upon the slope of the reaction functions of the firms.
If they are downwards sloping 4Cournot competition5
reduced correlation has a positive effect, and if they are
upwards sloping 4Bertrand competition5 reduced cor-
relation has a negative effect. Our main result is consis-
tent with the above discussion. More explicitly, perfect
revelation is a dominant strategy at the Cournot equi-
libria and no revelation is a dominant strategy at the
Bertrand equilibria.

By the same reasoning, the dual result holds for the
case of sharing information about demand, as shown
by Vives (1984): firms benefit from sharing informa-
tion about demand when their best-response func-
tions are positively sloped (Bertrand competition) but
not when their best-response functions are negatively
sloped (Cournot competition), because pooling infor-
mation about the market conditions increases correla-
tion among actions.2

This intuition has informed the scarce empirical
analyses of competition settings admitting correlated
private information. Doyle and Snyder (1999) utilize
production plans from the automotive industry in a
Cournot setting to identify whether announcements
led to competitive reactions. Observing a positive cor-
relation between firm announcements and compet-
itive reactions, they concluded that firms could be
using production plans to share information about
demand rather than costs. However, their finding is
at odds with the predictions of the findings of the
theoretical literature described above, under which
firms should have no incentive to share demand infor-
mation in quantity-setting contexts. By considering a
more general framework, this paper rationalizes their
findings: we recover nonmonotonic best-response
functions and find that under these conditions firms
do have an incentive to share demand information

1 Other seminal contributions include Novshek and Sonnenschein
(1982), Clarke (1983), and Shapiro (1986). See also Raith (1996) and
Jin (2000) for an integrative analysis. The role of market information
in competition has also been analyzed in other contexts. See, for
example, Chu (1992), Villas-Boas (1994), and Chen et al. (2001).
2 Sharing information about market conditions and about costs has
a parallel in auction theory, in common value and private value
auctions, respectively.

with their competitors, even when they are quan-
tity setters. However, allowing this flexibility means
abandoning algebraic expressions and accepting a sig-
nificant computational cost as well as a number of
numerical approximation methods.

Armantier and Richard (2003) focus on sharing cost
information in a duopoly airline setting. Consistent
with the predictions of the theoretical literature, they
find that airlines deciding how many flights to pro-
duce benefit from sharing cost information while they
only moderately decrease consumer surplus. How-
ever, they do not distinguish between production and
capacity decisions by firms (nor do they allow the
flexibility discussed above). Instead, they consider
each flight as the airline’s production decision. By
contrast, we explicitly incorporate capacity decisions
into our model and show that the quality of informa-
tion strongly interacts with the capacity available to
a firm. For example, a firm with a low capacity level
may not be able to take advantage of positive infor-
mation because its capacity is likely to bind. Given
this, information sharing may benefit her competitors
but affect her own performance negatively.3

Additionally, we find that sharing demand infor-
mation creates a smoother market (the variance of
the firms’ payoffs is reduced), and the downstream
market also benefits. At the core of our results lies
the nonmonotonic nature of the best-response curves
that we recover through our empirical application.
In this case, theoretical predictions are not available,
and assessing the consequences of information shar-
ing becomes mainly an empirical exercise.

Ng and Shum (2007) investigate information and
expertise pooling resulting from brokerage service
mergers. By comparing earnings forecasts of bro-
kerage firms before and after mergers, the authors
find support for occurrence of information pooling.
Moreover, at the analyst level, Ng and Shum (2007)
propose that postmerger reallocation of analysts to
particular stocks is a likely mechanism driving post-
merger forecast improvements. Rather than focusing
on identifying the benefits of pooling information
through mergers and acquisitions, this paper pro-
vides the complementary analysis of the incentives of
sharing information between a firm and its ongoing
competitors.

The next section presents the data sets for the anal-
ysis, and §3 outlines the model and the estimation
procedure. Section 4 presents the estimation results,

3 Recent empirical work in auctions has also allowed for the exis-
tence of correlated, asymmetric information. For example, Somaini
(2015) allows bidders in procurement auctions to hold private cost
information, and cost levels are allowed to be correlated across
competitors. Somaini finds that this structure helps to explain the
lack of a significant relationship between bid aggressiveness and
competitors’ distance to a project.
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and §5 is devoted to the counterfactual analysis. Sec-
tion 6 provides some concluding remarks.

2. Data
The DRAM market is organized into roughly more
than 10 players, many of whom are organized into
alliances of firms that effectively share production
technologies and coordinate research and develop-
ment efforts, decide production levels, and allocate
available capacity across their members.4

A firm in the DRAM industry provided two propri-
etary data sets for the model estimation. The first data
set is an aggregate series of quarterly price (dollars
per gigabyte (GB)) and quantities (106 GB) of DRAM
from the beginning of 1991 until the end of 2011. This
data set is used for estimation of the demand curve.
Figure 1 plots the logarithm of quantity and of price
over the sample period of 1991–2011.

A second, more detailed data set is used to estimate
the supply-side parameters. This data set includes
quarterly information from the first quarter of 2005
until the third quarter of 2010 about production,
capacity, and cost information of seven firms in the
DRAM industry that account for roughly 90% of the
market share of the global DRAM market. These
firms are organized into four alliances that effec-
tively behave as coordinated organisms and are taken
as individual decision-making units in the analysis.5

Tables 1 and 2 present the descriptive statistics of the
data sets.

The memory density indexes (denoted as �it in
the model) were constructed by experts of the data
provider and were based on the production technolo-
gies each alliance had implemented at each moment
in time. Memory density translates directly into pro-
duction cost. In our case, the indexes measure relative
production efficiencies over time and across firms and
are normalized such that alliance 1 has an index of 1
at a specific moment in time.

Since 2005 and until the third quarter of 2008, “vir-
tual” capacity usage (not taking outages and mainte-
nance stoppages into account) was at 100% and the
DRAM market faced undersupply. The main problem
for firms had been to update their production capac-
ity appropriately to be able to sell more units at lower
costs. However, from the last quarter of 2008 until
late 2009, capacity utilization dropped dramatically.
During that period, marginal production costs played
an important role in the production levels of firms.
At the same time, firms refinanced heavily through

4 We outline the main characteristics and history of the DRAM in
Web Appendix 1 (available as supplemental material at https://
doi.org/10.1287/mnsc.2015.2297).
5 Conversations with managers suggested that these alliances have
power in coordinating research, production, and capacity levels.

Figure 1 (Color online) Logarithms of Market Price and Quantity over
Time (1Q1991–4Q2011)
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their parent companies or through renegotiation with
banks to stay in operation.6 A listing of the firms
included in the data as well as of their nationalities
and partnerships is provided in Table 3.

The alliance structure is not always stable. During
our sample period, Elpida changed alliances to join
ProMOS and Powerchip in 2009. This is incorporated
in our analysis by aggregating the cost indexes, pro-
duction, and capacity levels accordingly.7

Producing DRAM implies combining a number of
resources. But it is by far the production technology
that determines the relevant cost for decision making
about output.

South Korean Samsung Electronics is the leader in
market share throughout most of the sample period,
capturing almost a third of the unit sales in the mar-
ket. It is followed by Hynix, which achieves more
than 20% market share of DRAM unit sales. The
remaining chunks of the market are shared among the
medium-sized competitors (i.e., Elpida and Micron,
with 19% and 13% market shares, respectively) and
smaller firms (Powerchip and ProMOS, with less than
6% each).8

Whereas production increased for most firms along
the sample period (and all firms were producing more
in mid-2009 than in the beginning of 2005), capac-
ity usage dropped from full utilization (which occurs
until the third quarter of 2008) to roughly 80% until
the third quarter of 2009. Finally, market price and
production costs follow a downward trend over time,

6 The medium-sized player Qimonda (not present in the sample
data) was the single casualty after having filed for bankruptcy in
the beginning of 2009.
7 More recently—already outside our sample period, in 2013—
Elpida was acquired by Micron. See http://www.micron.com/
about/about-the-elpida-acquisition (last accessed January 5, 2016).
8 See, for example, Howard (2010).

https://doi.org/10.1287/mnsc.2015.2297
https://doi.org/10.1287/mnsc.2015.2297
http://www.micron.com/about/about-the-elpida-acquisition
http://www.micron.com/about/about-the-elpida-acquisition
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Table 1 Descriptive Statistics of Demand Data Set (1Q1991–4Q2011)

Min Max Mean Std. dev.

Quarterly industry sales (106 GB) 0004 775081 103045 184031
Market price ($/GB) 8038 421926043 71794047 121396050

Note. N = 84 periods.

Table 2 Descriptive Statistics of Alliance-Level Data Set
(1Q2005–3Q2010)

Min Max Mean Std. dev.

Quarterly industry sales (106 GB) 42016 480086 201076 139043
Market price ($/GB) 12007 132036 52098 39004
Quarterly industry capacity (106 GB) 42016 480086 210099 146071
Memory density (index) 0069 2000 1028 0038

Note. N = 23 periods × 4 alliances.

whereas production follows an upward trend over
time.

