Percentiles, STATA, Box Plots, Standardizing, and Other Transformations

Lecture 3

Reading: Sections 5.7-5.14
Remember, when you finish a chapter make sure not to miss the last couple of boxes: "What Can Go Wrong?" and "Ethics in Action"

Measures of Relative Standing: Percentiles

World bank data, again

Reading STATA Output

```
su inflation_2011, detail
```

inflation_2011

Trips	Freq.	Percent	Cum.
0	294	35.85	35.85
1	76	9.27	45.12
2	66	8.05	53.17
3	58	7.07	60.24
4	47	5.73	65.98
5	47	5.73	71.71
6	36	4.39	76.10
7	30	3.66	79.76
8	28	3.41	83.17
9	15	1.83	85.00
10	9	1.10	86.10
11	16	1.95	88.05
12	25	3.05	91.10
13	9	1.10	92.20
14	5	0.61	92.80
15	9	1.10	93.90
16	5	0.61	94.51
17	6	0.73	95.24
18	4	0.49	95.73
cont'd			

Trips	Freq.	Percent	Cum.
19	1	0.12	95.85
20	3	0.37	96.22
21	2	0.24	96.46
22	4	0.49	96.95
23	1	0.12	97.07
24	4	0.49	97.56
25	2	0.24	97.80
26	4	0.49	98.29
27	2	0.24	98.54
28	3	0.37	98.90
30	1	0.12	99.02
34	1	0.12	99.15
35	1	0.12	99.27
36	1	0.12	99.39
41	1	0.12	99.51
43	1	0.12	99.63
44	1	0.12	99.76
45	1	0.12	99.88
50	1	0.12	100.00
Total	$\mathbf{8 2 0}$	$\mathbf{1 0 0 . 0 0}$	

What is the median?

What is the $75^{\text {th }}$
percentile?

Reading STATA Output

Number_of_Trips				
	Percentiles	Smallest		
1\%	0	0		
5\%	0	0		
10\%	0	0	Obs	820
25\%	0	0	Sum of Wgt.	820
50\%	2		Mean	4.52439
		Largest	Std. Dev.	6.684273
75\%	6	43		
90\%	12	44	Variance	44.6795
95\%	17	45	Skewness	2.717188
99\%	30	50	Kurtosis	13.01081

How can the $10^{\text {th }}$ percentile and the $25^{\text {th }}$ percentile both be zero?

One Popular Use of Percentiles

- Quartiles:
$-1^{\text {st }}$ quartile: obs btwn $0^{\text {th }}$ and $25^{\text {th }}$ percentiles
$-2^{\text {nd }}$ quartile: obs btwn $25^{\text {th }}$ and $50^{\text {th }}$ percentiles
$-3{ }^{\text {rd }}$ quartile: obs btwn $50^{\text {th }}$ and $75^{\text {th }}$ percentiles
$-4^{\text {th }}$ quartile: obs btwn $75^{\text {th }}$ and $100^{\text {th }}$ percentiles
- Quintiles:
- Divide variable into fifths: e.g. top quintile includes obs btwn 80 ${ }^{\text {th }}$ and $100^{\text {th }}$ percentiles
- Deciles:
- Divide variable into tenths: e.g. bottom decile includes obs btwn $0^{\text {th }}$ and $10^{\text {th }}$ percentiles

Note: You are responsible for knowing the meaning of these terms if they appear on a test, exam, etc.

Practice Reading and Interpreting

Table 11. Hours Worked in Selected OECD Countries, by Income ${ }^{\text {a }}$ Median/mean

		Nether- Iands,				Sweden, Income quintile	France, 1994
Germany,	Italy, land,	United States,					
First (lowest)	$39 / 38$	$12 / 26$	$50 / 50$	$0 / 16$	$39 / 35$	$55 / 62$	$35 / 27$
Second	$39 / 41$	$40 / 39$	$40 / 41$	$40 / 35$	$39 / 38$	$44 / 50$	$40 / 42$
Third	$39 / 41$	$40 / 41$	$40 / 40$	$40 / 40$	$39 / 39$	$42 / 46$	$40 / 44$
Fourth	$39 / 42$	$40 / 42$	$40 / 40$	$40 / 41$	$39 / 39$	$42 / 46$	$40 / 45$
Fifth	$45 / 47$	$44 / 45$	$40 / 42$	$40 / 44$	$39 / 40$	$45 / 50$	$45 / 48$

Source: Luxembourg Income Study data. Alesina et al (2001) "Why Doesn't the United a. By males aged $25-54$.

Interquartile Range (IQR)

- Interquartile range: $75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
- Measures spread of middle observations
- What does it measure?

"Sunlight and Protection Against Influenza"

Table 1: Summary Statistics

	$\begin{aligned} & \text { (1) } \\ & \mathrm{N} \\ & \hline \end{aligned}$	(2) Mean	$\begin{gathered} (3) \\ \text { StDev } \\ \hline \end{gathered}$	(4) Min	$\begin{array}{r} \text { (5) } \\ \text { Max } \\ \hline \end{array}$
Flu index	1,404	2.000	2.139	1	10
Sunlight ($\mathrm{kJ} / \mathrm{m}^{2} /$ day $)$	1,404	15,771	6,509	4,576	30,334
Population Density (individuals $/ \mathrm{mi}^{2}$)	1,404	197.2	269.5	5.8	1,195
Temperature (${ }^{\circ} \mathrm{F}$)	1,404	54.0	17.9	5.1	94.3
Days/month temp $<15^{\circ} \mathrm{F}$	1,404	2.0	4.7	0	29.8
Specific humidity (g water vapor / kg air)	1,404	10.8	6.4	1.8	29.7
Days/month specific humidity $<6 \mathrm{~g} / \mathrm{kg}$	1,404	9.8	10.5	0	31

Note: Unit of observation is a year-month for each of the 36 contiguous [U.S.] states that have complete flu and sunlight data.
Which kind of data are these: cross-sectional, time series, or panel?
Why 1,404 observations? These are monthly data from Oct. 2008 to Dec. 2011 (39 months) for 36 states ($39 * 36=1,404$).

