Quadratic Terms, Connecting ($\mu_{1}-\mu_{2}$) to Regression, and an Economics Paper Illustrating Regression in Action

Lecture 23

Reading: "Quadratic Terms" (Quercus)

"Social Connectedness: Measurement, Determinants, and Effects"

Abstract

Social networks can shape many aspects of social and economic activity. Traditionally, the unavailability of large-scale and representative data on social connectedness has posed a challenge. We introduce a new measure of social connectedness at the US county level. Our Social Connectedness Index is based on friendship links on Facebook. It corresponds to the relative frequency of Facebook friendship links between every county-pair in the United States, and between every US county and every foreign country. Given Facebook's scale as well as the relative representativeness of Facebook's user body, these data provide the first comprehensive measure of friendship networks at a national level.

Bailey et al. (2018); https://www.aeaweb.org/articles?id=10.1257/jep.32.3.259

Figure 3: Network Concentrations and County-Level Characteristics

Figure 3 presents county-level binned scatterplots using the share of friends living within 100 miles and a number of socioeconomic outcomes.

The overall message is that counties where people have more concentrated social networks tend to have worse socioeconomic outcomes.

A: Average Income
 Notes: The red line shows the fit of a quadratic regression.

On average, they have lower income, lower education, higher teenage birth rate, and lower life expectancy.
These correlations cannot be interpreted as causal.

Quadratic and Polynomials

- When non-linearity is non-monotonic try:
- Quadratic: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} z+\cdots+\varepsilon$
- Polynomial: $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{r} x^{r}+$ $\beta_{m} z+\cdots+\varepsilon$
- When do we use these versus logarithms?
- Careful when interpreting quadratic coefficients
- You cannot hold x^{2} constant while changing x
- For $\hat{y}=b_{0}+b_{1} x+b_{2} x^{2}$, the point estimate of the slope is $\left(b_{1}+2 b_{2} x\right)$. Note the slope varies with x.

Recall the diagnostic scatter plot of the residuals versus y-hat: we are hoping to see a cloud of dots with no clear pattern

Dependent variable is: Time

R squared $=37.9 \%$ R squared (adjusted) $=36.0 \%$
$s=1.577$ with $35-2=33$ degrees of freedom

Variable	Coeff	SE(Coeff)	t-ratio	P-Value
Intercept	100.069	0.5597	179	<0.0001
StartOrder	0.108563	0.0242	4.49	<0.0001

Table 1 Time to ski the women's downhill event at the 2002 Winter Olympics depended on starting position.

Dependent variable is: Time
R squared $=83.3 \%$ R squared (adjusted) $=82.3 \%$

$\mathrm{s}=0.8300$ with $35-3=32$ degrees of freedom

Source Sum of Squares df Mean Square F-ratio Regression 110.139 2 55.0694 79.9 Residual 22.0439 32 0.688871
Variable
Intercept
StartOrder

Table 1: Correlates of Urban Air Pollution in China

Table 1: Correlates of Urban Air Pollution in China			
	Dependent Variable: log(PM10)		
Explanatory Variables:	(1)	(2)	(3)
Log(GDP per capita)	$-0.434(0.129)$	$-0.424(0.128)$	$-0.425(0.128)$
(Log(GDP per capita))	$0.300(0.075)$	$0.296(0.074)$	$0.296(0.074)$
(Log(GDP per capita))	$-0.0596(0.0135)$	$-0.0592(0.0134)$	$-0.0592(0.0134)$
Log(Population)	$0.164(0.014)$	$0.164(0.014)$	$0.164(0.014)$
Log(Manuf. Share)	$0.0498(0.0397)$	$0.0450(0.0396)$	$0.0478(0.0394)$
Log(Ave. Yrs. Schooling)	$-0.918(0.143)$	$-0.926(0.142)$	$-0.923(0.142)$
Log(Rainfall)	$-0.0987(0.0347)$	$-0.0977(0.0345)$	$-0.0980(0.0345)$
Log(Temperature Index)	$0.391(0.074)$	$0.394(0.073)$	$0.393(0.073)$
Time Trend	$-0.0316(0.0031)$	-	$-0.0767(0.0130)$
(Time Trend) 2	-	-	$0.0041(0.0011)$
Year Dummies	No	Yes	No
Constant	$4.304(0.428)$	$4.353(0.425)$	$4.399(0.426)$
R^{2}	0.432	0.444	0.440
Observations	846	846	846

Note: The latitude and longitude of each city are controlled for in each column. Standard errors in parentheses. Four cities are missing PM10 data in 2003.