The period covered by the second data set takes
place after the complaints by U.S. personal com-
puter makers of collusive behavior by DRAM mak-
ers. These claims were proven to be true: they led
to heavy penalties to DRAM companies in the years
2003–2005. The executives of some of the most impor-
tant firms in the industry—Samsung, Hynix, Elpida,
and Infineon—pleaded guilty to either keeping arti-
ficially high prices through low production levels or
obstructing justice in relation to a United States Justice
Department’s probe on the matter. We assume that by
the beginning of 2005 these firms already had incen-
tives to abandon their collusive behavior.

In the next section we present a model in which
firms compete “à la Cournot”; i.e., their main strate-
gic variable is production quantity and capacity. We
believe this assumption makes sense for a number of
reasons. First, the fact that firms kept prices artificially
high through low production levels during the 2003–
2005 period suggests that production is an important
decision variable in the market. Second, the Cournot
modeling assumption does not mean that firms are
unable to affect other strategic variables such as prices,
as illustrated by Kreps and Scheinkman (1983). Finally,
the assumption was supported by industry experts of
the data provider company.

Because DRAM is often transacted through spot
contracts, a Nash bargaining model (Nash 1950) could
also appropriately capture the forces in play. How-
ever, Nash bargaining does not lend itself natu-
rally to settings of asymmetric information given its
axiomatic nature. Another advantage of the Cournot
model is its parsimony. For example, the Bertrand–
Edgeworth model (see Edgeworth 1925 and Osborne
and Pitchik 1986, among other related work) pro-
vides another natural modeling alternative because
it incorporates capacity levels as well as price set-
ting behavior. However, this model lends itself less

Table 3 DRAM Firms in Sample, Nationalities, and Alliances

Name Nationality Alliance identifier

Samsung South Korea 1
Hynix South Korea 2
Powerchip Taiwan 3
ProMOS Taiwan 3
Elpida Japan 3, 4
Micron United States 4

to empirical analysis because of its complexity, often
generating multiple and mixed strategy equilibria
depending on the particular implementation.9

3. The Model
3.1. Preliminaries
This section presents a model of competition where
the main decisions of the firms are about setting pro-
duction and capacity levels. We focus on a repeated
two-period model where firms choose capacity levels
in the first period and production levels in the second.
We discuss the suitability of the modeling assump-
tions in §3.2.

Consider the problem of the firms in the second
period: they decide how much to produce conditional
on the installed capacity levels and the available mar-
ket information. Therefore, in the second period, each
firm maximizes its operating profit by solving the
problem

�∗

i 4Ki1K−i1©25= max
qi

E�6�i4qi1 q−i1�5 �©27

s0t0 qi ≤Ki1

where qi is firm i’s production level and Ki is its
installed capacity level (which was set in the first
period). Because firms do not know the market
demand shock � a priori, they condition their expected
operating profits on the market information available
in the second period, ©2. We assume that this infor-
mation is public to all firms such that the production
game is played under common information. Note that
the expected operating profit for firm i, �∗

i 4Ki1K−i1©25,
depends on the installed capacity levels for each firm
as well as on the available market information. We
assume capacities Ki1 i = 100n are observable to all
firms during the production stage. In effect, in this
industry, firms are aware of others’ capacity decisions,
and they often publicize their own investments to
shareholders.

In period 1, firms decide their capacity levels,
which can be used for production in period 2. Hence,

9 I thank an anonymous referee for pointing out these modeling
alternatives. Other forces such as transaction costs also play a role
in the industry but are abstracted away in the analysis. Contract-
level data would be useful to incorporate such effects.
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capacity maintenance generates an option value for
production in the second period. We denote the firms’
capacity problem in period 1 by

max
Ki

{

�E©2
6�∗

i 4Ki1K−i1©25 �©i17−�2K
2
i

}

1 (1)

where ©i1 denotes firm i’s information about the mar-
ket performance available in period 1 and � is the
discount factor. Subscript i in ©i1 results from the fact
that we allow different firms to have access to differ-
ent information about the market demand in period 1
while choosing their capacity levels. Hence, in gen-
eral, firms play a game of correlated information in
capacities: firm i invests in maintaining capacity Ki

for the next period while incorporating the fact that
the actual production constraints of its competitors
will depend on their information, which is correlated
with its own private information. Solving the capacity
game entails finding functions K∗

i 4©i15∀ i ∈ n that sat-
isfy the capacity first-order conditions for all possible
values of ©i1.

We now define ©2 ≡ s = 8s100s49 to be a vector of
demand signals that is available to all firms in the
second period. In period 1 we assume that each firm
has access only to its own private information, ©i1 = si.
Thus, the information that used to be private to firms
in period 1 becomes public in period 2, and as a
result, firms play a (correlated) private information
game in capacity in period 1 and a common informa-
tion game in production in period 2. This assumption
captures the idea that firms converge on the avail-
able information over time, and it is extremely use-
ful to provide tractability to the model. The reason is
that it ensures that rivals’ capacity investments do not
carry informational content to the second period. To
see this, consider the case where not all information
from period 1 becomes public in period 2. In this case,
a firm can use a rival’s capacity investment to infer
some of the rival’s undisclosed private information.
However, in this case, strategic firms will take the fact
that their capacity investments today can signal their
demand information to their competitors in period 2.
This strategic behavior adds an undesirable degree of
complexity to the model and, moreover, found little
support in conversations with industry experts.

Given the assumed information structure and intro-
ducing the time subscript, the capacity game becomes

max
Kit

{

�Es−it
6�∗

it4Kit1K−it1 st5 � sit7−�2K
2
it

}

0 (2)

3.2. Discussion of Main Modeling Assumptions
Although analytical models are always stylized rep-
resentations of reality, it is worth considering how the
assumptions of the model above capture the essential
factors of the DRAM industry.

Consider first the repeated-game assumption that
implies that investments in capacity today carry no
dynamic effects to subsequent capacity investments.

This assumption is natural in the DRAM industry
once the capacity cost �2K

2
it is considered as the cost

of maintaining an active capacity level Kit rather than
capturing the total investment in capacity by firm i
at time t. The reason is that the rate of increase of
the total theoretical capacity is coordinated through
Moore’s law: firms invest in production technologies
that translate into higher memory densities and, as
a result, into higher capacity levels (and lower pro-
duction costs) over time. Moreover, they also build
new facilities to implement these new technologies in
novel production lines. This behavior is fixed such
that it is well known in the industry that a firm unable
to accompany Moore’s law is doomed to either exit
or to an acquisition by its rivals in the near future.
In sum, the capacity investment in the model can be
thought of as “variable” capacity cost of maintaining
a certain amount of capacity active for production,
whereas total investments in capacity are coordinated
across firms to accompany Moore’s law. As a result,
this coordination yields small changes of capacity lev-
els over time, in contrast with some other industries
where capacity follows large discrete jumps (see Ryan
2012 for an example of the cement industry).

Although the repeated-game assumption somewhat
restricts the use of the model to other settings, it is
equivalent to an infinite time-horizon model where
firms face additively separable investment costs such
that capacity yields a scrap value after it is used or,
alternatively, where firms face a “lease” market for
capacity such that they can outsource capacity on a
variable basis. A proof is presented in Appendix A.
The equivalence relies on our focus on Markov per-
fect equilibria (MPE) as well as on an additive-symme-
tric separability assumption. The MPE assumption
ensures that firms take the same information in both
versions of the game (repeated two period and infi-
nite horizon) into account. We also require demand
signals to be additively separable over time (be inde-
pendent over time or follow an autoregressive process
of order 1, for example) and that capacity adjustment
costs be similarly additively (and symmetrically) sep-
arable. The separability assumption ensures that we
can move payoffs in time by applying the appropriate
discounting while keeping the equilibria strategies of
the firms constant. The equivalence assigns a partic-
ular meaning to parameter �2 in the infinite-horizon
version of the game: it captures the net cost of invest-
ing in capacity today and receiving a residual payoff
for that capacity after it is used (because of utilization
and depreciation, etc.).10.

10 Although there exist many examples of empirical work on dyna-
mic market competition settings that include private information
(e.g., Pesendorfer and Schmidt-Dengler 2003, Bajari et al. 2007,
Aguirregabiria and Mira 2007, Ryan 2012, Fershtman and Pakes 2012,
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The timing of the investments in production and
capacity levels in the model also approximates the
reality of the DRAM industry: production decisions
take about one quarter (one period) to be imple-
mented and brought to the market. This justifies
the assumption that not all information is revealed
to firms before making their production decisions.
Capacity decisions are also adjustable in the short run:
for example, during the financial crisis of late 2008,
some firms in the DRAM industry were able to react
relatively quickly by divesting in capacity. However,
the lag of capacities is longer than that of production,
and so we keep the decision sequence of the game
presented above during the analysis. Note that the
important feature of the timing of the model is that at
the time of production, firms still face market uncer-
tainty, which we estimate. We assume that the mar-
ket clears and that each firm keeps only insignificant
levels of inventory. Finally, this assumption relates to
the fact that interface and packaging specifications of
DRAM chips change fast, which makes the value of
unsold production low and a second-order concern
for our purposes.