Slusky and Zeckhauser (2018), http://www.nber.org/papers/w24340.pdf

Jan is 1 , Feb is $2, \ldots$ Each month has 108 obs (36 states*3yrs) except Oct, Nov, and Dec have 144 obs (36 states*4yrs). $N=1,404$ ($=9 * 108+3 * 144$)

Outliers

- Outliers: extremely large or small values different from the bulk of the data
- Robust: not sensitive to outliers
- Is the sample mean a robust measure of central tendency?
- Is the sample median robust?
- However, the mean retains more information from sample \& has useful statistical properties
- Is the IQR robust? variance?

Charitable Donors: Stats Can

http://www5.statcan.sc..ca/cansim/a05?lang=eng\&id=1110002\&pattern=1110002\&searchTvpeBVValue=1\&p22=35

Donors and donations	$\mathbf{2 0 1 1}$
Number of taxfilers ${ }^{4}$	$24,841,630$
Number of donors ${ }^{2,3}$	$5,709,700$
Percentage of donors aged 0 to 24 years $2,3,6$	3
Percentage of donors aged 25 to 34 years $2,3,6$	12
Percentage of donors aged 35 to 44 years $2,3,6$	17
Percentage of donors aged 45 to 54 years $2,3,6$	23
Percentage of donors aged 55 to 64 years $2,3,6$	21
Percentage of donors aged 65 years and over2,3,6	25

${ }^{2}$ Charitable donor is defined as a taxfiler reporting a charitable donation amount on line 340 of the personal income tax form.

Average Age of Donors?

Section 5.7 "Grouped
Data" tells how to
approximate the mean \&
s.d. with grouped data

\% aged 0 to 24	3
\% aged 25 to 34	12
\% aged 35 to 44	17
\% aged 45 to 54	23
\% aged 55 to 64	21
\% aged 65 and over	25

Mean
$\approx 0.03 * 21+0.12 * 29.5$
$+0.17 * 39.5+0.23 * 49.5$
$+0.21 * 59.5+0.25 * 70$
≈ 52.3 years
What if we use 75 years old for last category? Then mean ≈ 53.5.

What if we use 12 years old for first category? Then mean ≈ 52.0.

Logic of Calculation: Smaller Example

- Survey a random sample of $40 \mathrm{~A} \& S$ students asking how many courses are you currently taking. A tabulation:

Similarly for standard deviation

num_courses \|	Freq.	Percent	Cum.
21	3	7.50	7.50
4 I	7	17.50	25.00
5 I	28	70.00	95.00
61	2	5.00	100.00
Total I	40	100.00	

$$
s=\sqrt{\frac{\sum_{i=1}^{40}\left(x_{i}-\bar{X}\right)^{2}}{n-1}}
$$

$$
=\sqrt{\frac{\sum_{i=1}^{3}(2-4.65)^{2}+\sum_{i=1}^{7}(4-4.65)^{2}+\sum_{i=1}^{28}(5-4.65)^{2}+\sum_{i=1}^{2}(6-4.65)^{2}}{40} * \frac{40}{39}}
$$

$$
=\sqrt{\left(0.075(2-4.65)^{2}+0.175(4-4.65)^{2}+0.7(5-4.65)^{2}+0.05(6-4.65)^{2}\right) \frac{40}{39}}
$$

$$
=0.89 \text { And, if you ignore 40/39, you get } 0.88 \text { (very close to right answer) } 20
$$

Standard Deviation of Age of Donors?

\% aged $0-24[21]$	3
\% aged $25-34[29.5]$	12
\% aged $35-44[39.5]$	17
\% aged $45-54[49.5]$	23
\% aged $55-64[59.5]$	21
\% aged 65 \& over [70]	25

$$
\begin{aligned}
& s^{2} \\
& \approx 0.03(21-52.3)^{2} \\
& +0.12(29.5-52.3)^{2} \\
& +0.17(39.5-52.3)^{2} \\
& +0.23(49.5-52.3)^{2} \\
& +0.21(59.5-52.3)^{2} \\
& +0.25(70-52.3)^{2} \\
& =210.6 \text { years }^{2} \\
& \text { s.d. } \approx \sqrt{210.6}=14.5 \text { years }
\end{aligned}
$$

Standardization ("z-scores")

- Standardize: $z=\frac{x-\bar{X}}{s_{x}}$
- z: how many s.d.'s a value is from the mean (+ if above; - if below)
$-Z$ has a mean of 0 and s.d. of 1 and no units
- Eg: mean inflation 6.64, s.d. 6.78; 2.91 in Canada: z=-0.55=(2.91-6.64)/6.78
- What does -0.55 mean?

$n=174$ countries

Inflation Rate, 2011 $n=174$ countries

Linear Transformations

- Linear transformation can be written as
$Y=a+b X$ where a and b are constants
- Linear transformation of X ?
- $Y=200-X$
- $Y=X^{2}-1=(X-1)(X+1)$
- $\mathrm{Y}=(\mathrm{X}-10) / 2$
- Linear transformations change scale of a variable but not shape of the distribution
- Standardization is a linear transformation

Change $=$ Debt10 - Debt05
$5.23=58.47-53.24$
Linear combinations have simple effect on mean.

But this does not work (at all) for median or sd.

