More Regression Applications

Lecture 24

Reading: None

1

Outline

- Discuss three case studies - empirical papers published in academic journals - to reinforce key concepts from Chapters 14, 18-21
- Tekin and Mocan (2010): "Ugly Criminals"
- Deryugina and Shurchkov (2015): "Does Beauty Matter in Undergraduate Education?"
- Andreoni and Vesterlund (2001): "Which is the fair sex? Gender differences in altruism"

"Ugly Criminals"

Abstract

Being very attractive reduces a young adult's propensity for criminal activity and being unattractive increases it. Being very attractive is also positively associated with wages and with adult vocabulary test scores, which implies that beauty may have an impact on human capital formation. The results suggest that a labor market penalty provides a direct incentive for unattractive individuals toward criminal activity. The level of beauty in high school is associated with criminal propensity seven to eight years later, which seems to be due to the impact of beauty in high school on human capital formation, although this avenue seems to be effective for females only.

"Ugly Criminals": Data

- Uses data from National Longitudinal Study of Adolescent Health
- Wave III interviews in 2001/02: respondents are 18-26 years old
- Asked many questions
- Interviewer answered (discretely): "How physically attractive is the respondent?"

Dist. of Attractiveness Ratings (\%) among Young Adults (18-26)		
Category	Males	Females
1. Very unattractive	1.37	2.44
2. Unattractive	5.22	4.81
3. About average	51.82	40.55
4. Attractive	33.66	38.00
5. Very attractive	7.92	14.19
N	7,159	8,020
	4	

Variable Definitions:

- Wage is hourly wage rate in dollars (mean ~ $\$ 11$ and s.d. ~ \$7)
- Test score is the percentile score for the Peabody Picture Vocabulary test (mean ~ 50 and s.d. ~ 29)
- "Very Attractive captures individuals who received the highest rating of 5; Unattractive, those with a rating of 1 or 2" p. 16
- "Personal characteristics are age, race/ethnicity, non-wage income, self-reported health status, whether he or she was born in the United States, birth weight, and religious affiliation." "[Family characteristics are] the mother's education, whether the family was on welfare, family income, whether the father was biological or a stepfather, the age of the mother at birth, whether the father was in jail, and birth weight." p. 17

How many of the personal characteristic variables are dummies? ${ }_{5}$

Table 7. Effect of Beauty on Wages and Test Scores

	Females		Males	
	Log Wages	Test Score	Log Wages	Test Score
Very What is Attractive reference	$\begin{aligned} & \hline 0.065^{* * *} \\ & (0.014) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.999^{* * *} \\ & (0.906) \end{aligned}$	$\begin{aligned} & \hline 0.107^{* * *} \\ & (0.024) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.706^{* * *} \\ & (1.163) \end{aligned}$
Unattractive(omitted) category?	$\begin{aligned} & \hline-0.043^{* *} \\ & (0.020) \\ & \hline \end{aligned}$	$\begin{aligned} & -2.330^{*} \\ & (1.210) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.041^{*} \\ & (0.025) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-1.800 \\ (1.326) \\ \hline \end{gathered}$
Control Variables: Personal and family attributes	Yes	Yes	Yes	Yes
Interviewer fixed effects	Yes	Yes	Yes	Yes
N	3,730	5,954	3,521	5,209

Note: * Estimated coefficient is statistically different from 0 at the 10% level,
** significant at 5%, and ${ }^{* * *}$ significant at 1% or better
After controlling for personal/family attributes and interviewers' tastes, very attractive females on average have wages that are about \qquad compared to average/attractive females.

"Does Beauty Matter in Undergraduate Education?"

ABSTRACT: Physically attractive individuals achieve greater success in terms of earnings and status than those who are less attractive. However, whether this "beauty premium" arises primarily because of differences in ability or confidence, bias, or sorting remains unknown. We use a rich dataset from a women's college to evaluate each of these three mechanisms at the college level. We find that students judged to be more attractive perform significantly worse on standardized tests but, conditional on test scores, are not evaluated more favorably at the point of admission, suggesting that more attractive people do not possess greater abilities at the beginning of college. Controlling for test scores, more attractive students receive only marginally better grades in some specifications, and the magnitudes of the differences are very small. Finally, there is substantial beauty-based sorting into areas of study and occupations.
What are the research questions? Observational data?
Deryugina and Shurchkov (2015): Copy on Readings page in Quercus (optional).

