Sampling Distribution of \bar{X} and Simulation Methods

Lecture 11

Reading: Sections 10.3-10.5

Ontario Public Sector Salaries

- Public Sector Salary Disclosure Act, 1996
- Requires organizations that receive public funding from the Province of Ontario to disclose annually the names, positions, salaries and total taxable benefits of employees paid $\$ 100,000$ or more in a calendar year
- E.g. Government of Ontario, Crown Agencies, Municipalities, Hospitals, Boards of Public Health, School Boards, Universities, Colleges, Hydro One, Ontario Power Generation, etc.

2013 disclosure of 2012 salaries: https://www.ontario.ca/page/public-sector-salary-disclosure-act-disclosures-2013

Sampling Error a Plausible Explanation for \bar{X} being $\$ 3,700$ above μ ?

- For all ON public sector employees w/ salaries of $\$ 100 \mathrm{~K}+$, mean is $\$ 127.5 \mathrm{~K}$ and s.d. $\$ 39.6 \mathrm{~K}$
- Are these numbers parameters or statistics?
- Shape of the salary distribution? (2 explanations)
- Random sample of 1,000 Ontario public sector employees has a mean salary of $\$ 131.2 \mathrm{~K}$
- Why is \bar{X} different than μ ?
- How likely is such a big sample mean if claim true? i.e. $P(\bar{X} \geq 131.2 \mid \mu=127.5, \sigma=39.6, n=1,000)=$?

STATA Summary of Population

	Percentiles	Smallest		
1\%	100.168	100		
5\%	100.9921	100		
10\%	102.0471	100	Obs	88545
25\%	105.7447	100	Sum of Wgt.	88545
50\%	115.3013		Mean	127.5176
		Largest	Std. Dev.	39.64454
75\%	133.2821	843.095		
90\%	164.5416	935.2365	Variance	1571.69
95\%	193.125	1036.74	Skewness	5.019101
99\%	296.8753	1720	Kurtosis	64.99817

Note: Technically, $\sigma=39.6443$. STATA computes s, not σ : but degrees of freedom correction matters little given large number of observations.

Mean and Variance of \bar{X}

- $\mu_{\bar{X}}=E[\bar{X}]=E\left[\frac{\sum_{i=1}^{n} X_{i}}{n}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=$ $\frac{1}{n} \sum_{i=1}^{n} \mu=\frac{1}{n} n \mu=\mu$
- $\sigma_{\bar{X}}^{2}=V[\bar{X}]=V\left[\frac{\sum_{i=1}^{n} X_{i}}{n}\right]=\frac{1}{n^{2}} \sum_{i=1}^{n} V\left[X_{i}\right]=$ $\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma^{2}=\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n}$
- $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \quad$ So, $\mu_{\bar{X}}=\mu$ and $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$, but what's the shape of the sampling distribution of \bar{X} ?
But first, in deriving $\sigma_{\bar{X}}$ above, why is $V\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} V\left[X_{i}\right]$? ${ }_{6}$

10\% Condition / 10\% Rule

- Derivation of $\sigma_{\bar{X}}^{2}$ assumes that each observation (X_{i}) is independent of others
- For this to be true, must sample with replacement OR sample without replacement from a population that is infinitely large
- In contrast, real applications involve sampling without replacement from a finite population
- BUT if sample < 10\% of population, assumption is true enough: can use theoretical results

Recall Parking Permit Ex (Lec. 10)

Sample Mean (X-bar)

$$
\begin{aligned}
& E[\bar{X}]=\mu=0.8=0 * 0.064+\frac{1}{3} * 0.192 \\
& +\frac{2}{3} * 0.288+1 * 0.256+\frac{4}{3} * 0.144+\frac{5}{3} \\
& * 0.048+2 * 0.008 \\
& V[\bar{X}]=\frac{\sigma^{2}}{n}=\frac{0.56}{3}=0.187 \\
& =(0-0.8)^{2} 0.064+\left(\frac{1}{3}-0.8\right)^{2} 0.192
\end{aligned}
$$

$$
+\left(\frac{2}{3}-0.8\right)^{2} 0.288+(1-0.8)^{2} 0.256
$$

$$
+\left(\frac{4}{3}-0.8\right)^{2} 0.144+\left(\frac{5}{3}-0.8\right)^{2} 0.048
$$

$$
+(2-0.8)^{2} 0.008
$$

Work to find $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}^{2}$ not
needed. Why is work needed?

Shape of sampling distribution of \bar{X} ?