Whereas the information structure benefits the
model tractability, it has parallels with the real world.
The idea that information becomes better and more
similar across firms as time elapses finds backing in
at least two ways in this industry. First, DRAM man-
ufacturers publish quarterly results, which often have
relevant financial information and forecasts for their
shareholders but also for their competitors. Second, a
significant amount of customer orders have already
been received one quarter before final sales occur.
These orders give firms a good idea of how the mar-
ket will perform until the end of the quarter. That
exclusive relations are not pervasive in this market
means that DRAM manufacturers deal with similar
customer pools. This causes customer orders—and as
a result, short-run demand information—- to be cor-
related. Other sources such as reports from market
research companies and the disclosure of economic
indicators further make the available information to
DRAM manufacturers become better and more sim-
ilar over time. Finally, it is unlikely that there exist
significant informational advantages in this market
because of the relatively low costs of gathering infor-
mation when compared with those of production,

Bajari et al. 2015), they do not allow for counterfactual analysis with
correlated private information. The resources dedicated to the esti-
mation of this model (24 modern computers, each parallelized
across eight cores) illustrate the additional obstacles involved in
incorporating state dependence in capacity investments with pri-
vate correlated information

capacity investments, and personnel. This hypothesis
could be tested if more data were available to iden-
tify the full covariance matrix of the information sig-
nals. This could matter for the analysis: if demand
signals were found to be further correlated across
firms, keeping all else constant, it is likely that the
magnitude of the incentives for information sharing
would be affected.

3.3. Implementation and Estimation
This section outlines an empirical strategy that is
easily adaptable to a variety of competition games
with private correlated information, under parametric
assumptions. First, the demand parameters are esti-
mated and the demand shocks are recovered. Sec-
ond, the quantity and capacity first-order conditions
are used to estimate the parameters associated with
the cost of adding quantity and capacity, as well as
the noise of the demand signals, �2

�. The second step
incorporates the recovered demand shocks from the
first stage in order to increase efficiency. The esti-
mation searches for the parameters that match the
moments of the data with the moments predicted
by the model best. A step-by-step description of the
methodology is provided in Appendix B.

3.3.1. Demand and Information Structure. DRAM
is a significantly commoditized product and is sought
primarily by electronic product manufacturers. Spot
contracts are the norm and long-term contracts seldom
take place. Firms are assumed to face a flexible inverse
demand curve for a homogeneous good:

Pt = P4�1Qt1�t51 �t ∼ F�4·51 (3)

where Pt is the market price, Qt is the aggregate pro-
duction, � is a set of demand parameters, and �t is
an a priori unknown demand shock that influences
the market willingness to pay for each unit of the
good. The demand shock �t reflects the total mar-
ket uncertainty under absence of additional infor-
mation by firms. Although they do not observe the
shock directly, firms hold noisy information about
the demand shock in the form of a signal sit =

h4�t1�i51�i ∼ F�4��5, where �2
� captures the noise

associated with the demand signals available to the
firms. For example, holding all else constant, a lower
�2
� signifies that firms have more precise information

about the market. We assume the following flexible
inverse demand curve specification:

Pt = 41 +��+�4Q�
t − 1551/��t1�t ∼ LogN401��51 (4)

where Pt is the market price in period t given param-
eters �1�, and �, as well as the total output Qt

and the market demand shock �t . This specifica-
tion is flexible as it converges to the linear case
as � approaches 1 and to the constant-elastic demand
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curve as � approaches 0. In between these cases,
the parameter � affects the curvature as well as the
level of the demand curve. The multiplicative error
specification ensures that the market price has posi-
tive support. Moreover, this specification also ensures
that the deterministic component of demand does not
dominate the stochastic component over time, and
vice versa.

Economic activity variables such as North Ameri-
can and world gross domestic product did not attain
statistical significance. Thus, they were not incorpo-
rated in the final demand specification.11

In many empirical applications, demand shocks are
assumed to be observable to the firms but not to
the researcher. We relax this assumption by allowing
firms not to observe the demand shocks with per-
fect foresight either. Instead, they receive informative
demand signals according to

sit = �t0�it1�it ∼ LogN401��51 (5)

such that the signal of each firm is “centered” at the
true demand shock but is affected by a noisy com-
ponent �it . We assume that the demand shocks are
independently distributed over time, but it is possible
to fit a stochastic process to model their transitions.12

This assumption deserves a brief discussion. In an
ideal setting, one would use the underlying firms’
beliefs to impose further structure on the intertem-
poral distributions. However, this alternative is not
feasible because it implies identifying the process that
managers believe are responsible for the evolution of
the demand shocks and, consequently, of the demand
signals. Although we have no reason to believe that
the demand-side parameter estimates will be affected
by assuming that the demand shocks are indepen-
dent and identically distributed, the assumption may
introduce attenuation bias to the estimate of param-
eter �2

�. The reason is that the model will attribute
the firms’ decisions to their present information, dis-
regarding the possibility that their actions were also
based on additional past information. Because of this,
we perform all postestimation analyses at different
levels of �2

� to evaluate the counterfactual scenarios at
several levels of signal-to-noise ratios. Given the non-
linearity of the model, it is impossible to predict or
rule out the resulting biases on the remaining supply-
side parameters. This identification limitation is com-
mon and has yet to be successfully addressed by the
empirical literature of games with correlated private
information.

11 We further comment on the static demand assumption in §4.1.
12 An example of embedding serial correlation to the full model spe-
cification is available upon request. The supply-side model becomes
more complex but remains well specified.

Although input prices are a popular choice for
demand instruments, they are mostly irrelevant in
the DRAM industry.13 The main production factor is
the density technology in place, which drives man-
agers’ decisions on production and capacity. Hence,
we use Moore’s law (as well as its second and third
powers) as an instrument for the production level.14

The two-step generalized method of moments was
used for estimation, based on the consistency prop-
erties of methods of moments. The covariance matrix
is estimated through the vector autoregressive het-
eroskedasticity autocorrelation consistent (VARHAC)
procedure (see den Haan and Levin 1994, 1997),
which accounts for arbitrary correlation patterns in
the demand shocks.

3.3.2. Production Decisions. Firms decide how
much to produce one period ahead of taking units
to the market. Production decisions are constrained
by capacity levels and are affected by the demand
information and cost structure. Let P̄t4�1Qt5 denote
the deterministic part of the inverse demand function.
Firms are assumed to face constant marginal produc-
tion costs cit , which are decomposed as

cit =�0�ite
�1t0 (6)

The parameter �0 provides a baseline level for the
marginal cost, and parameter �1 captures changes
in costs over time. Parameter �1 captures additional
time-varying cost factors unrelated to the technologi-
cal process, such as personnel costs. The scalar �it is a
relative measure of cost (an index of each firm’s mem-
ory density in each period) available from the data
provider.

Given the demand and information structures
above, in each period the production problem of firm i
can be written as

max
qit

E�t
6P̄t4�1Qt5�t − cit � st7qit

s.t. qit ≤Kit1
(7)

which yields the set of Kuhn–Tucker conditions
(

P̄t +
¡P̄t

¡qit
qit

)

E�t
6�t � st7− cit −�it +�

′

it = 01

�it4Kit − qit5= 01

�
′

it0qit = 01

�it1�
′

it1 qit ≥ 01

qit ≤Kit0

13 For example, no significant relation was found between DRAM
production and prices of silicon.
14 This series is started at a constant value and is discounted in
each quarter such that it halves every two years. The efficiency
indexes were also used as alternative instruments, and the resulting
estimates were very similar.
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When considering production decisions, firms take
the vector of signals st into account. Given the
assumptions on the information structure, it follows
that

�t � st ∼ LogN
(

�2
�

n�2
� +�2

�

∑

i∈n

log4sit51
�2
��

2
�

n�2
� +�2

�

)

1 (8)

such that the conditional expectation of the demand
shock given the available demand signals assumes the
“closed-form” expression

E6�t �st7=exp
{

�2
�

n�2
� +�2

�

∑

i∈n

log4sit5+
1
2

�2
��

2
�

n�2
� +�2

�

}

0 (9)

We now describe the construction of the quantity-
related moments for the estimation. These moments
are constructed through generating demand signals
centered at the recovered demand shocks. Given a
guess of the parameters, realizations of �it are simu-
lated and are multiplied by �̂t , according to expres-
sion (5). This method incorporates the error terms
recovered from the first stage of the estimation, which
are a function of the estimated demand parameters,
and greatly increases the efficiency of the estima-
tion procedure. Note that one only needs to simulate
the sum of the logarithms of the demand signals,
∑

i∈n log4sit5, rather than each of the vector’s com-
ponents, according to the expression of E6�t � st7.15

The Kuhn–Tucker conditions are then solved for
each draw of this statistic, and the average equi-
librium quantities for each time period are com-
puted.16 Rather than simulation, the implementation
of a one-dimensional Gauss–Hermite quadrature was
extremely beneficial since it required solving for the
equilibrium a smaller number of times.

