Required Exercises: Chapter 9: 7, 9, 11, 35, 37, 41, 43, 45, 47, 49, 61, 62 - 64

Required Problems:

(1) Below are three graphs - using data from the World Bank for 48 countries - from Slide 24 of Lecture 3. What is the coefficient of correlation between debt as a percent of GDP in 2005 and debt as a percent of GDP in 2010? Figure out the exact value and explain how you know the sign of the correlation must be what it is (i.e. either positive or negative).

(2) Give a numeric example where Y , which is defined as the sum of two random variables $\mathrm{Y}=\mathrm{W}+\mathrm{X}$, has a smaller variance than either W or X .
(3) You are told that 12 percent of airline delays are caused by mechanical issues with the airplane. In a random sample of 25 flights, $5(20 \%)$ are delayed by mechanical issues. What is the chance such a high number are delayed for a mechanical reason if the original claim is true? Do you think that your sample is statistically plausible? [Hint: The question is not asking for the chance exactly 5 out of 25 are delayed. "Such a high number" means that high or higher.]
(4) In a survey of adult GTA residents one question asks "Do you support Mayor John Tory? Yes or No." For all parts below suppose that in truth exactly 60% of the entire adult population of GTA residents support Tory.
(a) Suppose random sample of 10 Toronto residents is asked the survey question. Draw a fully labeled graph of the distribution of the random variable recording the number of people who answer "Yes" to the survey.
(b) What is the probability that the percent of the sample in Part (a) supporting Tory is at least 50 percent but not more than 70 percent?
(5) Which two parameters affect the probability of any particular number of successes in a Binomial experiment?
(6) For a Binomial random variable with $n=14$ and $p=0.5$, what is the probability of obtaining a value of X within one standard deviation of the mean?
(7) A very large discount store is filled with items that have one of five different prices. 48.23 percent of the items in the store cost 99 cents, 38.58 percent cost $\$ 1.99,11.57$ percent cost $\$ 2.99,1.54$ percent cost $\$ 3.99$, and 0.08 percent cost $\$ 4.99$. Suppose you walked into the store and selected one item at random.
(a) Define a random variable X and write down its probability distribution. Is it continuous or discrete?
(b) Graph the probability distribution of X. Make sure to label the axes.
(c) Find the mean. Interpret it in a way that a customer at this store could understand. Include the units of measurement.
(d) Find the s.d. and include the units of measurement.
(e) Create a variable Z that is X standardized. Write down its probability distribution. Interpret one of the negative values of Z. Interpret one of the positive values of Z. What are the units of measurement?
(f) Graph the probability distribution of Z. How does it compare with the graph for Part (b)?
(8) Suppose you have 1 year of data for a restaurant. It has 365 observations (records) corresponding to each day in that year. There are three variables recording the morning shift sales ($\$ \mathbf{} \mathbf{s}$), the afternoon shift sales ($\$$'s) and the evening shift sales ($\$$'s). The mean and standard deviation of daily sales for each shift are:

Morning: \$1100 and \$200; Afternoon: \$1300 and \$150; Evening: \$1600 and \$400
Answer this multiple-choice question and include an explanation of the correct and incorrect replies. For total daily sales (three shifts combined), what is the mean and standard deviation?
(A) mean $=\$ 4000$ and s.d. $=\$ 750$
(B) mean $=\$ 4000$ and s.d. $=\$ 471.70$
(C) mean cannot be determined but s.d. $=\$ 750$
(D) mean $=\$ 4000$ but s.d. cannot be determined
(9) Consider again the OECD data discussed in Lecture 8.

```
correlate fem_emp_2006 fem_emp_2012 male_emp_2006 male_emp_2012, format;
(obs=34)
    | fem~2006 fem~2012 mal~2006 mal~2012
\begin{tabular}{|c|c|c|c|c|}
\hline fem_emp_2006 & 1.0000 & & & \\
\hline fem_emp_2012 & 0.9482 & 1.0000 & & \\
\hline male_em~2006 & 0.5904 & 0.4948 & 1.0000 & \\
\hline male_em~2012 & 0.4758 & 0.6106 & 0.6498 & 1.0000 \\
\hline
\end{tabular}
summarize fem_emp_2006 fem_emp_2012 male_emp_2006 male_emp_2012, format;
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline fem_emp_2006 & 34 & 58.92 & 11.45 & 22.75 & 80.88 \\
\hline fem_emp_2012 & 34 & 60.05 & 10.43 & 28.73 & 77.88 \\
\hline male_em~2006 & 34 & 74.43 & 6.31 & 60.88 & 88.05 \\
\hline male_em~2012 & 34 & 72.23 & 6.34 & 60.20 & 85.18 \\
\hline
\end{tabular}
```

(a) What is the mean and the s.d. of the change in the male employment rate from 2006 to 2012 across OECD countries? Include the units of measurement of each.
(b) Select true or false for each.
i) For $D=\left[M_{12}-M_{06}\right]$, the mean of D is positive
ii) For $D=\left[M_{12}-M_{06}\right]$, the variance of D is larger than $V\left[M_{12}\right]+V\left[M_{06}\right]$
iii) For $D=\left[M_{12}-M_{06}\right]$, the variance of D is affected by the sign of the correlation
iv) For $D=\left[M_{12}-M_{06}\right]$, the s.d. of D is $S D\left[M_{12}\right]+S D\left[M_{06}\right]-2 r S D\left[M_{12}\right] S D\left[M_{06}\right]$
v) For $D=\left[M_{12}-M_{06}\right]$, the variance of D is the same as the variance of $\left[M_{12}+M_{06}\right]$
vi) For $D=\left[M_{12}-M_{06}\right]$, the s.d. of D is not equal to $S D\left[M_{12}\right]-S D\left[M_{06}\right]$
(10) Consider doing a Binomial Experiment and defining a new random variable Y as the fraction of successes in the n trials. For example, if there are 3 successes in 5 trials, Y would be 0.60 whereas the Binomial random variable X would be 3. Is Y a discrete random variable? Explain. What are the mean and variance of Y ?
(11) Draw a graph of a Binomial distribution if $n=6$ and $p=0.2$. Carefully label it. What is the mean and variance? Explain how the shape would change if $n=600$? What would be the new mean and variance?
(12) Suppose the probability distribution of the number of sales a sales person makes in a day is:

x	$p(x)$
0	0.4
1	0.5
2	0.1

(a) What is the expected total sales for a week (with 5 business days)?
(b) If the number of sales made each day is independent of all other days, what is the s.d. of total sales for a week (with 5 business days)?