Excerpt (p. 942): Our dataset consists of 794 alumnae who graduated from an anonymous women's college between the years 2002 and 2011. To measure attractiveness, we use pictures [from student ID cards] taken [by campus officials] when the alumnae were first-year students. The pictures were subsequently rated by current male and female students from a college in another state. Each picture was rated by at least 25 male and 25 female raters. [We combine these to form an attractiveness rating, which we standardize so that a rating of 1 means the person is 1 standard deviation above average.]

Excerpt (p. 942): The attractiveness rating is then matched to the alumna's academic record, which includes her GPA, major, SAT scores [a test most students in the U.S. take in high school], race, non-merit-based financial aid awards, and scores from a quantitative reasoning (QR) test that all first-year students are required to take. Like the SAT, the QR test is scored blindly, without observing the test taker's appearance. Finally, we observe each student's admission rating, as assigned by three or more application reviewers. The college uses a "holistic" approach to assign admission ratings, considering each student's academic record (including high school GPA, SAT and other standardized test scores), extracurricular activities, recommendation letters, two essays, and, in some cases, artwork or music. [There are no photos or interviews for admission so physical attractiveness cannot directly affect the rating.]

Basic Summary Statistics

	Above Median Attractiveness Rating (Attractive)					Below Median Attractiveness Rating (Unattractive)					Entire Sample	
	Mean	SD	Min	Max	Obs.	Mean	SD	Min	Max	Obs.	Mean	SD
Standardized attractiveness rating	0.70	0.54	-0.03	2.42	397	-0.69	0.47	-2.69	-0.03	397	0	1
Admissions rating	6.34	1.36	0	10	397	6.62	1.29	1.67	10	395	6.48	1.34
cGPA	3.48	0.28	2.5	3.98	396	3.48	0.29	2.3	4	396	3.47	0.31
Math SAT score	678	62	510	800	387	689	57	490	800	378	684	60
Verbal SAT score	696	61	490	800	387	712	59	450	800	378	704	61
QR test score	13.08	2.65	2	18	397	13.42	2.55	4.5	18	397	13.25	2.60

Table 2: Attractiveness and Test Scores

Specification:	Dependent variable:					
	Standardized Math SAT		Standardized Verbal SAT		Standardized QR test	
	(1)	(2)	(3)	(4)	(5)	(6)
Explanatory variables:						
Standardized attractiveness rating	$\begin{gathered} -0.10 \\ (0.03) \end{gathered}$		$\begin{gathered} -0.14 \\ (0.03) \end{gathered}$		$\begin{gathered} -0.20 \\ (0.09) \end{gathered}$	
Attractiveness quintile $=2$		$\begin{gathered} 0.04 \\ (0.10) \end{gathered}$		$\begin{gathered} -0.14 \\ (0.11) \end{gathered}$		$\begin{gathered} 0.00 \\ (0.27) \end{gathered}$
Attractiveness quintile $=3$		$\begin{gathered} -0.12 \\ (0.10) \end{gathered}$		$\begin{gathered} -0.27 \\ (0.11) \end{gathered}$		$\begin{gathered} -0.20 \\ (0.29) \end{gathered}$
Attractiveness quintile $=4$		$\begin{gathered} -0.08 \\ (0.10) \end{gathered}$		$\begin{gathered} -0.30 \\ (0.11) \end{gathered}$		$\begin{gathered} -0.31 \\ (0.27) \end{gathered}$
Top attractiveness quintile		$\begin{gathered} -0.29 \\ (0.10) \end{gathered}$		$\begin{gathered} -0.40 \\ (0.11) \end{gathered}$		$\begin{aligned} & -0.55 \\ & (0.27) \end{aligned}$
Observations	764	764	764	764	793	793
R^{2}	0.22	0.22	0.11	0.11	0.12	0.12

Notes: Robust standard errors in parentheses. All specifications include year-of-enrollment and race fixed effects, as well as controls for the amount of financial aid received.

Table 3: Selection Into Subject Areas

Specification:	Dependent variable is percentage of all courses that the student took that are in:		
	the sciences	the humanities	economics
	(7)	(8)	(9)
	-1.92	-0.05	1.59
Standardized Math SAT score	(0.62)	(0.63)	(0.45)
	4.30	-3.72	3.23
Standardized Verbal SAT score	$10.75)$	(0.75)	(0.54)
	-1.86	2.26	-1.84
Admission rating	$(0.70$	(0.71)	(0.51)
	1.04	-0.25	0.08
Observations	(0.57)	(0.57)	(0.41)
R^{2}	762	762	762

Notes: Robust standard errors in parentheses. All specifications include year-of-enrollment and race fixed effects, as well as controls for the amount of financial aid received.
After discussing the results in Table 3, on page 952 the authors conclude: "Thus, there is substantial beauty-based course selection."
What do they mean by "substantial"?

