Type I Errors, Type II Errors, and Power

Lecture 15

Reading: Sections 12.9 – 12.10 ("Adaptive Partial Drug Approval: A Health Policy Proposal" Readings page)

Type I and Type II Errors

- <u>Type I Error</u>: Reject a true null hyp.
- <u>Type II Error</u>: Fail to reject a false null hyp.
- For example, in trial H₀: innocent; H₁: guilty
 - Type I Error: Convict innocent person (DNA test exonerate)
 - Type II Error: Set guilty person free

	Guilty	Innocent
Convict	No	Type I
	Error	Error
Acquit	Type II	No
	Error	Error

Significance Level Recap & Type I Error

- <u>Significance level (α)</u>: Maximum probability you are willing to tolerate that sampling error caused your observed results: if probability is lower then results are statistically significant
 - α is maximum chance of a Type I Error that you would tolerate: i.e. that your sample differs from a true H₀ only by chance (sampling error)
 - α = 0.05: ready to risk 5% chance of rejecting a true H₀
 - How to reduce the chance of a Type I error?

1

Ex: Lower Sodium

- A gov't agency claims that fewer than 20% of soup eaters notice if sodium is lowered by one-third
- A soup maker wants to prove this wrong
 - H₀:
 - $-H_1$:

 If in fact ____ percent of all soup eaters would notice the lower sodium and the P-value for the soup maker's study is ____ then this is an example of ____.

4

5

β = Probability of a Type II Error

- β = P(fail to reject H₀ when it is false)
 It's a probability: it must be between 0 and 1
- <u>Many</u> factors affect the size of β : one is α
 - Decreasing α (max. tolerable chance of Type I error) increases β (chance of Type II error)
 - If raise burden of proof ($\downarrow \alpha$) so as not to convict the innocent, increase chance guilty go free ($\uparrow \beta$)
 - If lower burden of proof ($\uparrow \alpha$) to "put criminals in jail" ($\downarrow \beta$), increase chance the innocent go to jail

Power

- A powerful test is highly likely to lead you to reject a false null hypothesis
 - Power is the complement of Type II error: i.e. the chance you do NOT make a Type II error
 - Power $= 1 \beta$
 - β = P(Type II Error) = P(fail to reject H₀ when it is false)
 - Power is important: forget costly data collection if the *n* you are planning will yield insufficient power
 - Increasing the sample size increases power

Sex Ratios at Birth in Ontario

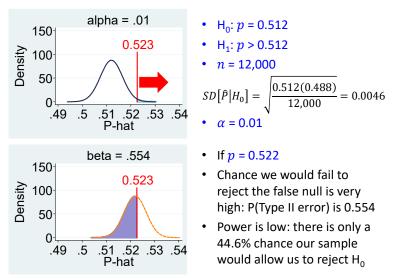
- Recall Ontario sex ratios from Lectures 13, 14
 - Natural proportion of boys born is 51.2%
 - $-H_0: p = 0.512; H_1: p > 0.512$
 - What would a Type I error be?
 - What would a Type II error be?
- How powerful is a statistical test to detect an unnaturally high proportion of males?
 - To calculate power, must also specify α , n, and exactly what we would consider unnaturally high

7

8

What's Needed to Find Power?

- H₀: *p* = 0.512; H₁: *p* > 0.512
- 766,688 births in Ontario from 2002 2007
 - But divide it to separately study subgroups
 - i.e. 1st child of Chinese born mom where n = 12,339
 - Consider a "typical" subgroup with n = 12,000
- Choose $\alpha = 0.01$
- Unnaturally high? Let's say an extra 1 percentage point boys: i.e. p = 0.522



Everything on this slide determined BEFORE collecting data 9

Size of Type I and II Errors

- <u>Type I Error</u>: Reject a true H₀
 - Set maximum chance of Type I error when pick α
- <u>Type II Error</u>: Fail to reject a false H₀
 - P(Type II error) is β ; It depends on many factors:
 - Parameter value in H₀ and direction of H₁
 - Significance level (α)
 - Sample size (n)
 - True parameter value (e.g. p)
 - Which of these 4 factors are observed?

