Continuous Distributions

Lecture 9

Reading: Sections 9.8-9.11, "The Normal Table: Read It, Use It" (Optional: 9.7, 9.12,
"Normal Probability Plots" pp. 280-2)

Discrete versus Continuous

- Discrete random variable: can find $P\left(X=x_{1}\right), \ldots, P\left(X=x_{m}\right)$
- Continuous random variable: probability that X equals a specific number is 0
- E.g.: If measure weight perfectly at birth, $P(W=3302 g)=$?
- Typically round weight to nearest gram
- Technically a finite \# of possible values
- But treat as continuous: a good approximation
- Discrete vs. continuous:
- \# cars through a toll booth in a month?
- \# UoT snow days in a year?

Probability Density Function: $f(x)$

- Density function requirements:
$-f(x) \geq 0$ for all x
- Total area under $f(x)$ equals 1
- $f(x)$ is height, not a probability

	Birth Weight Distribution $\mathrm{mu}=3200$, sigma $=500$

- Area under a density $P(2700<W<3700)=0.6827$
function is probability $P(W=3302)=0$
of a range of values

Uniform Distribution: $X \sim U[a, b]$

- Uniform: $f(x)=\frac{1}{b-a}$ for $a<x<b$ and 0 otherwise
- Two parameters: a and b
- Bounded support
$-E[X]=\mu=\frac{a+b}{2}$
$-V[X]=\sigma^{2}=\frac{(b-a)^{2}}{12}$
- Can $f(x)$ be greater than one?

Triangle Distribution: $X \sim T[2 a, 2 b]$

- Triangle distribution created as sum of two independent and identically distributed Uniform random variables

- X_{1} and X_{2} independent
- $X_{1} \sim U[a, b]$ and $X_{2} \sim U[a, b]$ (identically distributed)
$-\left(X_{1}+X_{2}\right) \sim T[2 a, 2 b]$
- E.g. If wait time is Uniformly distributed from 0 to 20 minutes, $U[0,20]$, then total wait time for two buses $\left(X_{1}+X_{2}\right)$ follows the Triangle distribution: $T[0,40]$

Finding Areas: $A=\frac{1}{2}$ base $*$ height

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-0=-\frac{0.05}{20}(x-40) \\
& y=0.1-0.0025 x \\
& A=0.5 *(40-24) *(0.1-0.0025 * 24)=0.32
\end{aligned}
$$

Summary:
 Summary:
 Uniform $X \sim U[a, b] \quad$ Triangle $X \sim T[2 a, 2 b]$

- Symmetric, rectangleshaped, even density throughout
- Parameters: a and b
- Bounded support: $[a, b]$
- Find probabilities with
$A=b h$ and symmetry
- $E[X]=\mu=\frac{a+b}{2}$
- $V[X]=\sigma^{2}=\frac{(b-a)^{2}}{12}$
- Symmetric, triangleshaped, more density around mean
- Parameters: $2 a$ and $2 b$
- Bounded sup.: [2a, 2b]
- Find probabilities with $A=\frac{1}{2} b h$ and symmetry
- $E[X]=$
- $V[X]=$

Percentiles \& Uniform Distribution

- Percentiles are often interesting
- Standardized tests: for example, a score of 590 on the math SAT is at the $73{ }^{\text {rd }}$ percentile (good)
- Birth weights: for example, a 10-month old girl who weighs 6.8 kg is at the $3^{\text {rd }}$ percentile (small)
- No matter how a variable's distribution is shaped - positively skewed, negatively skewed, bi-modal, Normal (Bell) - percentiles will be Uniformly distributed from 0 to 100
The WHO Child Growth Standards, Weight-for-age,
http://www.who.int/childgrowth/standards/weight for age/en/

Recall: Currie \& Schwandt (2016)

Normal Distribution: $X \sim N\left[\mu, \sigma^{2}\right]$

- $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ for $-\infty<x<\infty$
- Parameters: μ and σ^{2}
- Unbounded support
- For area under $f(x)$, no formula (calculus cannot solve): use tables/software

Recall: Empirical Rule

- In sample from Normal population, then about:
- 68.3\% of obs lie w/in 1 s.d. of mean (i.e. btwn $\bar{X}-s$ and $\bar{X}+s$)
-95.4% of obs lie w/in 2 s.d. of mean (i.e. btwn $\bar{X}-2 s$ and $\bar{X}+2 s$)
-99.7% of obs lie w/in 3 s.d. of mean (i.e. btwn $\bar{X}-3 s$ and $\bar{X}+3 s$)
- For the Normal model, exactly (with rounding):
- 68.3% of obs lie w/in 1 s.d. of mean (i.e. btwn $\mu-\sigma$ and $\mu+\sigma$)
- 95.4\% of obs lie w/in 2 s.d. of mean (i.e. btwn $\mu-2 \sigma$ and $\mu+2 \sigma$)
- 99.7\% of obs lie w/in 3 s.d. of mean (i.e. btwn $\mu-3 \sigma$ and $\mu+3 \sigma)$

