Homework 9: ECO220Y - SOLUTIONS

Note: For Exercises 1-8 in "The Normal Table: Read it, Use it" (posted on Quercus), the answers are on pages 6-7.

Required Problems:

(1) (a) The chance that a single box has less than 454 grams is 0.212 .

(b) Each box either is or is not less than 454 grams and each box's weight is independent. Hence it is Binomial with $n=4$ and $p=0.212$. Let X be the number of boxes that are underweight. $P(X>=1)=1-P(X=0)=1-0.3856=0.6144$.
(c) The probability that all four are underweight is $0.0020\left(=0.212^{4}\right)$.
(d) Let $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4$ be the random variables that record the number of grams contained in boxes one through four respectively. $\mathrm{P}((\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4)<454 * 4)=$?

Because X1 through X4 are all Normal and independent we know that the sum is Normal (see pages 301-304 of our textbook) and we can use the laws of expectation and variance to find the mean and variance of the sum.
$\mathrm{E}[\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4]=458+458+458+458=1832$
$V[X 1+X 2+X 3+X 4]=V[X 1]+V[X 2]+V[X 3]+V[X 4]=25+25+25+25=100$
Define $\mathrm{W}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4 . \mathrm{P}(\mathrm{W}<1816)=0.0548$.

(e) Let $\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{X} 7$ be the random variables that record the number of grams contained in boxes one through seven respectively. $\mathrm{P}((\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5+\mathrm{X} 6+\mathrm{X} 7)<454 * 7)=$?

X1 through X7 are all Normal and independent.
$E[X 1+X 2+X 3+X 4+X 5+X 6+X 7]=458+458+458+458+458+458+458=3206$
$\mathrm{V}[\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5+\mathrm{X} 6+\mathrm{X} 7]=\mathrm{V}[\mathrm{X} 1]+\mathrm{V}[\mathrm{X} 2]+\mathrm{V}[\mathrm{X} 3]+\mathrm{V}[\mathrm{X} 4]+\mathrm{V}[\mathrm{X} 5]+\mathrm{V}[\mathrm{X} 6]+$ $V[X 7]=25+25+25+25+25+25+25=175$

Define $\mathrm{W}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\mathrm{X} 4+\mathrm{X} 5+\mathrm{X} 6+\mathrm{X} 7 . \mathrm{P}(\mathrm{W}<3178)=0.0171$.
(f) $P(X 1<454)=0.212$
$P((X 1+X 2+X 3+X 4)<454 * 4)=0.0548$
$P((X 1+X 2+X 3+X 4+X 5+X 6+X 7)<454 * 7)=0.0171$
The probabilities go down as we combine more and more boxes. This is because when we combine boxes some are likely to be above and some below weight and would cancel as we combine them. (Please remember TK71: random sampling is NOT a self-correcting process. However, as we draw more and more boxes there will inevitably be some cancelling of above average boxes with below average boxes.) The independence assumption is very important to make
this argument work: if instead of combining seven independent boxes we multiple one box by seven we would only amplify the variability of a single box. Instead by combining independent boxes there is the chance for random positive draws to offset random negative draws. This is an example of an important concept we will study further and is very much related to the idea that as we increase sample sizes we reduce sampling error.
(2) (a) $X \sim B(n=2,000, p=0.60)$. We can definitely use the Normal approximation to the Binomial (we pass either of the standard rules of thumb discussed in Lecture 9 with flying colors). $\mu=E[X]=n * p=1,200$ and $\sigma=S D[X]=$ $\sqrt{n * p *(1-p)}=21.91$. We use the Empirical Rule to tick off values on the x-axis. (You must label the vertical axis "Density" but you do not need to use the Normal density function to find numeric values to tick on the y-axis.)

(b) That probability is, for all practical purposes, 1 . Notice in the graph above: $1134.3 / 2000=0.567$ and $1265.7 / 2000=$ 0.633 . Hence, it is nearly certain that a random sample of 2,000 GTA residents will have somewhere between 56.7% and 63.3% of GTA residents supporting Mayor John Tory so long as it is true that 60% of all GTA residents support him (i.e. $p=0.60$). Obviously, the range 50% to 70% is even wider, so the probability is 1 (even machine precision will round the answer to 1, even though in mathematical theory it would technically be infinitesimally smaller than 1).
(c) The primary difference between this question and required problem (4) in HW 8 is that here you use the Normal approximation to the Binomial and in the earlier homework you had to use the Binomial distribution. Notice the difference in sample sizes across the two homework questions.
(3) About 25% of observations are within ± 0.32 s.d. of mean; About 50% of observations are within ± 0.675 s.d. of mean; About 75% of observations are within ± 1.15 s.d. of mean
(4) We are given that:
$P(X<254.21)=0.961$ and $P(X<161.42)=0.228$.

(5) The standard deviation would be about 16. To get this approximation, you must notice the shape is Triangle. (The sample size is very large, $n=2,500$, which means that you can see the subtle difference between the Normal shape and Triangle shape in the histogram. If the sample size were small, you wouldn't be able to tell the difference.) Remembering that the standard deviation of the Triangle distribution, where $X \sim T[2 a, 2 b]$, is $S D[X]=\frac{b-a}{\sqrt{6}}$, we see that $2 a \approx 0$ and $2 b \approx 80$ so $S D[X] \approx \frac{40-0}{\sqrt{6}}=16.3$.
(6) First have to find the equation of the blue line (density function): in particular, what is y when x is 1 ? We know that the area under the density function must be 1 and that this is a triangle:
$A=1 / 2 b^{*} h$
$1=1 / 24^{*} h$
$0.5=h$
So, when $\mathrm{x}=1, \mathrm{y}=0.5$.
Find equation of the line (we now have two points and two points determine a line): $y-y_{1}=m\left(x-x_{1}\right)$
slope $=m=(0.5-0) /(1-5)=-0.125$
$y-0=-0.125(x-5)$
$y=0.625-0.125 x$
Hence, $f(x)=0.625-0.125 x$ if x is between 1 and 5 and $f(x)=0$ otherwise.
(7) $\mathrm{U}[0.5,6.5]$. Keep in mind that we are approximating a discrete probability distribution (rolling a die) with a continuous distribution (the Uniform). Hence, we have to consider the "continuity correction." Note: U[1,6] is not a good approximation because according to that the probability of getting a $1(0.5,1.5)$ is only $0.5^{*} 0.2=0.1$, which is substantially less than $1 / 6$ (=0.167).

