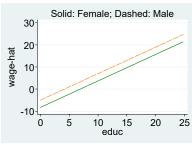
Dummy Variables and Interaction Terms

Lecture 22

Reading: Sections 19.3, 21.1 – 21.3, "Waterloo 2016 Salary Disparities" (Optional: "Standardized Residuals," "Influence Measures" pp. 737-9)

1


Dummy Variables in Regression

- <u>Dummy variable</u>: Captures qualitative information with 2 possible values: 0 or 1
 - Also called: indicator variables, fixed effects
 - Allows inclusion of categorical/nominal variables
 - Example: Does sex affect wages even if we control for years of education?
 - wage (dollars per hour)
 - educ (years of education)
 - *fem* (= 1 if female; = 0 if male)

Why not name the dummy variable *sex*?

Wage Regression

Model: $wage_i = \alpha + \beta educ_i + \delta fem_i + \varepsilon_i$ Results: $wage_i = -5.0 + 1.2 educ_i - 3.3 fem_i$ (3.6) (0.5) (1.1)

Answers causal research question? on average than for males.

Is difference in wages statistically significant after accounting for education?

$$H_0: \delta = 0$$

 $H_1: \delta \neq 0$ $t = \frac{-3.3}{1.1} = -3$

After controlling for years of education, hourly wages for females are \$3.30 lower on average than for males.

Omitted Category (Reference Group)

- Omitted category (aka reference group): The category that is not included as a dummy
 - The regular constant term (intercept) picks up the constant value for the omitted category
 - What is omitted category in the wage regression: $\widehat{wage} = -5.0 + 1.2educ 3.3fem$?
 - What if we switched the omitted category?
 - Coefficient estimates on dummy variables are relative to the omitted category ("baseline")

4

What If More Than 2 Categories?

- To include a categorical variable, the number of dummy vars is one less than number of unique categories (one will be reference cat.)
 - E.g. To fully control for occupation with 40 occupational categories requires 39 dummies
 - E.g. Zheng and Kahn (2017) from DACM A.2
 - PM10 conc. of particulate matter from 2003 to 2012 (10 years) and across cities (85 Chinese cites)
 - How to control for changes over time across all cities?

Which kind of data: cross sectional, time series, or panel?

Table 1: Correlates of Urban Air Pollution in China

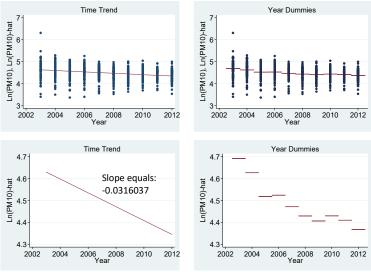
	Dependent Vari	able: log(PM10)
Explanatory Variables:	(1)	(2)
Log(GDP per capita)	-0.434 (0.129)	-0.424 (0.128)
(Log(GDP per capita)) ²	0.300 (0.075)	0.296 (0.074)
(Log(GDP per capita)) ³	-0.0596 (0.0135)	-0.0592 (0.0134)
Log(Population)	0.164 (0.014)	0.164 (0.014)
Log(Manufacturing Share)	0.0498 (0.0397)	0.0450 (0.0396)
Log(Average Years of Schooling)	-0.918 (0.143)	-0.926 (0.142)
Log(Rainfall)	-0.0987 (0.0347)	-0.0977 (0.0345)
Log(Temperature Index)	0.391 (0.074)	0.394 (0.073)
Time Trend	-0.0316 (0.0031)	-
Year Dummies	No	Yes
Constant	4.304 (0.428)	4.353 (0.425)
R^2	0.432	0.444
Observations	846	846

Note: The latitude and longitude of each city are controlled for in each column. Standard errors in parentheses. Four cities are missing PM10 data in 2003. $_{6}$

Regression (1): Time Trend

Source	ss	df	MS		Number of obs F(11, 834)	
Model	37.1271039	11 3 37	7510127			
Residual	48.9026999					
Residual		034 .030			-	
					Adj R-squared	
Total	86.0298038	845 .101	L810419		Root MSE	= .24215
ln pm10	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_gdp_pc	4340424	.1286315	-3.37	0.001	6865218	1815629
ln gdp pc 2	.2998217	.0745439	4.02	0.000	.153506	.4461375
ln gdp pc 3	0595622	.0134763	-4.42	0.000	0860137	0331107
ln pop	.1638094	.0137121	11.95	0.000	.1368952	.1907236
ln manu	.0498194	.0397189	1.25	0.210	0281413	.1277801
ln edu	9182325	.1427245	-6.43	0.000	-1.198374	638091
ln rain		.0347372	-2.84	0.005	1669181	0305527
ln temp	.3907443	.0738079	5.29	0.000	.2458731	.5356154
longitude		.001507	-4.23	0.000	0093315	0034157
latitude	.005419	.0041039	1.32	0.187	0026361	.0134741
trend	0316037	.003127	-10.11	0.000	0377415	025466
cons	4.303665	.4279114	10.06	0.000	3.463755	5.143575
_cons	4.503665	. 42 / 9114	10.06	0.000	3.403/33	3.143373

A time trend measures passage of time: the variable trend above equals 1 for 2003, 2 for 2004, ..., and 10 for 2012.