The estimation procedure looks for parameters that
match the moments of predicted quantity by the
model with those of the data. Let the predicted produc-
tion by the model be given as Q̂t ≡Esit ��̂t

4
∑

i∈nq
∗
it4sit55, i.e.,

the sum of the equilibrium quantities at the parameter
guesses, where quantities are averaged across the sim-
ulated demand signals for each period. The first two
moments of the quantity distributions from the data
and from the model are matched: Et6Q

l
t − Q̂l

t71 l = 1002.

15 This method is only applicable to the quantity moments because
at that stage information is common knowledge.
16 There exist 34 = 81 possible configurations for the equilibrium
outcome. An exhaustive search was unable to find even a sin-
gle occurrence of multiple equilibria arising in the quantity stage.
The assumption of single equilibrium existence is used to speed
up estimation (this assumption allows the algorithm to stop try-
ing different corner configurations once one is found to satisfy all
Kuhn–Tucker conditions). In addition, a frequency matrix was used
to keep track of the most popular solutions at different values of
the simulated signals and costs in order to increase the estimation
speed by inspecting likely outcomes first.

These moments identify the cost parameter �0 as well
as the variance of the demand signals �2

�, because pro-
duction cost affects mainly the mean level of produc-
tion, and the noise in the demand information 4�2

�5
affects mainly the variance of production. The latter
identification argument is further explained in §3.3.4.
Because the demand signals also influence the capac-
ity decisions, additional moments are used to infer �2

�,
as we describe in the next section.

3.3.3. Capacity Decisions. Firms choose capac-
ity investments to maximize expected profits. Let
��∗

it4Kit1K−it1 si5−�2K
2
it be the discounted equilibrium

profit of firm i at time t of choosing capacity level Kit .
The payoffs associated with increasing Kit marginally
are given by the left-hand side of the first-order
condition:

¡

¡Kit

{

Es−it
6��∗

it4Kit1K−it1si5−�2K
2
it �sit7

}

=01

i=100n1∀sit ≥01 (10)

The structure of the problem reveals that when choos-
ing its capacity, firm i not only uses its own private
information to consider the market conditions but
also needs to consider the signals about demand her
rivals are likely to hold. The solution satisfies a perfect
Bayesian equilibrium in which each firm holds beliefs
about the likely types of the other firms, given its
own. In the current setting, a firm type is determined
by its own private demand signal in each period as
well as its cost (which is common knowledge). Given
this information, the firm updates the probabilities
over the types of the remaining firms according to the
probability density function fs−it � sit

, which is presented
in Web Appendix 2. There is no need to assign off-
equilibrium path beliefs: the event of a firm investing
an unexpected amount in capacity is inconsequential
because the firm’s demand signal becomes public to
all firms in the next period.

By solving the first-order conditions associated with
the marginal effect depicted in Equation (10), one can
recover the optimal capacity policies K∗

it4sit5. However,
this problem is not trivial because the firm’s prof-
its are a function of its rival’s optimal policies K∗

jt4sjt5,
j 6= i, over which the firm is required to take expec-
tations. Moreover, the firm’s first-order condition is a
function of the demand signal sit , and each level of the
signal affects the expectation term Es−it

4· � sit5. Techni-
cally, this problem is analogous to that of an auction
with correlated valuations with rather complex payoff
functions because it nests a production game, and it
is essentially characterized by a continuum system of
equations. We describe the solution strategy in more
detail in Appendix B as well as in Web Appendix 2.

Once the system of capacity first-order conditions
is solved for each time period in the data, the
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capacity policy functions K∗
it4sit51 i = 100n are used to

calculate the predicted expected capacity by using
single-dimensional quadratures of sit � �̂t . This pro-
vides a numerical approximation of the predicted
expected capacity level, K̂it = Esit � �̂t

4K∗
it4sit55, centered

at the recovered demand shocks from the first-
stage estimation, to increase efficiency. As before, the
first and the second moments of capacity levels are
used. In addition, the moments Ei1 t6KitKjt − K̂itK̂jt7

and Ei1 t64Kit −Kit−15 − 4K̂it − K̂it−157 are introduced to
capture the average capacity covariance across firms
and capacity growth, respectively. These help iden-
tify parameters �2

� and �2, as we describe in the
next section.

3.3.4. Identification. The demand function para-
meters are identified through the conditional inde-
pendence of the errors with the instruments and with
the assumption that the logarithm of the error has
mean of zero. Moore’s law is used to instrument pro-
duction quantity, because it relates to investments
in cost reductions but is independent of demand
shocks. Given that Moore’s law provides time-series
variation, the exclusion restriction is satisfied by the
assumption that demand is stable over time once pro-
duction is included. Using the memory densities (cost
shifters) rather than Moore’s law produced very sim-
ilar results. Memory densities were not kept in the
estimation, however, because they could eventually
depend on the cost-cutting efforts by firms, which
could in turn be correlated with demand shocks.

The cost parameters �0 and �1 are identified by
matching the moments Et6Qt7 and Ei1 t6Kit −Kit−17. In
particular, the first moment matches the data’s mean
production with the one predicted by the model, iden-
tifying parameter �0. The second moment matches
the change in capacity levels with those predicted
by the model, over time. This moment helps explain
trends in capacities over and above the trends implied
by the memory densities �it , and it identifies param-
eter �1. The capacity cost parameter �2 is primar-
ily identified by the moment Ei1 t6Kit7, which matches
the average industry capacity with the model predic-
tion. Finally, the information parameter �2

� is identi-
fied by matching the data moments Et6Q

2
t 7, Ei1 t6K

2
it7,

and Ei1 t6KitKjt7, since this parameter affects the vari-
ance and covariance of production and capacities.
The first two moments inform parameter �2

�: as this
parameter increases, firms become less sensitive to the
available information and their actions become less
correlated with the demand shocks. Because of this,
the variances of production and capacity levels, hold-
ing everything else fixed, decrease as �2

� increases.
Finally, the information parameter also influences the
covariance of capacities because as �2

� increases, firms’
demand information becomes less similar, leading the
covariance in capacities to decrease.

Table 4 DRAM Demand Parameter Estimates

Parameter Coefficient Std. error

� 80624 00006
� −00938 00445
� 00007 00179
� 2
� 00180 00028

Observations 84
R2 0.968

4. Results
4.1. Demand-Side Results
Table 4 presents the demand curve parameter esti-
mates.

The most relevant result from the demand estima-
tion is that the curvature parameter � is not significant,
which means that the demand curve is indistinguish-
able from a constant-elastic demand specification. The
inverse of parameter � provides an estimate of the
price elasticity, which is approximately equal to−1007.17

The standard error of �̂2
� is calculated using the

maximum-likelihood estimator for the constant-
demand elasticity demand specification. The esti-
mates of the demand parameters are introduced into
the second stage of the estimation. Moreover, the esti-
mates of the demand shocks �̂t , which are a func-
tion of the parameter estimates, are also included to
improve estimation efficiency.

A common question in the industry is whether it is
the lower production costs or the market expansion
that explain the output increase over time. In Web
Appendix 3 we show that under a common informa-
tion assumption Moore’s law suffices to explain the
output growth; i.e., no market expansion is required.

4.2. Supply-Side Results
The supply-side parameters were recovered through
an efficient two-step simulated method of moments.
The parameters are presented in Table 5.

The cost parameters �01�1 recover the variable
costs per gigabyte of DRAM produced. Figure 2 dis-
plays the implied average profit margin for the indus-
try. In line with managerial accounts, the model states
that production was sold below cost near the 2008
financial crisis period. In contrast to competition mod-
els of perfect information, our model can rationalize
this scenario because it allows firms not to have per-
fect foresight over future demand while making their
production decisions. Parameter �2 captures the idea
that the net cost of capacity is positive.

Parameter �2
� captures the noise of the logarithm

of the demand signals, and it consequently affects

17 In Web Appendix 2 we show how we take advantage of the con-
stant elastic result to make the second stage of the estimation faster.
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Table 5 Dynamic Parameter Estimates

Parameter Coefficient Std. error

�′

0 00268 00028
�1 −00060 00010
�2 00864 00104
� 2
� 00132 00052

Note. Above, �′

0 ≡ 1010000�0 so as to standardize the magni-
tude of the parameters during estimation.

the posterior variance of the demand shocks.18 When
demand signals are not available to firms, the vari-
ance of the demand shocks implied by the estimates
is of 23.6%. This figure reduces to 9.1% when the
firm has access to its own private demand signal
(which informs capacity decisions) and reduces fur-
ther to 2.9% when all demand signals are revealed
(these inform the quantity decisions). In line with this
result, the correlations between the recovered market
demand shocks and the capacity and the production
levels are 0.28 and 0.37, respectively.