Table 4: Attractiveness and Admissions Ratings \& Attractiveness and cGPA

	Dependent variable:		
Specification:	Admission Rating (10)	Admission Rating (11)	cGPA
Explanatory variables:			
Standardized attractiveness rating	-0.131	-0.038	0.016
	(0.049)	(0.042)	(0.010)
Standardized Math SAT score		0.432	0.017
		(0.050)	(0.012)
Standardized Verbal SAT score		0.408	0.005
		(0.045)	(0.011)
Admission rating			0.059
			(0.009)
Observations		762	760
R^{2}		0.13	0.18
Notes: Robust standard errors in parentheses. All specifications include year-of-enrollment			
and race fixed effects, as well as controls for the amount of financial aid received.			

"Which is the fair sex? Gender differences in altruism"

ABSTRACT [1 ${ }^{\text {st }}$ sentence]: We study gender differences in altruism by examining a modified dictator game with varying incomes and prices.

- A modified dictator game?
- Participants (students) are all in a lecture hall
- You each make eight decisions to allocate tokens between yourself and another anonymous person in the room: your partner
- How many points each token is worth to you and your partner varies across eight decisions
- Each point is always worth 10 cents to all players
- How many tokens will you keep? Pass to your partner?

DECISION SHEET

For each of the eight decisions, the number of tokens you choose to Hold plus the number you choose to Pass must equal the total tokens you are asked to divide.

While the points-per-token vary, remember that each point is always worth \$0.10. Write your token allocations in the blank spaces. Fill in all 16 blanks.

DECISIONS:

1. Divide 40 tokens: Hold \qquad @ 1 point each, and Pass \qquad @ 3 points each.
2. Divide 60 tokens: Hold \qquad @ 1 point each, and Pass \qquad @ 2 points each.
3. Divide 75 tokens: Hold \qquad @ 1 point each, and Pass \qquad @ 2 points each.
4. Divide 60 tokens: Hold \qquad @ 1 point each, and Pass \qquad @ 1 point each.
5. Divide 100 tokens: Hold \qquad @ 1 point each, and Pass \qquad @ 1 point each.
6. Divide 60 tokens: Hold \qquad @ 2 points each, and Pass \qquad @ 1 point each.
7. Divide 75 tokens: Hold \qquad @ 2 points each, and Pass \qquad @ 1 point each.
8. Divide 40 tokens: Hold \qquad @ 3 points each, and Pass \qquad @ 1 point each.

Table 2: Mean Payoff to Other Party (Canadian \$s)

Budget	Token endowment	Income m	p_{o} / p_{s}	All subjects $(\mathrm{n}=868)$	Males $(\mathrm{n}=334)$	Females $(\mathrm{n}=534)$	$t-$ stat
1	40	4.00	$1 / 3$	4.74	5.39	4.34	3.71
2	60	6.00	$1 / 2$	4.83	5.41	4.47	3.66
3	75	7.50	$1 / 2$	5.97	6.56	5.60	3.03
4	60	6.00	1	2.17	1.98	2.30	-3.17
5	100	10.00	1	3.36	2.98	3.60	-3.80
6	60	12.00	2	1.91	1.64	2.08	-3.80
7	75	15.00	2	2.32	2.00	2.52	-3.63
8	40	12.00	3	1.18	1.01	1.28	-3.14
Average				3.31	3.37	3.27	1.17
							16

"Which is the fair sex? Gender differences in altruism"

ABSTRACT: We study gender differences in altruism by examining a modified dictator game with varying incomes and prices. Our results indicate that the question "which is the fair sex?" has a complicated answer-when altruism is expensive, women are kinder, but when it is cheap, men are more altruistic. That is, we find that the male and female "demand curves for altruism" cross, and that men are more responsive to price changes. Furthermore, men are more likely to be either perfectly selfish or perfectly selfless, whereas women tend to be "equalitarians" who prefer to share evenly.
Observational or experimental data? y variable? x variables?
Andreoni and Vesterlund (2001), The Quarterly Journal of Economics, https://doi.org/10.1162/003355301556419, copy on Readings page in Quercus (optional)

