Sampling Distribution of \bar{X} and Simulation Methods

Lecture 11

Reading: Sections 10.3 – 10.5

1

Ontario Public Sector Salaries

- Public Sector Salary Disclosure Act, 1996
 - Requires organizations that receive public funding from the Province of Ontario to disclose annually the names, positions, salaries and total taxable benefits of employees paid \$100,000 or more in a calendar year
 - E.g. Government of Ontario, Crown Agencies, Municipalities, Hospitals, Boards of Public Health, School Boards, Universities, Colleges, Hydro One, Ontario Power Generation, etc.

2013 disclosure of 2012 salaries: https://www.ontario.ca/page/public-sector-salary-disclosure-act-disclosures-2013

Sampling Error a Plausible Explanation for \bar{X} being \$3,700 above μ ?

- For all ON public sector employees w/ salaries of \$100K+, mean is \$127.5K and s.d. \$39.6K
 - Are these numbers parameters or statistics?
 - Shape of the salary distribution? (2 explanations)
- Random sample of 1,000 Ontario public sector employees has a mean salary of \$131.2K
 - Why is \bar{X} different than μ ?
 - How likely is *such a big* sample mean if claim true? i.e. $P(\bar{X} \ge 131.2 \mid \mu = 127.5, \sigma = 39.6, n = 1,000) = ?$

3

STATA Summary of Population

salary				
	Percentiles	Smallest		
1%	100.168	100		
5%	100.9921	100		
10%	102.0471	100	Obs	88545
25%	105.7447	100	Sum of Wgt.	88545
50%	115.3013		Mean	127.5176
		Largest	Std. Dev.	39.64454
75%	133.2821	843.095		
90%	164.5416	935.2365	Variance	1571.69
95%	193.125	1036.74	Skewness	5.019101
99%	296.8753	1720	Kurtosis	64.99817

Note: Technically, $\sigma=$ 39.6443. STATA computes s, not σ : but degrees of freedom correction matters little given large number of observations.

Mean and Variance of \bar{X}

- $\mu_{\bar{X}} = E[\bar{X}] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{1}{n} n\mu = \mu$
- $\sigma_{\bar{X}}^2 = V[\bar{X}] = V\left[\frac{\sum_{i=1}^n X_i}{n}\right] = \frac{1}{n^2} \sum_{i=1}^n V[X_i] = \frac{1}{n^2} \sum_{i=1}^n \sigma^2 = \frac{1}{n^2} n\sigma^2 = \frac{\sigma^2}{n}$
- $\sigma_{\bar{X}}=rac{\sigma}{\sqrt{n}}$ So, $\mu_{\bar{X}}=\mu$ and $\sigma_{\bar{X}}=rac{\sigma}{\sqrt{n}'}$ but what's the <u>shape</u> of the sampling distribution of \bar{X} ?

But first, in deriving $\sigma_{\bar{X}}$ above, why is $V[\sum_{i=1}^n X_i] = \sum_{i=1}^n V[X_i]$?

ECO220Y1Y, Lecture 11, Page 2 of 8

10% Condition / 10% Rule

- Derivation of $\sigma_{\bar{X}}^2$ assumes that each observation (X_i) is *independent* of others
 - For this to be true, must sample with replacement
 OR sample without replacement from a population that is infinitely large
 - In contrast, real applications involve sampling without replacement from a finite population
 - BUT if sample < 10% of population, assumption is true enough: can use theoretical results

7

Recall Parking Permit Ex (Lec. 10)

$$E[\overline{X}] = \mu = 0.8 = 0 * 0.064 + \frac{1}{3} * 0.192$$
$$+ \frac{2}{3} * 0.288 + 1 * 0.256 + \frac{4}{3} * 0.144 + \frac{5}{3}$$
$$* 0.048 + 2 * 0.008$$

$$V[\bar{X}] = \frac{\sigma^2}{n} = \frac{0.56}{3} = 0.187$$

$$= (0 - 0.8)^2 \cdot 0.064 + \left(\frac{1}{3} - 0.8\right)^2 \cdot 0.192$$

$$+ \left(\frac{2}{3} - 0.8\right)^2 \cdot 0.288 + (1 - 0.8)^2 \cdot 0.256$$

$$+ \left(\frac{4}{3} - 0.8\right)^2 \cdot 0.144 + \left(\frac{5}{3} - 0.8\right)^2 \cdot 0.048$$

$$+ (2 - 0.8)^2 \cdot 0.008$$

Work to find $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}^2$ not needed. Why is work needed?

Shape of sampling distribution of \bar{X} ?