An example of the recovered capacity policy func-
tions is provided in Figure 3. These policies increase
in the demand signals and differ across firms because
of differences in cost levels. The model seems flexible
enough to adapt to the moments of the data.19 Fig-
ure 4 plots the predicted and actual aggregate quan-
tities and capacities. Visual inspection suggests that
the model predictions seem to fluctuate more than
their data counterparts (although their variances are
smaller, according to Table 1 in Web Appendix 4).
One possibility to solve this apparent misfit would be
to add more degrees of freedom to the information
structure in order to match the moments in the model
with those in the data better.

The differences between the lines have a pre-
cise structural interpretation. When the model over-
predicts production or capacity levels it means
that the firms received pessimistic demand signal
realizations, although on average they would be
expected to receive higher demand signals. An inter-
esting example is provided by the period near the
2008 financial crisis, where the model underpredicts
both production and capacity levels. The underlying
interpretation is that in this period, firms received
overly optimistic demand signal realizations, which
led them to overproduce and overinvest in capacity
in a time of (ex post) low demand shocks. This is a
common opinion of managers in the industry.

As explained in the introduction, the best-response
curves of the perfect information game may inform

18 The analytical expressions for the relevant variances follow
from the log-normal distributional assumptions. Their derivation is
available upon request.
19 Measures of fit are presented in Web Appendix 4.

Figure 2 (Color online) Average Estimated Industry Profit Margins
(1Q2005–3Q2010)
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Notes. The estimated industry profit margins, given by 4pt − ĉt 5/pt , do not
display trends. This is because both price and costs decrease over time.
According to interviews to managers, production took place below cost in
the period following mid-2008. This is rationalized by the fact that firms face
demand uncertainty before making quantity decisions.

the incentives for sharing information in the private
information game. Consider the demand function in
the present model:

Pt = 41 +��+�4Q�
t − 1551/��t0 (11)

We inspect the capacity best-response curves at the
recovered parameters and contrast them to the linear
case. In particular, we solve the game for alliance 1
and calculate Es1

6K∗
1 4s157 while fixing K−1 for the other

firms at different levels. Figure 5 plots the best-
response curves of capacity for the linear case and
for the demand function implied by the parameter
estimates. When demand is linear, the capacity lev-
els are strategic substitutes; i.e., the best response to

Figure 3 (Color online) Equilibrium Capacity Policies as a Function
of the Private Demand Signal
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Figure 4 (Color online) Actual and Predicted Capacities and Quantities (1Q2005–3Q2010)
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Figure 5 (Color online) Best-Response Curves of Capacity in a Duopoly Under Common Information
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rivals’ increases in capacity is to always lower one’s
own capacity level. This does not hold, however, in
the case of constant elastic demand. In this case, the
firm’s optimal policy is to increase its capacity when
the rivals increase their capacities from low levels
but to reduce it when the rivals’ capacities increase
from high levels. In fact, although we do not show
them here, these best responses are quite similar to
the underlying production best responses of the pro-
duction game.20

In light of the previous discussion on the incen-
tives for information sharing, predicting the effect of

20 Firms’ best responses are nonmonotonic when they face a con-
stant elastic demand function in Cournot. See Martin (2002) for a
discussion. Moreover, the production problem yields an algebraic
solution, as shown in Appendix B.

information quality and sharing on the market is not
trivial since the firms’ best-response curves are non-
monotonic. Hence, the empirical analysis is especially
suited to analyze these questions further.

5. Counterfactual Analysis
5.1. Information Quality, Capacity Constraints,

and Industry Performance
In this section, we assess how the quality of the infor-
mation available to firms affects the competition in
the second stage. The quality of the information avail-
able to firms may change because of several reasons,
such as the introduction of a new technology or the
entrance of a new information gatherer agency. Here,
we investigate how these shocks affect the quantity
competition stage and industry operating profits.
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Figure 6 (Color online) Operating Profits, Capacities, and Information Precision
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from above, the demand signals become better predic-
tors of the true demand shocks.21 Moreover, we also
investigate how the presence of (exogenous) capacity
constraints affects the quantity game.22 In particular,
we inspect the expected operational profit

�∗

it1�2
�
4Kit1K−it1 sit50 (12)

In this analysis, we constrain the individual capaci-
ties in vector Kt to be equal, for simplicity. Figure 6

21 Whereas the use of the log-normal information structure means
that varying �� also affects the conditional mean of the demand
signals, the posterior mean of � � s remains constant. This means
that changes to the parameter �� affect profits through noise and
not through changes in levels.
22 The interaction between endogenous capacity constraints and sig-
nal informativeness is discussed in the next section.

depicts the role of capacities on production decisions
and industry profits. Panel (a) shows that the average
production is always below the available capacity and
that it also increases slower. The reason for the latter
phenomenon is that when capacity is low, it is very
likely to bind, and so production and capacity increase
hand in hand. However, when capacity is high, it is
not always profitable for firms to exhaust it.

Panel (b) depicts the marginal effect of improving
the quality of the demand shocks (i.e., lowering �2

�)
on industry production at different levels of installed
capacity. To understand these patterns, one needs to
consider the behavior of firms when facing differ-
ent demand signals. First, the higher the quality of a
demand signal, the more a firm will trust it. Hence, a
firm is willing to increase its production more when
it receives a positive signal that is of higher quality.
Conversely, if a firm receives a low demand signal, it
will decrease its production to the extent it believes
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it to be a good indicator of the true demand shock.
Because positive demand signals increase production
and negative demand signals reduce it, the average
outcome is ambiguous. However, in Cournot settings,
firms fear overproduction on average: if all firms
receive positive demand signals when demand was
actually low, the market price suffers and each firm
loses. As the quality of the demand signal increases,
this fear is reduced and firms are willing to produce
more. This is consistent with panel (b) at high lev-
els of capacity (when capacity is unlikely to bind).23

Consider now the intermediate area: in this region,
capacity is relatively likely to bind. As the informa-
tion quality increases, firms react more to the same
demand signals by increasing and reducing demand
appropriately. However, because they cannot produce
more than the installed capacity when they receive
positive signals, the average effect of the positive and
negative demand signals becomes negative. In this
case, firms would prefer to increase production more
when they receive positive signals; however, they can-
not because they face a production constraint. Finally,
when capacity tends to zero, changes in �2

� have a
negligible effect on production.

How do capacity constraints affect the relation-
ship between the quality of the information and prof-
its? Panels (c) and (d) depict the marginal effect of
improving demand information (decreasing �2

�) on
the operational profits of alliances 1 and 2. Recall that
alliance 1 (Samsung) is an industry leader with lower
production costs than the remaining alliances. When
capacity is very high, better information improves
firms’ profits. The reason is that under constant-elastic
demand, the direct effect dominates the competition
effect, and firms benefit when the industry has access
to better information. This is related to the nonmono-
tonicity of the best-response curves, which makes this
result not predictable a priori. Moreover, the result
can be reversed when capacity is likely to bind. In
particular, note that alliance 1 can become worse off
in an intermediate region if all firms have access to
better information. In this region, alliance 1’s capac-
ity is more likely to bind than the others because of
its low production cost. When firms receive the same
positive signal with lower variance, they react more
to it by producing more. However, alliance 1 is unable
to produce more because of its capacity constraint,
and so its profits decrease because of the resulting
lower market price. Alliance 2, panel (d) provides the
representative case for the remaining firms, for which
better information always results in higher profits.

These results have a short-term nature because of
the exogenous levels of installed capacity. However,
given its lower production cost, alliance 1 is likely to

23 An analytical proof of this case is provided in Web Appendix 2.

have higher incentives to invest in capacity to start
with, and these effects may not hold in the equilib-
rium of the full game. Hence, the next section consid-
ers the incentive to share information when capacities
are decided endogenously.

5.2. Information Sharing and Firm Profits
Do firms benefit from sharing information? An exam-
ple of such a policy would be the case in which firms
shared their demand information directly or through
a third party, which would then distribute it to the
industry. Here, we assume it is possible to share at
least some information with competitors in a credible
fashion, à la Vives (1984) and Gal-Or (1985, 1986).24

Under the shared information structure, firms solve
the problem

max
Kit

{

��∗

it4Kit1K−it1 st5−�2K
2
it

}

(13)

in which they all have access to the same vector of
demand signals, st . The solution of this problem can
be achieved in a similar way to the one used to solve
the problem with private information. The interpola-
tion method described before is used to solve prob-
lem (13) where firms have access to a full vector of
information signals st rather than just their private
information signal sit .25 Figure 7 depicts the benefits of
sharing demand information for each firm along dif-
ferent values of information precision. Values to the
right—high �2

�—describe scenarios where the avail-
able information is of low quality, whereas values to
the left—low �2

�—depict cases in which the quality of
the information available to firms is high.

It is clear that sharing information is beneficial for
all firms. This is enabled by the slope of the capac-
ity best-response curves being positive for a relevant
portion of the capacity domains. The profits in both
scenarios are most similar when information is per-
fect (�2

� → 0) and when information is very noisy
(�2

� → �). As expected, in these cases there is no ben-
efit to share information with competitors. This result
is novel in a quantity-setting context, and moreover, it
rationalizes the findings of Doyle and Snyder (1999),
who find that firms in the automotive industry appear
to have an incentive to share demand information
with their competitors.