Regression (1): Time Trend

Source	ss	df MS			Number of obs$\mathrm{F}(11,834)$	
						$=57.56$
Model	37.1271039	113.3	519127		Prob > F	$=0.0000$
Residual	48.9026999	834.05	636331		R-squared	$=0.4316$
					Adj R-squared	0.4241
Total	86.0298038	845.10	310419		Root MSE	. 24215
ln_pm10	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf.	Interval
ln_gdp_pc	-. 4340424	. 1286315	-3. 37	0.001	-. 6865218	-. 18156
1n_gdp_pc_2	. 2998217	. 0745439	4.02	0.000	153506	446137
1n_gdp_pc_3	-. 0595622	. 0134763	-4.42	0.000	-. 0860137	-. 033110
ln_pop	. 1638094	. 0137121	11.95	0.000	. 1368952	. 19072
$1 \mathrm{ln}_{\text {manu }}$. 0498194	. 0397189	1.25	0.210	-. 0281413	. 1277801
1n_edu	-. 9182325	. 1427245	-6.43	0.000	-1.198374	-. 638091
1n_rain	-. 0987354	. 0347372	-2.84	0.005	-. 1669181	-. 0305527
$1 n_{\text {n }}$ temp	. 3907443	. 0738079	5.29	0.000	. 2458731	. 5356154
longitude	-. 0063736	. 001507	-4.23	0.000	-. 0093315	-. 0034157
latitude	. 005419	. 0041039	1.32	0.187	-. 0026361	. 0134741
trend	-. 0316037	. 003127	-10.11	0.000	-. 0377415	-. 025466
_cons	4.303665	. 4279114	10.06	0.000	3.463755	5.143575

What does including a time trend control for?

Regression (3): Quadratic Time Trend

Source	SS	df MS			Number of obs $=$	
					F(12, 833)	$=54.57$
Model	37.8654782	123.1	545652		Prob $>$ F	$=0.0000$
Residual	48.1643256	833.05	820319		R -squared	0.4401
					Adj R-squared	$=0.4321$
Total	86.0298038	845.10	810419		Root MSE	. 24046
ln_pm10	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
ln_gdp_pc	-. 4248166	. 1277594	-3. 33	0.001	-. 6755847	-. 1740485
ln_gdp_pc_2	. 2962276	. 0740302	4.00	0.000	. 1509199	. 4415353
ln_gdp_pc_3	-. 059156	. 0133827	-4.42	0.000	-. 0854238	-. 0328881
ln_pop	. 1638634	. 0136163	12.03	0.000	. 137137	. 1905897
ln_manu	. 0477641	. 0394457	1.21	0.226	-. 0296606	. 1251888
ln_edu	-. 9234477	. 1417355	-6.52	0.000	-1. 201648	-. 6452471
ln_rain	-. 097978	. 0344953	-2.84	0.005	-. 165686	-. 03027
ln_temp	. 3933151	. 0732961	5.37	0.000	. 2494483	. 5371818
longitude	-. 0064097	. 0014965	-4.28	0.000	-. 009347	-. 0034724
latitude	. 0054001	. 0040752	1.33	0.185	-. 0025988	. 0133989
trend	-. 0767348	. 0130054	-5.90	0.000	-. 102262	-. 0512076
trend_sq	. 004085	. 0011431	3.57	0.000	. 0018413	. 0063288
_cons	4.398518	. 4257516	10.33	0.000	3.562846	5.23419

Multi-Dimensional Data \& Fixed Effects

- A full set of fixed effects is common with multi-dimensional (e.g. panel) observational data
- Idea: fixed effects can control for some lurking variables (e.g. differences across countries)
$-y_{i t}=\alpha+\beta x_{i t}+\gamma_{t}+\delta_{i}+\varepsilon_{i t}$
- Where are the fixed effects in this model specification?
- Kinds of lurking/confounding/omitted/unobserved variables these fixed effects can control for?