- <u>Central Limit Theorem (CLT)</u>: For a random sample from any population the sampling distribution of the sample mean (\bar{X}) is approximately Normal for a sufficiently large sample size
 - Rough rule of thumb: sample size ≥ 30
 - < 30 sufficient for modestly non-Normal populations
 - If population is Normal, then $n \ge 1$ ok
 - > 30 necessary for extreme departures

9

Figure 10.5 Three-dice average.

Figure 10.6 Five-dice average.

Is sampling error a *plausible* explanation for \bar{X} as big as 131.2? 11

Sampling Error: Plausible Explanation?

$$P(\bar{X} \ge 131.2 \mid \mu = 127.518, \sigma = 39.645, n = 1,000)$$

$$= P\left(\frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} \ge \frac{131.2 - \mu_{\bar{X}}}{\sigma_{\bar{X}}}\right)$$

$$= P\left(Z \ge \frac{131.2 - 127.518}{39.645/\sqrt{1,000}}\right)$$

$$= P\left(Z \ge \frac{3.682}{1.254}\right)$$

$$= P(Z \ge 2.94) = 0.0016$$

What if sample size 50?
$$P(\bar{X} \ge 131.2 \mid \mu = 127.5, \\ \sigma = 39.6, n = 50) = ?$$

What *serious* problem may we face in trying to find this probability?

Monte Carlo Simulation

- Monte Carlo Simulation: A problem solving method where a computer generates many random samples and you make an inference based on patterns in outcomes
 - Simulation is most useful when theoretical results (e.g. CLT) do not apply and the problem is too big for an analytic approach
- It allows us to find sampling distributions with a high degree of accuracy

14

Recall Central Limit Theorem

- The CLT says the sampling distribution of the sample mean is Bell shaped no matter what the shape of the population so long as the sample size is sufficiently large
 - What is sufficiently large?
 - Is a "rule of thumb" always correct or is it just a rough guide?
 - What factors affect how large is sufficiently large?

n = 50: Sufficiently Large?

- Monte Carlo simulation: many samples of 50
 ON public employees (in each sample, n = 50)
 - # simulation draws (# samples drawn) = very big
 - Simulation error: Chance difference between simulated probability and true probability
 - Drive it to zero by doing many draws
 - For each sample compute the sample mean
 - Summarize distribution of \bar{X} : graphically (histogram) and numerically (Stata summary)

16

Simulated Sampling Distribution of \bar{X} for n=50

1

Summary of Simulated Sampling Dist.

of \bar{X} for n = 50

x-bar				
	Percentiles	Smallest		
1%	116.9729	109.5587		
5%	119.4248	109.6845		
10%	120.8754	111.0465	Obs	500000
25%	123.5441	111.2133	Sum of Wgt.	500000
50%	126.9508		Mean	127.513
		Largest	Std. Dev.	5.600294
75%	130.8465	172.6622		
90%	134.8423	173.6038	Variance	31.3633
95 %	137.4918	174.159	Skewness	. 6994546
99%	143.1469	174.9272	Kurtosis	4.167933

Is the simulation giving the correct mean and Std. Dev.?

Three Very Different Histograms

Summary of a Random Sample

salary				
	Percentiles	Smallest		
1%	100.1664	100.1664		
5%	100.9522	100.9473		
10%	102.0943	100.9522	Obs	50
25%	108.7771	101.021	Sum of Wgt.	50
50%	121.4592		Mean	132.7467
		Largest	Std. Dev.	34.22585
75%	155	173.4973		
90%	167.9037	183.4379	Variance	1171.409
95%	183.4379	219.4789	Skewness	2.125154
99%	283.6693	283.6693	Kurtosis	9.144829
90% 95%	167.9037 183.4379	173.4973 183.4379 219.4789	Variance Skewness	1171.40 2.12515

20

Simulated Sampling Distribution of the Sample Median for n=50

21

Summary of Simulated Sampling Dist. of Sample Median for n=50

Me	а	÷	21

	Percentiles	Smallest		
1%	108.8332	104.4422		
5%	110.5338	104.7897		
10%	111.4963	104.8258	Obs	500000
25%	113.2028	104.97	Sum of Wgt.	500000
50%	115.2876		Mean	115.4981
		Largest	Std. Dev.	3.265556
75%	117.5475	135.461		
90%	119.9086	137.6988	Variance	10.66386
95%	121.0002	138.1573	Skewness	. 4225524
99%	124.086	139.0575	Kurtosis	3.392273

How to interpret 113.2028? How to interpret 135.461?