Link: Chapters 14 \& 21

- "Comparing Two Means" (Chap. 14), 3 cases:
- Two independent samples, unequal variances
- E.g. Money passed by males ($n=334$) v. females ($n=534$) in Budget 4 (and separately for other 7 budgets)
- Two independent samples, equal variances
- E.g. Assuming variance for males equals that of females
- Paired data
- E.g. Money passed by people ($n=868$) in Budget 5 vs. 4

- Special cases of regression analysis

Andreoni and Vesterlund (2001)

Table 1: Mean Payoff to Other Party (U.S. \$s)

Budget	Token endowment	Income m	p_{o} / p_{s}	All subjects $(\mathrm{n}=142)$	Males $(\mathrm{n}=95)$	Females $(\mathrm{n}=47)$	t - stat
1	40	4.00	$1 / 3$	3.79	4.18	3.01	1.96
2	60	6.00	$1 / 2$	4.03	4.30	3.49	1.48
3	75	7.50	$1 / 2$	4.68	5.00	4.03	1.53
4	60	6.00	1	1.54	1.36	1.91	-2.26
5	100	10.00	1	2.52	2.33	2.92	-1.42
6	60	12.00	2	1.42	1.21	1.82	-2.07
7	75	15.00	2	1.71	1.42	2.29	-2.35
8	40	12.00	3	0.89	0.67	1.32	-2.97
Average				2.57	2.56	2.60	-0.24

Table 3: Mean Payoff to Other Party: A\&V (2001) versus ECO220Y (2014, 2015 and 2016)

	Males				Females			
Bud.	A\&V Mean (s.d.)	$\begin{gathered} \text { ECO220 } \\ \text { Mean } \\ \text { (s.d.) } \end{gathered}$	$\begin{aligned} & \text { Diff. } \\ & \text { (s.e.) } \end{aligned}$	$\begin{aligned} & \text { P-value } \\ & \text { (2-tailed) } \end{aligned}$	A\&V Mean (s.d.)	$\begin{gathered} \text { ECO220 } \\ \text { Mean } \\ \text { (s.d.) } \end{gathered}$	$\begin{aligned} & \text { Diff. } \\ & \text { (s.e.) } \end{aligned}$	P-value (2-tailed)
1	$\begin{gathered} 4.18 \\ (4.22) \end{gathered}$	$\begin{gathered} 5.39 \\ (4.44) \end{gathered}$	$\begin{gathered} \hline-1.21 \\ (0.50) \\ \hline \end{gathered}$	0.0157	$\begin{gathered} \hline 3.01 \\ (2.83) \\ \hline \end{gathered}$	$\begin{gathered} 4.34 \\ (3.43) \end{gathered}$	$\begin{gathered} -1.33 \\ (0.44) \end{gathered}$	0.0036
2	$\begin{gathered} 4.30 \\ (3.77) \end{gathered}$	$\begin{gathered} 5.41 \\ (4.10) \\ \hline \end{gathered}$	$\begin{gathered} -1.12 \\ (0.45) \\ \hline \end{gathered}$	0.0134	$\begin{gathered} 3.49 \\ (2.63) \end{gathered}$	$\begin{gathered} 4.47 \\ (3.01) \end{gathered}$	$\begin{gathered} -0.98 \\ (0.40) \end{gathered}$	0.0190
3	$\begin{gathered} 5.00 \\ (4.67) \end{gathered}$	$\begin{gathered} 6.56 \\ (5.02) \\ \hline \end{gathered}$	$\begin{gathered} -1.56 \\ (0.55) \\ \hline \end{gathered}$	0.0052	$\begin{gathered} 4.03 \\ (2.77) \end{gathered}$	$\begin{gathered} 5.60 \\ (3.70) \\ \hline \end{gathered}$	$\begin{gathered} \hline-1.56 \\ (0.43) \\ \hline \end{gathered}$	0.0006
4	$\begin{gathered} 1.36 \\ (1.48) \\ \hline \end{gathered}$	$\begin{gathered} 1.98 \\ (1.58) \\ \hline \end{gathered}$	$\begin{gathered} -0.62 \\ (0.17) \\ \hline \end{gathered}$	0.0005	$\begin{gathered} \hline 1.91 \\ (1.31) \\ \hline \end{gathered}$	$\begin{gathered} 2.30 \\ (1.20) \\ \hline \end{gathered}$	$\begin{gathered} -0.38 \\ (0.20) \\ \hline \end{gathered}$	0.0596
5	$\begin{gathered} 2.33 \\ (2.51) \\ \hline \end{gathered}$	$\begin{gathered} 2.98 \\ (2.50) \\ \hline \end{gathered}$	$\begin{gathered} -0.65 \\ (0.29) \\ \hline \end{gathered}$	0.0272	$\begin{gathered} \hline 2.92 \\ (2.27) \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ (2.07) \\ \hline \end{gathered}$	$\begin{gathered} -0.68 \\ (0.34) \\ \hline \end{gathered}$	0.0537
6	$\begin{gathered} 1.21 \\ (1.57) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.75) \\ \hline \end{gathered}$	$\begin{gathered} -0.43 \\ (0.19) \\ \hline \end{gathered}$	0.0245	$\begin{gathered} 1.82 \\ (1.68) \end{gathered}$	$\begin{gathered} 2.08 \\ (1.54) \\ \hline \end{gathered}$	$\begin{gathered} -0.26 \\ (0.25) \\ \hline \end{gathered}$	0.3126
7	$\begin{gathered} 1.42 \\ (1.96) \\ \hline \end{gathered}$	$\begin{gathered} 2.00 \\ (2.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.57 \\ (0.23) \\ \hline \end{gathered}$	0.0154	$\begin{gathered} 2.29 \\ (2.12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.52 \\ (1.88) \\ \hline \end{gathered}$	$\begin{gathered} -0.23 \\ (0.32) \\ \hline \end{gathered}$	0.4687
8	$\begin{gathered} 0.67 \\ (1.11) \end{gathered}$	$\begin{gathered} 1.01 \\ (1.28) \end{gathered}$	$\begin{gathered} -0.34 \\ (0.13) \end{gathered}$	0.0121	$\begin{gathered} 1.32 \\ (1.27) \end{gathered}$	$\begin{gathered} 1.28 \\ (1.20) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.19) \\ \hline \end{gathered}$	0.8588
Obs.	95	334	-	-	47	534	-	-