Source	SS	df	MS		Number of obs	= 846
+					F(19, 826)	= 34.74
Model	38.2139593	19 2.01	126101		Prob > F	= 0.0000
Residual	47.8158446	826 .057	888432		R-squared	= 0.4442
+					Adj R-squared	= 0.4314
Total	86.0298038	845 .101	810419		Root MSE	= .2406
	R	egression	(2): Yea	ar Dum	ımies	
ln_pm10	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
ln_gdp_pc	4241961	.1278504	-3.32	0.001	675146	1732461
ln gdp pc 2	.2961769	.0740776	4.00	0.000	.1507745	.4415793
ln gdp pc 3	0591624	.0133912	-4.42	0.000	0854471	0328776
ln pop	.1636883	.0136248	12.01	0.000	.1369451	.1904316
ln manu	.0449651	.0396028	1.14	0.257	0327688	.122699
ln_edu	9262087	.1419217	-6.53	0.000	-1.204778	6476391
ln rain	0976617	.0345163	-2.83	0.005	1654117	0299116
ln town I	303596	0722424	E 27	0 000	2406265	E27E4EE

ln_pop	1	.1636883	.0136248	12.01	0.000	.1369451	.1904316
ln_manu	1	.0449651	.0396028	1.14	0.257	0327688	.122699
ln_edu	1	9262087	.1419217	-6.53	0.000	-1.204778	6476391
ln_rain	1	0976617	.0345163	-2.83	0.005	1654117	0299116
ln_temp	1	. 393586	.0733424	5.37	0.000	.2496265	.5375455
longitude	1	0064208	.0014975	-4.29	0.000	0093601	0034814
latitude	1	.0054305	.0040779	1.33	0.183	0025738	.0134347
yr_2004	1	0648882	.0373851	-1.74	0.083	1382692	.0084929
yr_2005	1	1731407	.0374578	-4.62	0.000	2466644	0996171
yr_2006	1	1673246	.0375447	-4.46	0.000	2410188	0936304
yr_2007	1	2196464	.0376449	-5.83	0.000	2935372	1457555
yr_2008	1	2616172	.0377134	-6.94	0.000	3356426	1875919
yr_2009	1	2840717	.0381066	-7.45	0.000	3588689	2092744
yr_2010	1	2611697	.0382683	-6.82	0.000	3362843	1860551
yr_2011	1	2812865	.0382972	-7.34	0.000	3564577	2061153
yr_2012	1	3232032	.0386962	-8.35	0.000	3991577	2472486
_cons	I	4.35313	. 425458	10.23	0.000	3.518023	5.188236

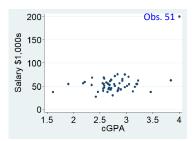
Interpreting Coefficients on Time

- In Reg. (1), coefficient on trend is -.0316037***
 - After controlling for GDP per capita, population, manufacturing share, average education, rainfall, temperature, latitude, and longitude, PM10 concentrations on average declined by 3.2 percent annually in Chinese cities between 2003 and 2012.
- In Reg. (2), coefficient on yr 2006 is -.1673246***
 - After controlling for GDP per capita, population, manufacturing share, average education, rainfall, temperature, latitude, and longitude, Chinese cities in 2006 had PM10 concentrations that were 16.7 percent lower on average compared to 2003.

9

To plot Ln(PM10)-hat against time, plugged in mean values for all other variables.

Table 2 A Simple Inter	Table 2 A Simple International Education Production Function: A Least-											
Squares Regre	ssion			article in Journal of Economic								
(dependent vari	Perspectives "The											
(PISA score: me	an ~500)	Coefficient	Standard error	Importance of School Systems:								
School starting : Grade repetition	cation (more than 1 year)	17.825*** -14.733*** 6.832*** -3.869* -54.579***	(3.160) (1.639) (2.428) (2.030) (4.734) (6.702)	Evidence from International Differences in Student Achievement." DOI:								
Grade 7th grade Fo	or <i>Grade</i> , what is the omitted ategory (i.e. reference group)? ow to interpret "–47.003***"?	-47.003*** -19.213* -6.772 -3.275 11.949*	(10.051) (10.242) (6.896) (5.236) (6.398)	10.1257/jep.30.3.3 y-variable? x-variables?								
there are mo	iny more explanatory variables	116.126**	(51.774)	M/high ava								
Students Schools Countries R^2 (at student leve	data are these?	19,794 8,245 29 0.340		Which are dummy variables?								