13

Connection: $\left(\mu_{1}-\mu_{2}\right) \&$ Regression

- Recall inference about $\left(\mu_{1}-\mu_{2}\right)$ - the difference between population means for independent samples - from Chapter 14
- Case 1 (general): Unequal variances (Section 14.2)
- Use regression with a dummy for Group 1 (or 2) with robust standard errors to address heteroscedasticity
- Case 2 (special): Assume $\sigma_{1}^{2}=\sigma_{2}^{2}$ (Section 14.5)
- Use regression with dummy assuming homoscedasticity
- Control for other factors w/ multiple regression

Recall Lecture 18: 2017 ON Public Sector Disclosure of 2016 salaries for University of Waterloo employees

Sex	\mathbf{n}	Mean	S.d.
F	416	$\$ 139,743.09$	$\$ 33,740.99$
M	941	$\$ 155,359.54$	$\$ 36,962.36$

OLS Results:

Salary-hat $=139.74+15.62 *$ Male $\mathrm{R}^{2}=0.0385, \mathrm{n}=1,357, s_{e}=36.006$

Regression, Assumes Homoscedasticity

. regress salary male;

Source I	SS	df	MS			Number of obs $=1357$		
						F(1, 1355)	54.26	
Model I	70350.5619	1	703	. 5619		Prob > F	$=0.0000$	
Residual \|	1756701.7	1355	129	45882		R -squared	$=0.0385$	
						Adj R-squared	$=0.0378$	
Total I	1827052.26	1356	134	38367		Root MSE	$=36.006$	
salary \|	Coef.	Std.	Err.	t	P>\|t		[95\% Conf.	Interval]
male \|	15.61645	2.119	961	7.37	0.000	11.45769	19.77521	
cons I	139.7431	1.765	358	79.16	0.000	136.28	143.2062	

To test $H_{0}:\left(\mu_{1}-\mu_{2}\right)=0$ for Case 2 (specific) use t test statistic:

$$
\begin{aligned}
& t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}}=\frac{(155.35954-139.74309)}{\sqrt{\frac{1296.4588}{941}+\frac{1296.4588}{416}}}=\frac{15.61645}{2.119961}=7.37 \\
& s_{p}^{2}=\frac{(941-1) 36.96236^{2}+(416-1) 33.74099^{2}}{941+416-2}=1296.4588
\end{aligned}
$$

Regression Addressing Heteroscedasticity w/ Robust S.E.'s
 \author{ regress salary male, robust;

}| Linear regression | | | | | ```Number of obs F(1, 1355) Prob > F R-squared Root MSE``` | $\begin{array}{lr} = & 1357 \\ = & 58.25 \\ = & 0.0000 \\ = & 0.0385 \\ = & 36.006 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Robust | | | | |
| salary | Coef. | Std. Err. | t | $p>\|t\|$ | [95\% Conf. | Interval] |
| male | 15.61645 | 2.046117 | 7.63 | 0.000 | 11.60255 | 19.63035 |
| cons | 139.7431 | 1.653518 | 84.51 | 0.000 | 136.4994 | 142.9868 |

To test $H_{0}:\left(\mu_{1}-\mu_{2}\right)=0$ for Case 1 (general) use t test statistic:

$$
t=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{(155.35954-139.74309)}{\sqrt{\frac{36.96236^{2}}{941}+\frac{33.74099^{2}}{416}}}=\frac{15.61645}{2.046}=7.63
$$

The Economics of Cross-Border Travel

Abstract

We model the decision to travel across an international border as a trade-off between benefits derived from buying a range of products at lower prices and the costs of travel. We estimate the model using microdata on Canada-United States travel. Price differences motivate cross-border travel; a 10\% home appreciation raises the propensity to cross by 8% to 26%. The larger elasticity arises when the home currency is strong, a result predicted by the model. Distance to the border strongly inhibits crossings, with an implied cost of 87 cents per mile. Geographic differences can partially explain why American travel is less exchange rate responsive.

Chandra, Ambarish, Head, Keith, and Tappata, Mariano (2014) "The Economics of Cross-Border Travel." Review of Economics and Statistics 96.4, 648-661. Also, see "Readings" in portal.

