MAT344 Midterm, March 6, 2018 Last name First name ID Section

#	Mark
1 [4 points]	
2 [4 points]	
3 [7 points]	
4 [7 points]	
5 [9 points]	
6 [9 points]	
Total	

1. Consider the following function

$$f(z) = (e^x + e^{-x})\cos y + i(e^x - e^{-x})\sin y,$$

where $x = \operatorname{Re} z$ and $y = \operatorname{Im} z$.

- (a) Verify that f(z) is entire.
- (b) Verify that f''(z) = f(z)

2. Let γ be the oriented counterclockwise circle of radius 2 centered at 3. Find

$$\int_{\gamma} \frac{1}{z-2} \cos \left(\frac{1}{z}\right) dz .$$

3. Find the radius of convergence of the Taylor series of $\frac{z^2}{\cos(z)-1}$ at z=i and at z=0 .

4. Find

$$\int_{\gamma} \frac{3}{1+z^2} dz \; ,$$

where γ is the circle of radius 2 centered as 2i oriented counterclockwise.

5. Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \sin\left(\frac{\pi n}{3}\right) z^n.$$

(Hint: write a few first terms of the series.)

6. Pick a branch of \sqrt{z} for $z \in \{\operatorname{Re} z \geq 0, \operatorname{Im} z \geq 0\}$ and find

$$\int_{\gamma} \sqrt{z} \, dz \; ,$$

where γ is the arc of the circle |z|=4 that lies in the first quadrant (with counterclockwise orientation).