Which type of error is more serious? (See page 388.)

10

Pharmaceutical Ex. (p. 390)

- Huge sunk costs in drug development
 - Pharmaceutical companies do not want to fail to market an effective drug
- Suppose a cancer drug deemed effective if it stops tumor growth in at least 40% of patients
 - $-H_0: p = 0.40$
 - $-H_1: p > 0.40$
 - Where is the burden of proof?

If interested in learning more: Lakdawalla (2018) "Economics of the Pharmaceutical Industry" <u>https://doi.org/10.1257/jel.20161327</u>, which discusses Manski (2009). 11

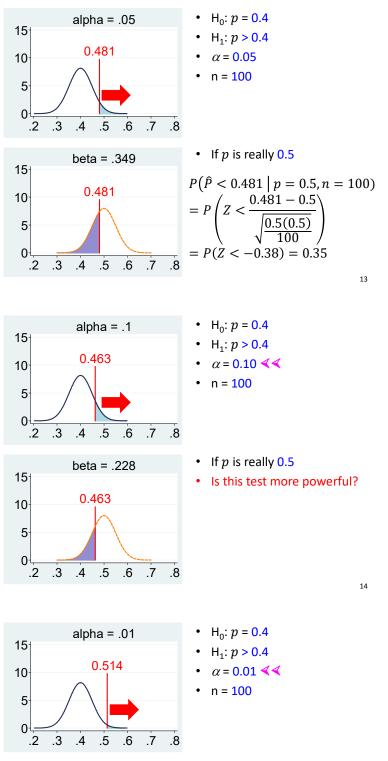
Type II Error: Drug Example

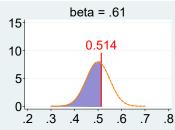
- H_0 value, H_1 direction - H_0 : p = 0.4

 - H₁: *p* > 0.4
- Significance level (α) - α = 0.05
- Sample size (n)
 n = 100
- True parameter

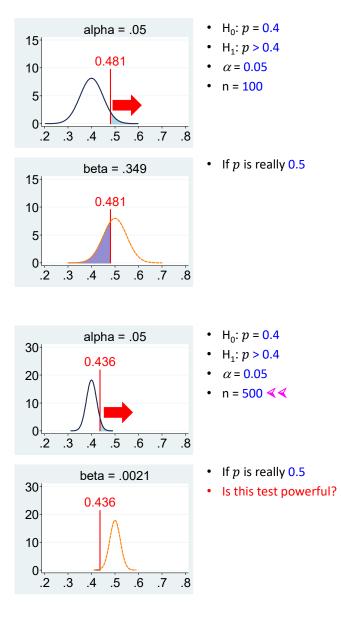
-p = 0.5

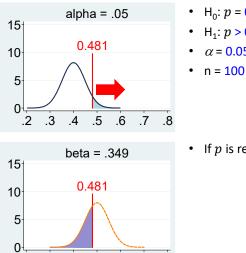
- In this case, clearly H₀ is wrong and H₁ is correct
 Why? Because p = 0.5 (0.5 is greater than 0.4)
- Hence whenever we do not reject H₀ we are making a mistake
 - Which kind of mistake?





If p is really 0.5 Is this test less powerful?





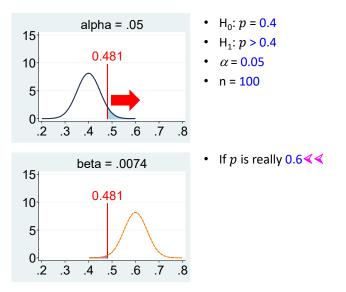
.5 .6 .7 .8

.4

.2 .3

- H₀: p = 0.4
- H₁: p > 0.4
 - *α* = 0.05
- n = 100
- If p is really 0.5

16



Power: Got It?

19

- Can you compute power before seeing data?
- Should you draw graphs to find power?
- What do you need to specify to find power (or its complement: probability of Type II error)?
 - Review today's notes and chart how changes in each factor affect power and explain why
- What does it mean if your statistical test is not very powerful (i.e. has a high chance of Type II error)?