Noticing that firms only care about the signal-to-
noise ratio of the demand information also allows

24 The analysis does not consider coalitional information sharing. In
that case, each firm could decide to share information with only a
few of its competitors. This setting is complicated by the number of
possible sharing combinations and, as a result, the computational
power required to analyze them.
25 Alternatively, the program can also be solved at each draw of a
simulated vector st separately, without interpolation.
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Figure 7 (Color online) Operating Profits in Information Sharing Scenarios
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us to apply these findings to situations where mar-
ket volatility changes but the variance of the demand
signals remains constant. Our findings suggest that,
ceteris paribus, firms have little to gain from exchang-
ing information in very stable or extremely volatile
markets. However, firms benefit from sharing infor-
mation when markets have intermediate levels of
volatility.

The profitability analysis suggests two additional
questions: First, as in the present example, some
industries suffer from high profit variability (e.g.,
semiconductors, airlines), which leads some govern-
ments to protect the players by introducing variance-
decreasing measures. Although the analysis above
suggests governments should allow DRAM firms to
share demand information if they want to increase
their profits, in some cases this change could hurt the
industry if the result is higher payoff variability and
higher risk of bankruptcy. Hence, it is worth investi-
gating how profit variability is affected by informa-
tion sharing. Second, it is also interesting to consider
the extent to which the increase in profits is sourced
from consumer surplus. If the downstream industry

profits and consumer welfare are being penalized in
excess of the benefits to firms, allowing for informa-
tion sharing may become an undesirable policy.

5.3. Information Sharing and Profit Variability
Predicting the effect of information sharing on profit
variability a priori is challenging. On one hand, with
better information firms make more accurate deci-
sions, possibly leading the variability of their profits
to decrease. On the other hand, an increase in the
correlation of actions may also increase the variance
of profits, because each firm’s action can no longer
be compensated by the actions of its competitors. For
example, before sharing information, one firm’s bad
decision of adding too much capacity could be com-
pensated by its rival’s decision of adding too little. In
this case, the market price and firm profits could stay
relatively stable. Once firms share demand informa-
tion however, their actions become more correlated
and it is possible that payoff variability increases.

The variability of profits is plotted in Figure 8 at
different levels of parameter �2

�. It is clear that allow-
ing for information sharing not only increases firm
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Figure 8 (Color online) Standard Deviation of Industry Profits
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profits but also decreases payoff variability. Hence,
one should expect a more stable industry when infor-
mation sharing about demand is allowed. Given
that bankruptcy is often associated with the vari-
ance of payoffs, promoting credible information shar-
ing may indeed decrease the risk of bankruptcy for
industries.26

5.4. Consumer Welfare
In general, policies implemented upstream have an
effect on downstream profits as well as on consumer
surplus. If the total surplus were fixed, an increase
in DRAM profits would have negative effects on con-
sumer welfare. However, this assessment ignores that
sharing information can lead firms to coordinate their
decisions with the market preferences. Hence, it is
possible that consumer welfare increases with infor-
mation sharing. We now look at the impact of allow-
ing information sharing on consumer surplus.27

The expected consumer surplus is given by

∫ �

0

{

∫ Q∗4�5

0
p4s5ds − p4Q∗4�55Q∗4�5

}

dF 4�51 (14)

where F 4�5 is the cumulative distribution function of
the demand shocks.28 The inner integral provides the
consumer surplus for a given shock �, whereas the
outer integral yields the average consumer surplus.
The results across different values of �2

� are provided
in Figure 9. Information sharing has a positive effect

26 See, for example, Oprea (2014) and the discussions therein.
27 Because consumer surplus is an upper bound for end-consumer
welfare, it is also often used in regulatory procedures.
28 The expression for the expected consumer surplus is abbreviated
for simplicity. In fact, the function Q∗ depends on the capacity lev-
els chosen by firms, which in turn depend on their demand signals
(which may or may not be shared across firms).

Figure 9 (Color online) Expected Consumer Surplus in Information
Sharing Scenarios
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on consumer surplus across all values of the signal
precision. The rationale for this is that by sharing
information, firms coordinate their actions to the mar-
ket needs better.

In conjunction with the previous analyses, this
result is striking because it indicates that all agents
benefit from allowing firms to share information with
their competitors. However, it is important to note
that the results are not generalizable to all capacity/
quantity competition settings. Given their novelty,
they instead suggest that our previous understand-
ing of the consequences of information sharing is not
always readily applicable and that the consequences
of this type of regulation need to be considered on a
case-by-case basis.

6. Concluding Remarks
Demand information is a fundamental component for
decision making in competition settings. This is espe-
cially true in industries where decisions are made in
advance of actual demand conditions being realized.
This paper takes the example of the DRAM industry.
It presents a model that allows firms to set up capac-
ity and production levels and consider what the likely
information of their competitors is. It also provides
identification arguments and proposes a method to
solve the equilibrium and estimate the fundamental
parameters. By ex post recovering the demand shocks,
the estimation identifies the most likely parameters
underlying the firms’ decisions. By comparing the
expected model predictions with the actual decisions
in the data, it is possible to recover the demand sig-
nals and estimate the quality of the information avail-
able to firms.
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We recover nonmonotonic best-response curves,
which mostly derive from the curvature of the mar-
ket demand function. When the best response is
nonmonotonic, the available theoretical results are
not immediately applicable, and empirical analysis
becomes especially relevant. The counterfactual anal-
yses show that whether the quality of information
is good or bad for firms depends on their level of
installed capacity. In particular, better information
may decrease operational profits when capacity is
likely to bind because when information quality is
high, firms would like to increase production signif-
icantly when they receive good news. However, if
a firm faces a low level of capacity, it cannot take
advantage of the good news and is hurt by the result-
ing lower market price, driven by the actions of its
competitors.

When the capacity decisions are endogenous, we
find that firms benefit from information sharing.
This result expands the information sharing litera-
ture by demonstrating that firms can benefit from
sharing information in quantity-setting contexts. The
immediate implication is that understanding the con-
sequences of allowing firms to share information
requires a case-by-case analysis, and overarching
statements may be imprecise. It is worth considering
whether the result of the DRAM manufacturing indus-
try informs us of other settings. The previous liter-
ature has described the case where price decreases
linearly with output. However, in the DRAM industry,
price decreases slower. Managerial interviews suggest
that the main explanation is that original equipment
manufacturers (OEMs) are able to reconfigure their
products to respond to spikes in supply in a rela-
tively short period of time. Hence, in times of oversup-
ply, OEMs reconfigure their offerings to accommodate
more memory, leading prices to decrease slower than
if oversupply could not be absorbed by the market.
That prices reduce slowly enough leads to nonmono-
tonic best-response curves in competition, which in
turn produces our main result. As a heuristic rule,
industries higher in the value chain are more likely to
benefit from information sharing because their output
can be reconfigured downstream (e.g., raw materials
in the extreme case). Finally, we also find that as firms
anticipate demand shocks better, payoffs become more
stable with information sharing. This result is espe-
cially relevant in industries where firm exit is rela-
tively frequent. Governments seeking to protect firms
may consider allowing information sharing as a means
to smooth industry instabilities. Our final result is
that consumers may also benefit from information
sharing. This happens because when firms share infor-
mation, they coordinate decisions with the market
needs better.

Whereas this paper has focused on the case of over-
lapping repeated interactions, it is possible that the
case of competition with capacity adjustment costs
reveals new insights. We conjecture that information
sharing may become less valuable in that case because
in the presence of adjustment costs, firms invest more
in capacity to keep the option value of producing
more both today and tomorrow open. It follows that
the same amount of demand information obtained
through sharing becomes less valuable because of the
“stickiness” in capacity levels. However, a full analy-
sis is likely to reveal additional insights. Other future
research avenues include endogenizing the data gath-
ering efforts by firms. For example, when firms decide
data gathering efforts, they should take into account
the fact that their data will be later supplemented by
their rivals’ data through sharing. This may generate a
free-riding problem in information acquisition efforts
that may be influenced by firm entry and exit, but
the precise outcomes are currently unknown. Finally,
allowing firms to signal their types through capac-
ity investments is challenging but would be useful to
characterize novel information sharing patterns.
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Appendix A. The Firm’s Dynamic Problem with
Additively Separable Investment Costs
In this section we show that the repeated-game formula-
tion is consistent with an infinite-horizon one with a precise
interpretation. It is useful to consider a simple example in
which a single agent earns payoffs according to the Bellman
equation:

W4st5= max
xt

{

�4st5+�24st − xt5+ �E6W4st+15 �xt1 st7
}

1 (A1)

where �4 · 5 is a per-period profit function that depends on
state variable st , and �24st − xt5 is an adjustment cost, also

https://doi.org/10.1287/mnsc.2015.2297
https://doi.org/10.1287/mnsc.2015.2297
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influencing the period’s payoffs. It suffices that the adjust-
ment cost is additively separable and symmetric, as we
show below.29 Variable xt is the firm’s control, which affects
the state variable through transition st+1 = xt . Because of
this, the firm’s decision affects its present as well as its
future payoffs. Given the transition function above, we can
rewrite the firm’s problem as