Standard Normal: $Z \sim N(0,1)$

- If $X \sim N\left(\mu, \sigma^{2}\right)$ then $Z \sim N(0,1)$ where
$Z=\frac{X-\mu}{\sigma}=-\frac{\mu}{\sigma}+\frac{1}{\sigma} X$
- Recall that linear transformations do NOT change shape \& Laws of Expectation \& Variance:
$E\left[-\frac{\mu}{\sigma}+\frac{1}{\sigma} X\right]=-\frac{\mu}{\sigma}+\frac{1}{\sigma} E[\mathrm{X}]=-\frac{\mu}{\sigma}+\frac{\mu}{\sigma}=0$
$V\left[-\frac{\mu}{\sigma}+\frac{1}{\sigma} X\right]=\frac{1}{\sigma^{2}} V[\mathrm{X}]=\frac{1}{\sigma^{2}} \sigma^{2}=1$

Using Standard Normal Table

$P\left(x_{1}<X<x_{2}\right)=P\left(\frac{x_{1}-\mu}{\sigma}<Z<\frac{x_{2}-\mu}{\sigma}\right)$
For example, if birth weights are Normally distributed with a mean of 3,200 grams and a standard deviation of 500 grams, what is the probability that a randomly selected newborn weighs less than 2,600 grams?

$P(X<2,600)=P\left(Z<\frac{2,600-3,200}{500}\right)$
$P(Z<-1.2)=0.5-0.3849$
$=0.1151$
"The Normal Table: Read it, Use it": Use one-page table for HW

Statistics Canada, https://www150.statcan.gc.ca/n1/pub/75-006-x/2016001/article/14639-eng.htm; 2016 from https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/hlt-fst/fam/Table.cfm?Lang=E\&T=32\&Geo=00 ${ }^{16}$

Sampling (Sampling Error) Example

- In random sample of 100 young adults aged 20-24 in 2016, what is the chance that 56 or fewer live with parents (recalling that Census says 62.5%)?

- Define X as count of those living with parents
- How is X distributed?

$$
\begin{gathered}
P(X \leq 56)=P(X<57)=? \\
\text { Reasonable to compute } \\
\text { with handheld calculator? }
\end{gathered}
$$

$$
P(X=56)=\frac{100!}{56!(100-56)!} 0.625^{56}(1-0.625)^{100-56}=0.0331{ }_{17}
$$

Normal Approximation to Binomial

- $X \sim B(n, p)$ is sometimes well approximated by $X \sim N\left(\mu, \sigma^{2}\right) \mathrm{w} / \mu=n p$ and $\sigma^{2}=n p(1-p)$
- Two common rules of thumb (you may use either) to check if it's a reasonable approximation:

1) $n p \geq 10$ and $n(1-p) \geq 10$
2) $n p-3 \sqrt{n p(1-p)} \geq 0$ and $n p+3 \sqrt{n p(1-p)} \leq n$

- As n rises, Normal approximation improves
- There is nothing magic about marginally passing or marginally failing either rule of thumb

Continuity Correction

- Binomial is discrete

$$
\begin{aligned}
- & P(X=56) \neq 0 \text { but } \\
& P(56<X<57)=0
\end{aligned}
$$

- Normal is continuous

$$
\begin{aligned}
- & P(X=56)=0 \text { but } \\
& P(56<X<57) \neq 0
\end{aligned}
$$

- "Continuity correction" addresses this disparity
- Page 286 textbook (box)

$$
P(X=56) \approx 0.0335
$$

To approximate $P(X \leq 56)$, use Normal to find $P(X<56.5)$

Note: Correction (slightly) improves the approximation. With a large n it makes little difference: researchers usually ignore it.

$$
\begin{aligned}
& P(X \leq 56) \approx P(X<56.5) \\
& P(X<56.5) \\
& =P\left(Z<\frac{56.5-62.5}{4.841}\right) \\
& =P(Z<-1.24) \\
& =0.5-0.3925=0.1075
\end{aligned}
$$

Is having so few (56) living at home in a sample of 100 surprising?

Normal + Normal $=$ Normal $?$

- Linear combination:
$a_{0}+a_{1} X_{1}+\cdots+a_{J} X_{J}$ where $a_{0}, a_{1}, \ldots, a_{J}$ are constants
- A linear combination of independent Normal random variables yields a Normal random variable

In 2016, chance a random
sample of 50 people aged 25 -
29 has more living w/ parents
than sample of 50 aged 20-24?
$P\left(X_{25-29}>X_{20-24}\right)=$?
$P\left(\left(X_{25-29}-X_{20-24}\right)>0\right)=$?
$X_{20-24} \sim B(n=50, p=0.625)$
$X_{25-29} \sim B(n=50, p=0.288)$
Use Normal approx. for each?
If so, is difference Normal?
22

$P\left(\left(X_{25-29}-X_{20-24}\right)>0\right)=$?
$P\left(Z>\frac{0--16.850}{4.687}\right)$
$=P(Z>3.60)=0.0002$
Would it be surprising if X_{25-29} were larger than X_{20-24} ?