Outliers & Their Impact

- Outliers: Observations substantially different from the bulk of data
 - Incorrect data entry, confusing question, nonsampling errors or valid data point illustrating extreme situation
- Textbook distinguishes leverage and influential

- Outliers can affect slope estimate, R², and s.e.'s
 - If outlier has large residual, it pulls line towards itself
 - OLS minimizes SSE
 - (Large residual)² = ridiculously huge
 - If outlier close to line, makes R² higher and s.e. lower (maybe a lot)

Finding & Dealing with Outliers

- Find with graphs (scatter & histograms)
 & summary statistics
- Investigate outliers
 - Report results with and without outlier(s), hoping they are robust
 - If keep outlier must say why it is valid
 - If drop outlier must show it is invalid

 What can we do? Keep it, drop it, or include a dummy variable for it

13

If Keep Outlier (obs. 51)

. regress salary cGPA

Source	•	ss	df		MS		Number of obs		
Model Residual	l l		1 49	5474 456.	1.43281 .225119		Prob > F R-squared Adj R-squared	=	0.0011 0.1967
Total	•	27829.4637			589273		Root MSE		21.359
salary		Coef.					[95% Conf.		
cGPA _cons	ĺ	25.96476 -16.53706	7.495	5564	3.46	0.001	10.90186	4	1.02766 5.53894

14

If Drop Outlier (obs. 51)

. regress salary cGPA if dummy_obs51==0

Source	ss	df	MS		Number of obs	= 50 = 0.93
Model Residual	123.340729 6333.8788	1 48	123.340729 131.955808		Prob > F	= 0.3385 = 0.0191 = -0.0013
salary			131.77999 	P> t	[95% Conf.	
cGPA _cons		4.48	37 0.97	0.338 0.002	-4.680219 15.55894	13.34995 65.39165

If Include a Dummy for the Outlier

. regress salary cGPA dummy_obs51

Source	•	ss 	df		MS		Number of obs F(2, 48)		
Model Residual	l l		2 48	1074 131.	17.7924 955808		Prob > F R-squared Adj R-squared	=	0.0000 0.7724
Total		27829.4637			589273		Root MSE		11.487
salary		Coef.					•	In	terval]
cGPA	i	4.334865	4.4	4837	0.97	0.338	-4.680219	1	3.34995
dummy_obs51	I	142.1852	12.90		11.02	0.000	116.2402	_	68.1303
_cons	ا 	40.47529	12.3	9228	3.27	0.002	15.55894	6	5.39165

How do the coefficient on cGPA and the intercept compare with simply dropping observation 51 from the analysis?

What about the R²?

16

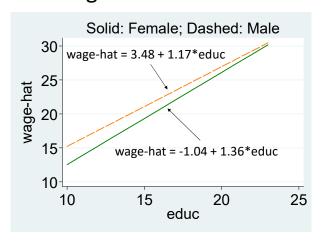
Interaction Terms

 Interaction term: A variable that is the product (multiplication) of two variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$
- How to interpret $(\beta_1 + \beta_3 x_2)$? $(\beta_2 + \beta_3 x_1)$?

- Eg: Test research hypothesis that education is more important for women wrt earnings: $wage = \alpha + \beta educ + \delta fem + \gamma fem * educ + \varepsilon$
 - If your research hypothesis is true what do you expect about the parameter gamma?

1


Wage Regression

. regress wage educ female femXeduc;

Source	•	SS	df		MS		Number of obs		1000
	+						F(3, 996)	=	926.32
Model	1	12205.9118	3	4068	. 63728		Prob > F	=	0.0000
Residual	1	4374.70952	996	4.39	227864		R-squared	=	0.7362
	+						Adj R-squared	=	0.7354
Total	1	16580.6214	999	16.5	972186		Root MSE	=	2.0958
wage	•	Coef.					[95% Conf.		
	+						[95% Conf. 		
	; ; 		.0363					1	
educ	- - 	1.173098	.0363	3003 4495	32.32	0.000	1.101864	 1 -3	.244332

How to interpret these results?