Section 2.B: The Exchange Rate Elasticity of Cross-Border Travel

Excerpt (p. 650): Our first regression exercise is to determine the elasticity of cross-border trips with respect to the real exchange rate.
Our goal is establish simple data relationships to motivate the development of a model in the subsequent section of the paper. We therefore work with a minimal specification. Denoting the number of cars that cross the border by n, and the real exchange rate by e, our specification is:
$\ln \left(n_{i t}\right)=\alpha+$ Month $_{t}+$ Province $_{i}+\eta_{1} \ln \left(e_{t}\right)+\eta_{2}{\text { post } 911_{t}}_{t}+\eta_{3} t+\eta_{4} t^{2}+\varepsilon_{i t}$
where i denotes a province and t denotes time (in months since January 1972).
$\ln \left(n_{i t}\right)=\alpha+$ Month $_{t}+$ Province $_{i}+\eta_{1} \ln \left(e_{t}\right)+\eta_{2}{\text { post } 911_{t}}+\eta_{3} t+\eta_{4} t^{2}+\varepsilon_{i t}$
Excerpt (p. 650): The month effects account for the strong seasonality in travel.
We add province fixed effects, as well as an indicator variable for the period following September 11, 2001 when border security was increased.
Finally, we add a linear and quadratic trend to capture secular effects such as population changes.
We estimate this equation separately for residents of each country. Therefore, for Canada, this regression models the number of cars returning from the US in a given province and month. For the US, it represents the cars that enter the corresponding Canadian province. (p. 5)
$\ln \left(n_{i t}\right)=\alpha+$ Month $_{t}+$ Province $_{i}+\eta_{1} \ln \left(e_{t}\right)+\eta_{2}{\text { post } 911_{t}}_{t}+\eta_{3} t+\eta_{4} t^{2}+\varepsilon_{i t}$
Excerpt (pp. 650-651): Implicit in the estimation of the above equation is the assumption that causation runs only from the real exchange rate to crossing decisions.
This assumption is defensible because demand for foreign currency created by US and Canadian cross-border shoppers is unlikely to be large enough to move the global foreign exchange markets.
To gain some perspective on relative magnitudes, Canadians spent $\$ 4.2$ billion in the US while Americans spent $\$ 1.8$ billon in Canada during the first quarter of 2010 . This represents a mere 0.04% of the foreign exchange turnover involving the Canadian Dollar. (p. 6)

Nominal versus Real Exchange Rates

- Nominal Exchange Rate CAN/US
- E.g. March 27, 2015 nominal CAN/US exchange rate (noon) is 1.2580: 1.00 USD = 1.26 CAN
- Real Exchange Rate CAN/US
- p. 649 "We obtained monthly average data on the spot market exchange rate between the U.S. and Canadian currencies. Using data on monthly CPIs for both countries, we construct the Real Exchange Rate (RER) for each month."
- "Why Real Exchange Rates?" by IMF researcher http://www.imf.org/external/pubs/ft/fandd/2007/09/pdf/basics.pdf

Table C.1. Summary Statistics: 1972-2010 ($\mathbf{3 2 7 6}$ province-months)

	Mean	SD	Median	Min	Max
Day Trips (1000 vehicles)					
U.S. Residents	114.7	211.4	42.7	1	1224.8
Canadian Residents	173.7	213.2	100.8	2.9	1192.9
Overnight Trips (1000 vehicles)					
U.S. Residents	41.7	71.9	14.4	0.5	519.1
Canadian Residents	42.8	51.6	18.3	1.1	346.4
Nominal ER (CAN/USD)	1.236	0.166	1.221	0.962	1.6
Real ER	1.007	0.127	0.99	0.814	1.333

7 Canadian provinces border U.S. * 39 years * 12 months $=3,276$ province-months

Table 1. Regression of Log Crossings, 1972-2010

Length of stay:	Daytrip		Daytrip	
Residence:	U.S.	Canadian	U.S.	Canadian
$\ln (e)$	$1.24^{* * *}$	$-1.62^{* * *}$	$0.93^{* * *}$	$-1.71^{* * *}$
(CAN/USD)	(0.17)	(0.24)	(0.28)	(0.28)
$\ln (e) *[e>1.09]$			$0.90^{* *}$	0.54^{*}
(strong USD)			(0.37)	(0.33)
$\ln (e) *[e<0.90]$			$-0.87^{* *}$	$-0.87^{* * *}$
(strong CAN)			(0.34)	(0.24)
R^{2}	0.98	0.98	0.98	0.98

Notes: Newey-West standard errors in parentheses are robust to serial correlation out to 60 months. Significant at *10\%, **5\%, ***1\%. An observation is a province-year-month. $\mathrm{N}=3276$. Regressions include month and province fixed-effects, a post 9/11 indicator, and trend variables.

What is the point estimate of the elasticity of day trips from the U.S. to Canada as the real exchange rate increases (i.e. U.S. dollar gets stronger) when the U.S. dollar is already strong?

Excerpt (p. 651): This section has uncovered four stylized facts of cross-border travel that should be features of a quantitative model of crossing decisions.
First, while there is always two-way movement across the border, there are large within- and between-year fluctuations.
Second, there is a robust relationship between exchange rates and travel: the stronger the currency in the country of residence, the more trips.
Third, elasticities are asymmetric. In absolute value Canadian residents have higher percentage responses to changes in the exchange rate.
Fourth, exchange rate elasticities are larger when the home currency is stronger.

