Type I Errors, Type II Errors, and Power

Lecture 15

Reading: Sections 12.9 - 12.10
("Adaptive Partial Drug Approval: A Health
Policy Proposal" Readings page)

Type I and Type II Errors

- Type I Error: Reject a true null hyp.
- Type II Error: Fail to reject a false null hyp.
- For example, in trial H_{0} : innocent; H_{1} : guilty
- Type I Error: Convict
innocent person (DNA test exonerate)
- Type II Error: Set guilty person free

	Guilty	Innocent
Convict	No Error	Type I Error
Acquit	Type II Error	No Error

Significance Level Recap \& Type I Error

- Significance level (α): Maximum probability you are willing to tolerate that sampling error caused your observed results: if probability is lower then results are statistically significant
$-\alpha$ is maximum chance of a Type I Error that you would tolerate: i.e. that your sample differs from a true H_{0} only by chance (sampling error)
- $\alpha=0.05$: ready to risk 5% chance of rejecting a true H_{0}
- How to reduce the chance of a Type I error?

Ex: Lower Sodium

- A gov't agency claims that fewer than 20% of soup eaters notice if sodium is lowered by one-third
- A soup maker wants to prove this wrong
- H_{0} :
$-\mathrm{H}_{1}$:
- If in fact \qquad percent of all soup eaters would notice the lower sodium and the P -value for the soup maker's study is \qquad then this is an example of \qquad _.

$\beta=$ Probability of a Type II Error

- $\beta=\mathrm{P}$ (fail to reject H_{0} when it is false)
- It's a probability: it must be between 0 and 1
- Many factors affect the size of β : one is α
- Decreasing α (max. tolerable chance of Type I error) increases β (chance of Type II error)
- If raise burden of proof ($\downarrow \alpha$) so as not to convict the innocent, increase chance guilty go free ($\uparrow \beta$)
- If lower burden of proof ($\uparrow \alpha$) to "put criminals in jail" ($\downarrow \beta$), increase chance the innocent go to jail

Power

- A powerful test is highly likely to lead you to reject a false null hypothesis
- Power is the complement of Type II error: i.e. the chance you do NOT make a Type II error
- Power $=1-\beta$
- $\beta=\mathrm{P}$ (Type II Error) $=\mathrm{P}\left(\right.$ fail to reject H_{0} when it is false)
- Power is important: forget costly data collection if the n you are planning will yield insufficient power
- Increasing the sample size increases power

Sex Ratios at Birth in Ontario

- Recall Ontario sex ratios from Lectures 13, 14
- Natural proportion of boys born is 51.2\%
$-\mathrm{H}_{0}: p=0.512 ; \mathrm{H}_{1}: p>0.512$
- What would a Type I error be?
- What would a Type II error be?
- How powerful is a statistical test to detect an unnaturally high proportion of males?
- To calculate power, must also specify α, n, and exactly what we would consider unnaturally high

What's Needed to Find Power?

- $\mathrm{H}_{0}: p=0.512 ; \mathrm{H}_{1}: p>0.512$
- 766,688 births in Ontario from 2002-2007
- But divide it to separately study subgroups
- i.e. $1^{\text {st }}$ child of Chinese born mom where $\mathrm{n}=12,339$
- Consider a "typical" subgroup with $\mathrm{n}=12,000$
- Choose $\alpha=0.01$
- Unnaturally high? Let's say an extra 1
percentage point boys: i.e. $p=0.522$

- $\mathrm{H}_{0}: p=0.512$
- $\mathrm{H}_{1}: p>0.512$
- $n=12,000$
$S D\left[\hat{P} \mid H_{0}\right]=\sqrt{\frac{0.512(0.488)}{12,000}}=0.0046$
- $\alpha=0.01$
- If $p=0.522$
- Chance we would fail to reject the false null is very high: P (Type II error) is 0.554
- Power is low: there is only a 44.6% chance our sample would allow us to reject H_{0}
Everything on this slide determined BEFORE collecting data 9

Size of Type I and II Errors

- Type I Error: Reject a true H_{0}
- Set maximum chance of Type I error when pick α
- Type II Error: Fail to reject a false H_{0}
-P (Type II error) is β; It depends on many factors:
- Parameter value in H_{0} and direction of H_{1}
- Significance level (α)
- Sample size (n)
- True parameter value (e.g. p)
- Which of these 4 factors are observed?

Which type of error is more serious? (See page 388.)

Pharmaceutical Ex. (p. 390)

- Huge sunk costs in drug development
- Pharmaceutical companies do not want to fail to market an effective drug
- Suppose a cancer drug deemed effective if it stops tumor growth in at least 40\% of patients
$-\mathrm{H}_{0}: p=0.40$
$-\mathrm{H}_{1}: p>0.40$
- Where is the burden of proof?

Type II Error: Drug Example

- H_{0} value, H_{1} direction
$-\mathrm{H}_{0}: p=0.4$
$-\mathrm{H}_{1}: p>0.4$
- Significance level (α)

$$
-\alpha=0.05
$$

- Sample size (n)
- $\mathrm{n}=100$
- True parameter
$-p=0.5$
- In this case, clearly H_{0} is wrong and H_{1} is correct

$$
\text { - Why? Because } p=0.5
$$

(0.5 is greater than 0.4)

- Hence whenever we do not reject H_{0} we are making a mistake
- Which kind of mistake?

16

- $\mathrm{H}_{0}: p=0.4$
- $\mathrm{H}_{1}: p>0.4$
- $\alpha=0.05$
- $\mathrm{n}=500 \lll$
- If p is really 0.5
- Is this test powerful?

Power: Got It?

- Can you compute power before seeing data?
- Should you draw graphs to find power?
- What do you need to specify to find power (or its complement: probability of Type II error)?
- Review today's notes and chart how changes in each factor affect power and explain why
- What does it mean if your statistical test is not very powerful (i.e. has a high chance of Type II error)?