Meaning of Interaction Effects

19

Alternate Wage Regression

. regress wage educ male maleXeduc;

Source		df	MS		er of obs =	
Model Residual	12205.9 4374.70	9118 3 40 9952 996 4	068.63728 .39227864	Prob R-sq	3, 996) = > F = ared = R-squared =	0.0000 0.7362
Total		5214 999 16		-	•	2.0958
wage	Coe	ef. Std. Eri	t	P> t [9	95% Conf. In	terval]
	+					
educ	•	374 .0340326				.423158
	1.3563	.0340326	6 39.86	0.000	1.28959 1	.423158 5.97601
educ	1.3563 4.5141	.0340326 .58 .74495	6 39.86 5 6.06	0.000 3 0.000 3	1.28959 1 .052307	

20

Another Alternate Specification

regress wage female femXeduc maleXeduc;

Source		ss	df		MS		Number of obs F(3, 996)		1000
Model Residual	1 4	2205.9118 374.70952	3 996	4068 4.392	. 63728 227864		Prob > F R-squared Adj R-squared	=	0.0000 0.7362
Total				16.5			Root MSE		2.0958
wage		Coef.					[95% Conf.	In	terval]
female									
remare	1 -	4.514158	.74	1495	-6.06	0.000	-5.97601	-3	.052307
femXeduc			.0340		-6.06 39.86	0.000	-5.97601 1.28959		.052307 .423158
	i	1.356374		326				1	

While with this specification you can see the slope for males and females directly. The disadvantage is that the statistical tests are NOT whether there is a difference in slope between males and females, but rather whether each differs from zero.

Yet Another Alternate Specification

. regress wage educ if female==1;

	Source	ı	ss	đf		MS		Number of obs	_	517
_		•						F(1, 515)		
	Model	ı	6976.8312	1	697	76.8312		Prob > F		
	Residual	1	2354.71791	515	4.57	7226779		R-squared	=	0.7477
-		+-						Adj R-squared	=	0.7472
	Total	1	9331.54911	516	18.0	0843975		Root MSE	=	2.1383
_	wage	ī		Std.	Err.	t	P> t	[95% Conf.		
		•	1.356374	.0347				1.288158	1	.42459
	_cons	Ī	-1.036165	. 52	2312	-1.98	0.048	-2.063876		008453
_										

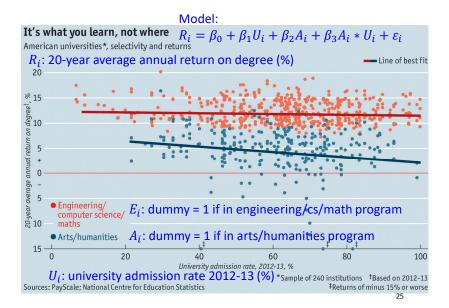
One more option, which is less powerful, but yet very popular, is to simply run separate regressions for each sex.

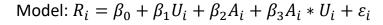
This yields the same lines as shown in the original graph, but cannot test for statistically significant differences by sex.

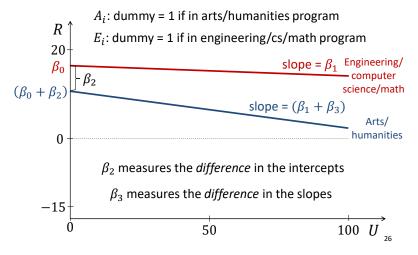
22

And the Regression for Just Males

. regress wage educ if female==0;


+ Model	SS 4587.09535 2019.99161	1 4587	.09535	Number of obs = F(1, 481) = 109 Prob > F = 0 R-squared = 0	= 1092.28 = 0.0000
Total		482 13.7	076493	Adj R-squared : Root MSE :	= 2.0493
				[95% Conf. :	
educ _cons	1.173098 3.477994		33.05 6.58	1.103354 2.439648	1.242843 4.516339


23


"The log-on degree" *The Economist*, March 14, 2015

"A new report from PayScale, a research firm, calculates the returns to a college degree. Its authors compare the career earnings of graduates with the present-day cost of a degree at their alma maters, net of financial aid. College is usually worth it, but not always, it transpires. And what you study matters far more than where you study it." (p. 30)

"Engineers and computer scientists do best, earning an impressive 20-year annualised return of 12% on their college fees (the S&P 500 yielded just 7.8%). Engineering graduates from run-of-the-mill colleges do only slightly worse than those from highly selective ones." (p. 30)

Article cont'd...

"Business and economics degrees also pay well, delivering a solid 8.7% average return. Courses in the arts or the humanities offer vast spiritual rewards, of course, but less impressive material ones. Some yield negative returns. An arts degree from the Maryland Institute College of Art had a hefty 20-year net negative return of \$92,000, for example." (p. 30)

Let R be the 20-year average annual return on a degree (%) and U the university admission rate, 2012-2013 (%), E an indictor for Engineering/computer science/maths, and A an indicator for Arts/humanities. Which model specification fits with the figure?

Cool interactive chart:

http://www.economist.com/blogs/graphicdetail/2015/03/daily-chart-2