$$
\begin{gathered}
\mathrm{ECO} 220 \mathrm{Y}(2014,2015,2016) \\
H_{0}: \mu_{M 4}-\mu_{F 4}=0 ; H_{1}: \mu_{M 4}-\mu_{F 4} \neq 0
\end{gathered}
$$

Unequal variances (general):

$$
\begin{aligned}
& t=\frac{\left(\bar{X}_{M 4}-\bar{X}_{F 4}\right)-\Delta_{0}}{\sqrt{\frac{s_{M 4}^{2}}{n_{M}}+\frac{s_{F 4}^{2}}{n_{F}}}} \\
& t=\frac{(1.98-2.30)-0}{\sqrt{\frac{1.58^{2}}{334}+\frac{1.20^{2}}{534}}} \\
& t=\frac{-0.32}{0.101}=-3.17
\end{aligned}
$$

Assuming equal variances:

$$
\begin{aligned}
& t=\frac{\left(\bar{X}_{M 4}-\bar{X}_{F 4}\right)-\Delta_{0}}{\sqrt{\frac{s_{p 4}^{2}}{n_{M}}+\frac{s_{p 4}^{2}}{n_{F}}}} \\
& s_{p 4}^{2}=\frac{\left(n_{M}-1\right) s_{M 4}^{2}+\left(n_{F}-1\right) s_{F 4}^{2}}{n_{M}+n_{F}-2} \\
& =\frac{(333) 1.58^{2}+(533) 1.20^{2}}{334+534-2}=1.846 \\
& t=\frac{-0.32}{0.095}=-3.37
\end{aligned}
$$

Homoscedasticity => Equal Variances
. regress money_passed male if budget4==1;

Source I	SS	df MS			Number of obs$F(1, \quad 866)$	868
						11.34
Model	20.9206814	120.	06814		Prob > F	$=0.0008$
Residual	1597.25572	8661.8	40615		R -squared	$=0.0129$
					Adj R-squared	$=0.0118$
Total I	1618.17641	8671.8	40877		Root MSE	$=1.3581$
money_passed \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
male \|	-. 3190832	. 0947424	-3.37	0.001	-. 5050347	-. 1331316
cons I	2.295131	. 0587703	39.05	0.000	2.179782	2.41048

22

But, with Robust Standard Errors...

. regress money_passed male if budget $4==1$, robust;

These standard errors are robust to violations of Assumption \#3
(the homoscedasticity assumption).