- Central Limit Theorem (CLT): For a random sample from any population the sampling distribution of the sample mean (\bar{X}) is approximately Normal for a sufficiently large sample size
- Rough rule of thumb: sample size ≥ 30
- < 30 sufficient for modestly non-Normal populations
- If population is Normal, then $\mathrm{n} \geq 1$ ok
- > 30 necessary for extreme departures

Is sampling error a plausible explanation for \bar{X} as big as 131.2? ${ }_{11}$

Sampling Error: Plausible Explanation?

$$
\begin{aligned}
& P(\bar{X} \geq 131.2 \mid \mu=127.518, \sigma=39.645, n=1,000) \\
& =P\left(\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}} \geq \frac{131.2-\mu_{\bar{X}}}{\sigma_{\bar{X}}}\right) \quad \begin{array}{l}
\text { What if sample size } 50 ? \\
P(\bar{X} \geq 131.2 \mid \mu=127.5 \\
\sigma=39.6, n=50)=? \\
=P\left(Z \geq \frac{131.2-127.518}{39.645 / \sqrt{1,000})} \begin{array}{l}
\text { What serious problem may we } \\
\text { Wace in trying to find this } \\
\text { probability? }
\end{array}\right. \\
=P\left(Z \geq \frac{3.682}{1.254}\right)
\end{array} \\
& =P(Z \geq 2.94)=0.0016
\end{aligned}
$$

Monte Carlo Simulation

- Monte Carlo Simulation: A problem solving method where a computer generates many random samples and you make an inference based on patterns in outcomes
- Simulation is most useful when theoretical results (e.g. CLT) do not apply and the problem is too big for an analytic approach
- It allows us to find sampling distributions with a high degree of accuracy

Recall Central Limit Theorem

- The CLT says the sampling distribution of the sample mean is Bell shaped no matter what the shape of the population so long as the sample size is sufficiently large
- What is sufficiently large?
- Is a "rule of thumb" always correct or is it just a rough guide?
- What factors affect how large is sufficiently large?

$\mathrm{n}=50$: Sufficiently Large?

- Monte Carlo simulation: many samples of 50

ON public employees (in each sample, $n=50$)

- \# simulation draws (\# samples drawn) = very big
- Simulation error: Chance difference between simulated probability and true probability
- Drive it to zero by doing many draws
- For each sample compute the sample mean
- Summarize distribution of \bar{X} : graphically
(histogram) and numerically (Stata summary)

Simulated Sampling Distribution of \bar{X} for $n=50$

	Percentiles	Smallest		
1\%	116.9729	109.5587		
5\%	119.4248	109.6845		
10\%	120.8754	111.0465	Obs	500000
25\%	123.5441	111.2133	Sum of Wgt.	500000
50\%	126.9508		Mean	127.513
		Largest	Std. Dev.	5.600294
75\%	130.8465	172.6622		
90\%	134.8423	173.6038	Variance	31.3633
95\%	137.4918	174.159	Skewness	. 6994546
99\%	143.1469	174.9272	Kurtosis	4.167933

[^0]
Three Very Different Histograms

Summary of a Random Sample
salary

	Percentiles	Smallest		
1\%	100.1664	100.1664		
5\%	100.9522	100.9473		
10\%	102.0943	100.9522	Obs	50
25\%	108.7771	101.021	Sum of Wgt.	50
50\%	121.4592		Mean	132.7467
		Largest	Std. Dev.	34.22585
75\%	155	173.4973		
90\%	167.9037	183.4379	Variance	1171.409
95\%	183.4379	219.4789	Skewness	2.125154
99\%	283.6693	283.6693	Kurtosis	9.144829

Simulated Sampling Distribution of the Sample Median for $n=50$

Summary of Simulated Sampling Dist. of Sample Median for $n=50$
 Median

	Percentiles	Smallest		
1\%	108.8332	104.4422		
5\%	110.5338	104.7897		
10\%	111.4963	104.8258	Obs	500000
25\%	113.2028	104.97	Sum of Wgt.	500000
50\%	115.2876		Mean	115.4981
		Largest	Std. Dev.	3.265556
75\%	117.5475	135.461		
90\%	119.9086	137.6988	Variance	10.66386
95\%	121.0002	138.1573	Skewness	. 4225524
99\%	124.086	139.0575	Kurtosis	3.392273

How to interpret 113.2028? How to interpret 135.461?

[^0]: Is the simulation giving the correct mean and Std. Dev.?