W4st5 = max
xt

{

�4st5+�24st − xt5+ �E6W4st+15 �xt1 st7
}

= �4st5+�2st + max
xt

{

−�2xt + �E6W4st+15 �xt1 st7
}

= �4st5+�2st

+ max
xt

{

−�2xt + �E
[

max
xt+1

{

�4st+15+�24st+1 − xt+15

+ �E
[

W4st+25 �xt+11 st+1

]

}

∣

∣

∣

xt1 st

]}

0

The second equality arises from the fact that at time t, �4st5
is sunk because xt can no longer influence it. This is due to
the transition function

¡st
¡x�

=

{

1 t + 1 = �1

0 otherwise0

The third equality expands the expression by substituting in
the next period’s payoffs. As before, we can extract elements
from the maxxt+1

operator. This yields

W4st5

=�4st5+�2st +max
xt

{

−�2xt +��4xt5+��2xt

+�E
[

max
xt+1

{

−�2xt+1 +�E6W4st+25�xt+11st+17
}

∣

∣xt1st

]}

0 (A2)

Define V 4st5 ≡ W4st5−�4st5−�2st and substitute into (A2)
to get

V 4st5=max
xt

{

��4xt5−�241−�5xt

+�E
[

max
xt+1

{

��4xt+15−�241−�5xt+1 +�E6V 4st+25�xt+11st+17

︸ ︷︷ ︸

V 4st+15

}

�xt1st

]}

V 4st5=max
xt

{

��4xt5−�241−�5xt +�E6V 4st+15�xt1st7
}

0

Note that st does not enter the instantaneous payoff func-
tion ��4xt5 − �241 − �5xt . The reason for this is that we
gathered all of the state variables’ future effects on a sin-
gle period by applying appropriate discounting. It fol-
lows that the dynamic problem can be recast into a series
of repeated one-period problems. To see this, note that
V 4st5= V̄ , where V̄ is a constant. To find the firm’s optimal
policy 8x∗

t 9
�
t=1, it suffices to solve the series of problems

x∗

t = arg max
xt

{

��4xt5−�241 − �5xt
}

(A3)

for each period.
This result relies heavily on the use of the MPE concept.

In particular, we focus on equilibria where firms restrict

29 By symmetric we mean that adjustment costs are constant, inde-
pendently of the direction of the adjustment.

themselves to using payoff-relevant state variables to make
decisions. This is the standard assumption in the empiri-
cal dynamic literature, and more complicated equilibria are
usually the domain of the repeated games literature.

We now apply analogous steps to derive the implica-
tions of the additive separability assumption to our model.
Here, we consider the case in which at time t firm i decides
on a production plan yit , which yields the correspond-
ing production output qit+1 in the next period, such that
qit+1 = yit .30 Hence, yit is a control variable (production plan
at time t) and qit+1 is a state variable (production avail-
able at time t + 1). Each firm also decides on its capacity
plans. At time t firm i chooses capacity plan �it . This yields
capacity level Kit+1 in period t + 1. Similar to production,
�it is a control variable and the resulting capacity, Kit+1, is a
state variable. Hence, at time t, firm i decides on production
and capacity plans yit and �it , respectively. The transition
functions are given by qit+1 = yit and Kit+1 = �it . Moreover,
in each period the firm’s production is constrained by the
capacity it has available; i.e., yit ≤Kit1 ∀ t.

We now show that under the maintained assumptions
the firm’s problem is equivalent to a repeated two-period
problem. We first focus on the production problem because
it carries no dynamic effects for the firms other than next
period’s operating profits. At time t, firm i chooses its pro-
duction plan yit by solving

max
yit

{

�E�t+1

[

�i4qit+11 q−it+11�t+15 �Kt1 st+1

]}

s.t. yit ≤Kit1

qit+1 = yit 0

The firm takes the capacity levels Kt , the demand sig-
nals st+1, and the production transition functions into
account. Denote ��∗

i 4Kt1 st+15 as the firm’s expected dis-
counted operating payoffs at time t conditional on the avail-
able capacity levels Kt and market information st+1.31 It is
useful to note that capacity plan �it only affects operating
profits directly in two periods’ time. The reason is that �it

generates capacity Kit+1, which at time t+1 is used for pro-
duction plan yit+1. This plan in turn generates qit+2 units
to be taken to the market at time t + 2. Hence, produc-
tion plan �it is irrelevant for operating profits at times t
and t + 1.

Consider now the Bellman equation below, which sepa-
rates present and future payoffs for firm i:

Wi4ìit5 = max
�it

{

�∗

i 4Kt−11 st5− �̃24�
2
it −�K2

it5

+ �Eìit+1
4Wi4ìit+15 ��it1ìit5

}

1 (A4)

where ìit is the set of known and relevant state variables
for firm i at time t, defined as ìit ≡ 8st1 st+11 sit+21Kt−11Kt9,
and �̃24�

2
it −�K2

it5 is a functional form used to capture local

30 It is trivial to consider the case where production is instanta-
neous. Here, we show the proof for the more complicated case
where both capacity and production plans require a period to be
implemented.
31 Note that production costs are exactly known to firms, as well as
their transitions. In this sense, they are equivalent to model param-
eters and are omitted for notation simplicity.
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adjustment costs to capacity. This specification captures the
idea that capacity may depreciate according to parameter �.

Just as in the example above, the payoffs �∗
i 4Kt−11 st5 −

�̃2�K
2
it are sunk at time t and irrelevant for decision �it .

Hence, expression (A4) is equal to

Wi4ìit5 = �∗

i 4Kt−11st5+�̃2�K
2
it

+max
�it

{

−�̃2�
2
it +�Eìit+1

4Wi4ìit+15��it1ìit5
}

0 (A5)

Expanding the expectation operator yields

Wi4ìit5

=�∗

i 4Kt−11st5+�̃2�K
2
it

+max
�it

{

−�̃2�
2
it +�Eìit+1

(

�∗

i 4Kt1st+15+�̃2�K
2
it+1

+max
�it+1

{

−�̃2�
2
it+1 +�Eìit+2

4Wi4ìit+25
∣

∣�it+11

ìit+15
}

∣

∣

∣

�it1ìit

)}

=�∗

i 4Kt−11st5+�̃2�K
2
it +��∗

i 4Kt1st+15

+max
�it

{

−�̃241−��5�2
it +�Eìit+1

(

max
�it+1

{

−�̃2�
2
it+1

+�Eìit+2
4Wi4ìit+25

∣

∣�it+11ìit+15
}

∣

∣

∣

�it1ìit

)}

0

Now, define Vi4ìit5 ≡ Wi4ìit5 − �∗
i 4Kt−11 st5 − �̃2�K

2
it −

��∗
i 4Kt1 st+15 and substitute into the equality above to get

Vi4ìit5

= max
�it

{

−�̃241 −��5�2
it

+ �Eìit+1

(

max
�it+1

{

−�̃2�
2
it+1

+ �Eìit+2
4Vi4ìit+25+�∗

i 4Kt+11 st+25+ �̃2�K
2
it+2

+ ��∗

i 4Kt+21 st+35 ��it+11ìit+15
}

∣

∣

∣

∣

�it1ìit

)}

= max
�it

{

�2E6�∗

i 4�t1 st+25 � sit+27− �̃241 −��5�2
it

+ �Eìit+1
4Vi4ìit+15 ��it1ìit5

}

0 (A6)

where

Vi4ìit+15 = max
�it+1

{

�2E6�∗

i 4�t+11 st+35 � sit+37− �̃241 −��5�2
it+1

+ �Eìit+2
4Vi4ìit+25 ��it+11ìit+15

}

0

By inspecting the expression for the period’s discounted
payoff �2E6�∗

i 4�t1 st+25 � sit+27 − �̃241 − ��5�2
it , we note that

only state variable sit+2 is payoff relevant for firm i. It
follows that the firms’ problem can be reduced to solv-
ing a series of capacity (and production) plans given the
demand information sit+2. Note that solving for the capacity
plan �it entails solving a nested production planning prob-
lem yit+1, so that our result yields a two-period overlapping
repeated game. The separation result does not depend on
the assumption that the demand signals are independently
distributed over time: it suffices that their transitions are
additively separable over time.32 Finally, the cost associated
with adding capacity �2 is not separately identifiable from
the depreciation 41 −��5.