ECO220Y (2014, 2015, 2016)

Table 2: Mean Payoff to Other Party

Budget	Token endowment	Income m	p_{o} / p_{s}	All subjects $(\mathrm{n}=868)$	Males $(\mathrm{n}=334)$	Females $(\mathrm{n}=534)$	t - stat
1	40	4.00	$1 / 3$	4.74	5.39	4.34	3.71
2	60	6.00	$1 / 2$	4.83	5.41	4.47	3.66
3	75	7.50	$1 / 2$	5.97	6.56	5.60	3.03
4	60	6.00	1	2.17	1.98	2.30	-3.17
5	100	10.00	1	3.36	2.98	3.60	-3.80
6	60	12.00	2	1.91	1.64	2.08	-3.80
7	75	15.00	2	2.32	2.00	2.52	-3.63
8	40	12.00	3	1.18	1.01	1.28	-3.14
Average				3.31	3.37	3.27	1.17

Reshape Data: Unit of Observation is a Decision
 by a Student

regress money_passed male, robust;

Linear regression	Number of obs	6944
	F(1, 6942)	1.38
What does 6944 mean?	Prob > F	0.2401
	R -squared	0.0002
Why use robust standard errors in this case?	Root MSE	3.1823

. summarize money_passed if male==1

Variable	Obs	Mean	Std. Dev.	Min	Max
money_passed	2672	3.371407	3.720474	0	15

. summarize money_passed if male==0

Variable	Obs	Mean	Std. Dev.	Min	Max
money_passed \|	4272	3.273057	2.793558	0	15

$H_{0}:\left(\mu_{M}-\mu_{F}\right)=0$	If you use the "assuming equal variances"
$H_{1}:\left(\mu_{M}-\mu_{F}\right) \neq 0$	formula on your Aid Sheets for Chapter 14
instead, you get the regular (not robust) se.	

$$
t=\frac{\left(\bar{X}_{M}-\bar{X}_{F}\right)-\Delta_{0}}{\sqrt{\frac{s_{M}^{2}}{n_{M}}+\frac{s_{F}^{2}}{n_{F}}}=\frac{(3.37141-3.27306)}{\sqrt{\frac{3.72047^{2}}{2672}+\frac{2.79356^{2}}{4272}}}=\frac{0.09835}{0.08371}=1.17} \begin{gathered}
\text { Robust } \\
\text { standard error }
\end{gathered} ~=
$$

Full Set of Budget Dummies

. regress money_passed budget1-budget3 budget5-budget8, robust;

Linear regression						Number of obs F(874, 6069) Prob > F R-squared Root MSE	$\begin{array}{lr} = & 6944 \\ = & 12.53 \\ = & 0.0000 \\ = & 0.5516 \\ = & 2.2792 \end{array}$	
What if added a full set of student fixed effects: i.e. a dummy for each student (except one)?								
Note: $(868-1)+(8-1)=874$ (i.e. $k=874)$								
	1		Robust					
money_passed		Coef.	Std. Err.	t	$p>\|t\|$	[95\% Conf.	In	nterval]
budget1	1	2.570968	. 1130991	22.73	0.000	2.349253		2.792682
budget2	I	2.658986	. 0956745	27.79	0.000	2.47143		2.846542
budget3		3.795392	. 118522	32.02	0.000	3.563046		4.027737
budget5	I	1.187442	. 076437	15.53	0.000	1.037599		1.337286
budget6	I	-. 2599078	. 0807719	-3. 22	0.001	-. 4182494		. 1015663
budget7	I	. 1479263	. 0857755	1.72	0.085	-. 0202242		. 3160768
budget8	I	-. 9923963	. 0785683	-12.63	0.000	-1.146418		. 8383746
Istud_2	I	3.375	1.836626	1.84	0.066	-. 2254395		6.97544
Istud_3		3.875	. 9187467	4.22	0.000	2.07393		5.67607
Istud_867		3.125	. 9163724	3.41	0.001	1.328585		4.921415
Istud_868	।	3.875	. 8388546	4.62	0.000	2.230547		5.519453
_cons	I	-. 3885513	. 7588858	-0.51	0.609	-1.876237		1.099134

Usual Purposes of Fixed Effects

- A full set of fixed effects is common with multi-dimensional observational data
- Multiple subscripts: panel data or other types (e.g. each person makes 8 choices)
- Idea: fixed effects can control for some lurking variables (e.g. differences across people)
- In our experimental data, 8 budgets have zero correlation with individual characteristics so coefficients are unaffected by including fixed effects (but some s.e.'s do go down)
- Observational data: budgets would differ by individual

ECO220Y: Overview