32 A proof is available from the author.

Appendix B. Estimation Steps
Instead of solving the firms’ first-order conditions at all
possible levels of the demand signals, we select a sub-
set of points in the support of sit , and the capacity poli-
cies Kit4sit51 i = 100n are replaced by parameterized cubic
splines.33 The capacity policies of firms are recovered as fol-
lows: First, fix a guess for the model parameters. Let 8sit9r1 ,
r1 = 100R1 be the set of approximation points (constant
across firms) in the domain of the policy function Kit4sit5.34

For each firm and each point s
r1
it , define quadrature nodes

8sjt � s
r1
it 9

r21 r2 = 100R2, which will help calculate the outer
expectation of expression (10). Finally, solve the set of capac-
ity first-order conditions for all firms at each of the domain
points with respect to the firms’ spline parameters. The
solution of this system recovers the set of the policy func-
tions K∗

it4sit51 i = 100n at the current guess of the model
parameters.

For each guess of the spline parameters, one is required
to solve the quantity subgame multiple times. To reduce
estimation time, fifth-degree Gauss–Hermite monomial
quadratures were used to calculate the outer expectations.
The outer quadrature for the conditional expectation using
8sjt � s

r1
it 9

r2 is formed by 15 points.35 The procedure above
solves a system of n × R1 = 4 × 5 = 20 capacity first-order
conditions, for each guess of the structural parameters.
Evaluating each condition entails solving the underlying
quantity equilibrium finite diff.×R2 = 2×15 = 30 times (each
of which yields 1 of 81 possible solutions). Hence, a single
evaluation of the system of capacity first-order conditions
requires solving the underlying quantity game 600 times.

First Stage: Demand Parameter Estimation
• Use Moore’s law and its powers as demand instruments.
• Construct demand moments.
• Implement the VARHAC procedure to generate a con-

sistent covariance estimator of the demand moments
in the presence of heteroskedastic error terms.

• Estimate the parameters �, �, �, �2
� as well as their

asymptotic variance by minimizing the generalized
method of moments criterion function.

Second Stage: Firm Parameter Estimation
Quantity moments: Et6Q

l
t − Q̂∗l

t 7, l = 1002:
• Draw simulations of

∑

i∈n log4sit5 � �̂t . At each time
period and for each simulation, calculate the object
E�t

6�t � st7, which goes into the Kuhn–Tucker conditions
for firms.

• Solve the Kuhn–Tucker conditions for each node, given
the capacity levels in the data.

33 Galerkin-related methods, as proposed by Judd (1998), can also
be used to solve the system of continuous equations, but performed
poorly in our setting.
34 Those points are located at the Chebyshev nodes to maximize
the stability of the approximation to the policy functions. A wide
domain 40051 10005 was used to reduce the need for extrapolation.
A number of sensitivity tests were performed around these values
with little impact.
35 Quadratures performed extremely well when compared to the
results of simulation and allowed for much faster execution. In
addition, derivative-based search methods were used: estimation
time increased but accuracy improved greatly.
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• Average equilibrium quantities using the quadrature
rule to calculate Est � �̂t

6q∗
it7 and sum over firms in order

to generate Q̂∗
t . Apply the second power before aver-

aging to get the second moment.

Capacity moments: e.g., Et6K
l
t − K̂∗l

t 7, l = 1002:
• Start with a guess for the equilibrium capacity pol-

icy function for each firm and each observation cap-
tured by spline K4sit5, with D control points (Cheby-
shev nodes), denoted by xd .

• Create a three-dimensional quadrature for each control
abscissa, indexed by r1, log4s−it5

r2 � s
r1
it 1 d1 = 10049.

• Calculate E�t
6�t �

∑

i∈n log4sr11r2it 57 for each set of quadra-
ture nodes above to solve the quantity game for the
nodes above. Store profits in matrices çi

r11r2
, i = 100n.

• Recalculate the spline for each control point xd such
that K4sit5 becomes K4sit5 + h, where h = 1e − 6, and
recalculate firm profits for all nodes. Build profit matri-
ces ç

′ i
r11r2

, i = 100n.
• Calculate the marginal benefit of increasing capacity at

each node for firm i by h, given by4ç′ i
r11r2

− çi
r11r2

5/h.
Add the cost of adding capacity to the expression
above, using the parameter guess for �2.

• Perform expectations of payoffs above across nodes r2
so as to get the capacity first-order conditions for each
firm.

• Update spline parameters for each firm until the first-
order conditions equal zero.

• Average splines over nodes r1 to calculate the predicted
expected equilibrium policy K̂∗l

it =E6Kit

(

s
r1
it

)l
��̂it70

• Build all moment conditions and iterate over guesses
of parameters �0, �1, �2, �2

�.

References
Aguirregabiria V, Mira P (2007) Sequential estimation of dynamic

discrete games. Econometrica 75(1):1–53.
Armantier O, Richard O (2003) Exchanges of cost information in

the airline industry. RAND J. Econom. 34(3):461–477.
Bajari P, Benkard CL, Levin J (2007) Estimating dynamic models of

imperfect competition. Econometrica 75(5):1331–1370.
Bajari P, Chernozhukov V, Hong H, Nekipelov D (2015) Identifi-

cation and efficient semiparametric estimation of a dynamic
discrete game. NBER Working Paper 21125, National Bureau
of Economic Research, Cambridge, MA.

Chen Y, Narasimhan C, Zhang ZJ (2001) Individual marketing with
imperfect targetability. Marketing Sci. 20(1):23–41.

Chu W (1992) Demand signalling and screening in channels of dis-
tribution. Marketing Sci. 11(4):327–347.

Clarke RN (1983) Collusion and the incentives for information shar-
ing. Bell J. Econom. 14(2):383–394.

den Haan WJ, Levin A (1994) Inferences from parametric and non-
parametric covariance matrix estimation procedures. Interna-
tional Finance Discussion Paper, Board of Governors of the
Federal Reserve System, Washington, DC.

den Haan WJ, Levin A (1997) A practitioner’s guide to robust
covariance matrix estimation. Maddala GS, Rao CR, eds. Hand-
book of Statistics (North-Holland, Amsterdam), 299–342.

Doyle MP, Snyder CM (1999) Information sharing and competi-
tion in the motor vehicle industry. J. Political Econom. 107(6):
1326–1364.

Edgeworth FY (1925) The pure theory of monopoly. Papers Relating
to Political Economy, Vol. 1 (Macmillan and Company, London),
111–142.

Fershtman C, Pakes A (2012) Finite state dynamic games with
asymmetric information: A framework for applied work.
Quart. J. Econom. 127(4):1611–1661.

Gal-Or E (1985) Information sharing in oligopoly. Econometrica
53(2):329–343.

Gal-Or E (1986) Information transmission–Cournot and Bertrand
equilibria. Rev. Econom. Stud. 53(1):85–92.

Howard M (2010) Taiwan’s Powerchip surges in first-quarter
DRAM ranking. Press release, IHS Technology, Englewood, CO.
https://technology.ihs.com/388921/taiwans-powerchip-surges-
in-first-quarter-dram-ranking.

Jin JY (2000) A comment on “A general model of information shar-
ing in oligopoly,” Vol. 71 (1996), 260–288. J. Econom. Theory
93(1):144–145.

Judd KL (1998) Numerical Methods in Economics, Vol. 1 (MIT Press,
Cambridge, MA).

Kreps DM, Scheinkman JA (1983) Quantity precommitment and
Bertrand competition yield Cournot outcomes. Bell J. Econom.
14(2):326–337.

Martin S (2002) Advanced Industrial Economics (Blackwell Publishers,
Hoboken, NJ).

Nash JFJ (1950) The bargaining problem. Econometrica 18(2):155–162.
Ng S, Shum M (2007) Detecting information pooling: Evidence from

earnings forecasts after brokerage mergers. BE J. Econom. Anal.
Policy 7(1):Article 60.

Novshek W, Sonnenschein H (1982) Fulfilled expectations Cournot
duopoly with information acquisition and release. Bell J.
Econom. 13(1):214–218.

Oprea R (2014) Survival versus profit maximization in a dynamic
stochastic experiment. Econometrica 82(6):2225–2255.

Osborne MJ, Pitchik C (1986) Price competition in a capacity-
constrained duopoly. J. Econom. Theory 38(2):238–260.

Pesendorfer M, Schmidt-Dengler P (2003) Identification and esti-
mation of dynamic games. Working paper, London School of
Economics, London.

Raith M (1996) A general model of information sharing in
oligopoly. J. Econom. Theory 71(1):260–288.

Ryan SP (2012) The costs of environmental regulation in a concen-
trated industry. Econometrica 80(3):1019–1061.

Shapiro C (1986) Exchange of cost information in oligopoly. Rev.
Econom. Stud. 53(3):433–446.

Somaini P (2015) Competition and interdependent costs in high-
way procurement. Working paper, Massachusetts Institute of
Technology, Cambridge.

Villas-Boas JM (1994) Sleeping with the enemy: Should competi-
tors share the same advertising agency? Marketing Sci. 13(2):
190–202.

Vives X (1984) Duopoly information equilibrium: Cournot and
Bertrand. J. Econom. Theory 34(1):71–94.

https://technology.ihs.com/388921/taiwans-powerchip-surges-in-first-quarter-dram-ranking
https://technology.ihs.com/388921/taiwans-powerchip-surges-in-first-quarter-dram-ranking

